
Digging Deeper Into the State of the Practice for
Domain Specific Research Software

Spencer Smith1[0000−0002−0760−0987] and Peter Michalski1

McMaster University, 1280 Main Street West, Hamilton ON L8S 4K1, Canada
smiths@mcmaster.ca

http://www.cas.mcmaster.ca/~smiths/

Abstract. To improve the productivity of research software developers
we need to first understand their development practices. Previous stud-
ies on this topic have collected data by surveying as many developers as
possible, across a broad range of application domains. We propose to dig
deeper into the state of the practice by instead looking at what devel-
opers in specific domains create, as evidenced by the contents of their
repositories. Our methodology prescribes the following steps: i) Identify
the domain; ii) Identify a list of candidate software; iii) Filter the list to
a length of about 30 packages; iv) Collect repository related data on each
package, like number of stars, number of open issues, number of lines of
code; v) Fill in the measurement template (the template consists of 108
questions to assess 9 qualities (including the qualities of installability,
usability and visibility)); vi) Rank the software using the Analytic Hi-
erarchy Process (AHP); vii) Interview developers (the interview consists
of 20 questions and takes about an hour); and, viii) Conduct a domain
analysis. The collected data is analyzed by: i) comparing the ranking by
best practices against the ranking by popularity; ii) comparing artifacts,
tools and processes to current research software development guidelines;
and, iii) exploring pain points. We estimate the time to complete an as-
sessment at 173 person hours. The method is illustrated via the example
of Lattice Boltzmann Solvers, where we find that the top packages en-
gaged in most of recommended best practices, but still show room for
improvement with respect to providing API documentation, a roadmap,
a code of conduct, programming style guide and continuous integration.

Keywords: research software · software quality · empirical measures ·
software artifacts · developer pain points · Lattice Boltzmann Method

1 Introduction

Research software is critical for tackling problems in areas as diverse as man-
ufacturing, financial planning, environmental policy and medical diagnosis and
treatment. However, developing reliable, reproducible, sustainable and fast re-
search software is challenging because of the complexity of physical models and
the nuances of floating point and parallel computation. The critical importance
of research software, and the challenges with its development, have prompted

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

http://www.cas.mcmaster.ca/~smiths/
https://dx.doi.org/10.1007/978-3-031-08760-8_45


2 S. Smith and P. Michalski

multiple researchers to investigate the state of development practice. Under-
standing the creation of research software is critical for devising future methods
and tools for reducing development time and improving software quality.

Previous studies on the state of the practice for research software have often
focused on surveying developers [7,13,16]. Although surveys provide valuable
information, they are limited by their reliance on what developers say they do,
rather than directly measuring what they actually do. Therefore, we propose a
state of the practice assessment methodology that investigates the work products
developers create by digging into the software repositories they create.

Although other studies [6,27] mine research software repositories to estimate
productivity, code quality and project popularity, the other studies focus on au-
tomation and on code related artifacts. To gain deeper insight, at the expense of
taking more time, we will relax the automation requirement and use manual in-
vestigation where necessary. We will also expand our assessment beyond code to
include other artifacts, where artifacts are the documents, scripts and code that
we find in a project’s public repository. Example artifacts include requirements,
specifications, user manuals, unit test cases, system tests, usability tests, build
scripts, API (Application Programming Interface) documentation, READMEs,
license documents, and process documents.

The surveys used in previous studies have tended to recruit participants from
all domains of research software. This is what we will call research software in
general, as opposed to specific domain software. The surveys may distinguish
participants by programming language (for instance, R developers [16]), or by
the role of the developers (for instance postdoctoral researchers [12]), but the
usual goal is to cast as wide a net as possible. Case studies [2,19], on the other
hand, go more in depth by focusing on a few specific examples at a time. For
our new methodology, we propose a scope between these two extremes. Rather
than focus on assessing the state of the practice for research software in general,
or just a few examples, we will focus on one scientific domain at a time. The
practical reason for this scope is that digging deep takes time, making a broad
scope infeasible. We have imposed a practical constraint of one person month
of effort per domain.1 Focusing on one domain at a time has more than just
practical advantages. By restricting ourselves to a single domain we can bring
domain knowledge and domain experts into the mix. The domain customized
insight provided by the assessment has the potential to help a specific domain as
they adopt and develop new practices. Moreover, measuring multiple different
domains facilitates comparing and contrasting domain specific practices.

Our methodology is built around 8 research questions. Assuming that the
domain has been identified (Section 2.1), the first question is:

RQ1: What software projects exist in the domain, with the constraint that the
source code must be available for all identified projects? (Sections 2.2, 2.3)

1 A person month is considered to be 20 working days (4 weeks in a month, with 5
days of work per week) at 8 person hours per day, or 20 · 8 = 160 person hours.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://dx.doi.org/10.1007/978-3-031-08760-8_45


Digging Deeper 3

We next wish to assess the representative software to determine how well they
apply current software development best practices. By best practices we mean
methods, techniques and tools that are generally believed to improve software
development, like testing and documentation. As we will discuss in Section 2.4,
we will categorize our best practices around software qualities. Following best
practices does not guarantee popularity, so we will also compare our ranking to
how the user community itself ranks the identified projects.

RQ2: Which of the projects identified in RQ1 follow current best practices,
based on evidence found by experimenting with the software and searching
the artifacts available in each project’s repository? (Sections 2.4)

RQ3: How similar is the list of top projects identified in RQ2 to the most popular
projects, as viewed by the scientific community? (Section 4)

To understand the state of the practice we wish to learn the frequency with
which different artifacts appear, the types of development tools used and the
methodologies used for software development. With this data, we can ask ques-
tions about how the domain software compares to other research software.

RQ4: How do domain projects compare to research software in general with
respect to the artifacts present in their repositories? (Section 5)

RQ5: How do domain projects compare to research software in general with
respect to the use of tools? (Section 6)

RQ6: How do domain projects compare to research software in general with
respect to the processes used? (Section 7)

Only so much information can be gleaned by digging into software repos. To
gain additional insight, we need to interview developers (Section 2.5), as done
in other state of the practice assessments [10], to learn:

RQ7: What are the pain points for developers? (Section 8)
RQ8: How do the pain points of domain developers compare to the pain points

for research software in general? (Section 8)

Our methodology answers the research question through inspecting reposi-
tories, using the Analytic Hierarch Process (AHP) for ranking software, inter-
viewing developers and interacting with at least one domain expert. We leave
the measurement of the performance, for instance using benchmarks, to other
projects [9]. The current methodology updates the approach used in prior assess-
ments of domains like Geographic Information Systems [24], Mesh Generators
[23], Seismology software [26], and statistical software for psychology [25]. Initial
tests of the new methodology have been done for medical image analysis software
[3] and for Lattice Boltzmann Method (LBM) software [11]. The LBM example
will be used to illustrate the steps in the methodology.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://dx.doi.org/10.1007/978-3-031-08760-8_45


4 S. Smith and P. Michalski

2 Methodology

The assessment is conducted via the following steps, which depend on interaction
with a Domain Expert partner, as discussed in Section 2.6.

1. Identify the domain of interest. (Section 2.1)
2. List candidate software packages for the domain. (Section 2.2)
3. Filter the software package list. (Section 2.3)
4. Gather the source code and documentation for each software package.
5. Measure using the measurement template. (Section 2.4)
6. Use AHP to rank the software packages. (Section 2.4)
7. Interview the developers. (Section 2.5)
8. Domain analysis. (Section 2.7)
9. Analyze the results and answer the research questions. (Sections 3—8)

We estimate 173 hours to complete the assessment of a given domain [22],
which is close our goal of 160 person hours.

2.1 How to Identify the Domain?

To be applicable the chosen domain must have the following properties:

1. The domain must have well-defined and stable theoretical underpinnings.
2. There must be a community of people studying the domain.
3. The software packages must have open source options.
4. The domain expert says there will be at least 30 candidate packages.

2.2 How to Identify Candidate Software from the Domain?

The candidate software to answer RQ1 should be found through search engine
queries, GitHub, swMATH and scholarly articles. The Domain Expert (Sec-
tion 2.6) should also be engaged in selecting the candidate software. The follow-
ing properties are considered when creating the list:

1. The software functionality must fall within the identified domain.
2. The source code must be viewable.
3. The repository based measures should be available.
4. The software must be complete.

2.3 How to Filter the Software List?

If the list of software is too long (over around 30 packages), then filters are
applied in the priority order listed. Copies of both lists, along with the rationale
for shortening the list, should be kept for traceability purposes.

1. Scope: Software is removed by narrowing what functionality is considered to
be within the scope of the domain.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://github.com/
https://swmath.org/
https://dx.doi.org/10.1007/978-3-031-08760-8_45


Digging Deeper 5

2. Usage: Software packages are eliminated if their installation procedure is
missing or not clear and easy to follow.

3. Age: Older software packages (age being measured by the last date when a
change was made) are eliminated, except in the cases where an older soft-
ware package appears to be highly recommended and currently in use. (The
Domain Expert should be consulted on this question as necessary.)

2.4 Quantitative Measures

We rank the projects by how well they follow best practices (RQ2) via a measure-
ment template [22]. For each software package (each column in the template),
we fill-in the rows. This process takes about 2 hours per package, with a cap of 4
hours. An excerpt of the template is shown in Figure 1. In keeping with scientific
transparency, all data should be made publicly available.

Sheet1

Page 1

Summary Information

Software name? DL_MESO SunlightLB MP-LABS LIMBES LB3D-Prime LB2D-Prime laboetie Musubi
Number of developers unclear 2 1 unclear 1 1 2 unknown
License? terms of use GNU GPL GNU GPL GNU GPL unclear unclear GNU GPL BSD

Platforms?
Windows, OS X, 

Linux Linux Linux Unix
Windows, 

Linux
Windows, 

Linux Linux
Windows, 

OS X, Linux
Software Category? private public public public public public public public

Development model? freeware
open 

source freeware freeware freeware freeware unclear freeware

Programming language(s)?
FORTRAN, C++, 

Java
C, Perl, 
Python

FORTRAN, 
Markdown FORTRAN C C, Shell

FORTRAN, Wolfram 
Markdown Fortran

… … … … … … … … …
Installability 
Installation instructions? yes yes yes yes yes yes yes yes

Instructions in one place? yes yes yes yes yes yes yes yes
Linear instructions? yes yes yes yes yes yes yes yes

Installation automated? yes, makefile
yes, 

makefile
yes, 

makefile
yes, 

makefile
yes, 

makefile yes, makefile yes, makefile yes
Descriptive error 
messages? yes yes no n/a n/a no n/a n/a
Number of steps to install? 8 6 6 4 2 4 4 10

Numbe extra packages? 4 4 3 1 2 2 2 5
Package versions listed? yes no no no no no no no
Problems with uninstall? unavail unavail unavail unavail unavail unavail unavail unavail
… … … … … … … … …
Overall impression (1..10)? 9 7 6 8 7 5 7 8
… … … … … … … … …
Surface Reliability
… … … … … … … … …

Fig. 1. Excerpt of the Top Sections of the Measurement Template

The full template [22] consists of 108 questions categorized under 9 qual-
ities: (i) installability; (ii) correctness and verifiability; (iii) surface reliability;
(iv) surface robustness; (v) surface usability; (vi) maintainability; (vii) reusabil-
ity; (viii) surface understandability; and, (ix) visibility/transparency.

The questions were designed to be unambiguous, quantifiable and measur-
able with limited time and domain knowledge. The measures are grouped under
headings for each quality, and one for summary information (Figure 1). The

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://dx.doi.org/10.1007/978-3-031-08760-8_45


6 S. Smith and P. Michalski

summary section provides general information, such as the software name, num-
ber of developers, etc. Several of the qualities use the word “surface”. This is to
highlight that, for these qualities, the best that we can do is a shallow measure.
For instance, we do not conduct experiments to measure usability. Instead, we
are looking for an indication that usability was considered by looking for cues
in the documentation, such as getting started instructions, a user manual or
documentation of expected user characteristics.

Tools are used to find some of the measurements, such as the number of files,
number of lines of code (LOC), percentage of issues that are closed, etc. The tool
GitStats is used to measure each software package’s GitHub repository for the
number of binary files, the number of added and deleted lines, and the number of
commits over varying time intervals. The tool Sloc Cloc and Code (scc) is used
to measure the number of text based files as well as the number of total, code,
comment, and blank lines in each GitHub repository. At this time our focus is
on simple metrics, so we do no need the static analysis capabilities of tools like
Sonargraph or SonarCloud.

Virtual machines (VMs) are used to provide an optimal testing environments
for each package [23] because with a fresh VM there are no worries about conflicts
with existing libraries. Moreover, when the tests are complete the VM can be
deleted, without any impact on the host operating system. The most significant
advantage of using VMs is that every software install starts from a clean slate,
which removes “works-on-my-computer” errors.

Once we have measured each package, we still need to rank them to answer
RQ2. To do this, we used the Analytical Hierarchy Process (AHP), a decision-
making technique that uses pair-wise comparisons to compare multiple options
by multiple criteria [17]. In our work AHP performs a pairwise analysis between
each of the 9 quality options for each of the (approximately) 30 software packages.
This results in a matrix, which is used to generate an overall score for each
software package for the given criteria [23].

2.5 Interview Developers

Several of the research question (RQ5, RQ6 and RQ7) require going beyond the
quantitative data from the measurement template. To gain the required insight,
we interview developers using a list of 20 questions [22]. The questions cover
the background of the development teams, the interviewees, and the software
itself. We ask the developers how they organize their projects and about their
understanding of the users. Some questions focus on the current and past dif-
ficulties, and the solutions the team has found, or will try. We also discuss the
importance of, and the current situation for, documentation. A few questions are
about specific software qualities, such as maintainability, usability, and repro-
ducibility. The interviews are semi-structured based on the question list. Each
interview should take about 1 hour.

The interviewees should follow standard ethics guidelines for consent, record-
ing, and including participant details in the report. The interview process pre-
sented here was approved by the McMaster University Research Ethics Board

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://github.com/tomgi/git_stats
https://github.com/boyter/scc
https://www.hello2morrow.com/products/sonargraph
https://www.sonarcloud.io
https://dx.doi.org/10.1007/978-3-031-08760-8_45


Digging Deeper 7

under the application number MREB#: 5219. For LBM we were able to recruit
4 developers to participate in our study.

2.6 Interaction With Domain Expert

Our methodology relies on engaging a Domain Expert to vet the list of projects
(RQ1) and the AHP ranking (RQ2). The Domain Expert is an important mem-
ber of the assessment team. Pitfalls exist if non-experts attempt to acquire an
authoritative list of software, or try to definitively rank software. Non-experts
have the problem that they can only rely on information available on-line, which
has the following drawbacks: i) the on-line resources could have false or inaccu-
rate information; and, ii) the on-line resources could leave out relevant informa-
tion that is so in-grained with experts that nobody thinks to explicitly record it.
Domain experts may be recruited from academia or industry. The only require-
ments are knowledge of the domain and a willingness to be involved.

2.7 Domain Analysis

For each domain a table should be constructed that distinguishes the programs
by their variabilities. In research software the variabilities are often assumptions.

3 Measuring and Ranking the LBM Domain

For the LBM example the initial list had 46 packages [11]. To answer RQ1, this
list was filtered by scope, usage, and age to decrease the length to 24 packages,
as shown in Table 1. This table also shows the domain analysis, in terms of
variabilities, for LBM software [11].

To answer RQ2 the 24 LBM packages were ranked for the 9 qualities [11]. For
space reasons we will only show the overall ranking in Figure 2. In the absence
of information on priorities, the overall ranking was calculated with an equal
weight between all qualities. The LBM data is available on Mendeley.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ESPResS
o

Ludwig

Palabos

OpenLB
LUMA

pyL
BM

DL_MESO (L
BE)

Musu
bi

Sailfis
h

waLBerla

laboetie
TCLB

Mech
Sys

lettu
ce

ESPResS
o++

MP-LABS

Sunlig
htLB

LB3D

LIM
BES

LB2D-P
rim

e

HemeLB
lbmpy

LB3D-P
rim

e

LatB
o.jl

AH
P 

Sc
or

e

Fig. 2. AHP Overall Score

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://github.com/smiths/AIMSS/blob/master/StateOfPractice/MACREM/Application.pdf
https://data.mendeley.com/datasets/5dym63wn6z/1
https://dx.doi.org/10.1007/978-3-031-08760-8_45


8 S. Smith and P. Michalski

Name Dim Pll Com Rflx MFl Turb CGE OS

DL_MESO (LBE) 2, 3 MPI/OMP Y Y Y Y Y W, M, L
ESPResSo 1, 2, 3 CUDA/MPI Y Y Y Y Y M, L
ESPResSo++ 1, 2, 3 MPI Y Y Y Y Y L
HemeLB 3 MPI Y Y Y Y Y L
laboetie 2, 3 MPI Y Y Y Y Y L
LatBo.jl 2, 3 - Y Y Y N Y L
LB2D-Prime 2 MPI Y Y Y Y Y W, L
LB3D 3 MPI N Y Y Y Y L
LB3D-Prime 3 MPI Y Y Y Y Y W, L
lbmpy 2, 3 CUDA Y Y Y Y Y L
lettuce 2, 3 CUDA Y Y Y Y Y W, M, L
LIMBES 2 OMP Y Y N N Y L
Ludwig 2, 3 MPI Y Y Y Y Y L
LUMA 2, 3 MPI Y Y Y Y Y W, M, L
MechSys 2, 3 - Y Y Y Y Y L
MP-LABS 2, 3 MPI/OMP N Y Y N N L
Musubi 2, 3 MPI Y Y Y Y Y W, L
OpenLB 1, 2, 3 MPI Y Y Y Y Y W, M, L
Palabos 2, 3 MPI Y Y Y Y Y W, L
pyLBM 1, 2, 3 MPI Y Y N Y Y W, M, L
Sailfish 2, 3 CUDA Y Y Y Y Y M, L
SunlightLB 3 - Y Y N N Y L
TCLB 2, 3 CUDA/MPI Y Y Y Y Y L
waLBerla 2, 3 MPI Y Y Y Y Y L

Table 1. Features of Software Packages (Dim for Dimension (1, 2, 3), Pll for Parallel
(CUDA, MPI, OpenMP (OMP)), Com for Compressible (Yes or No), Rflx for Reflexive
Boundary Condition (Yes or No), MFl for Multi-fluid (Yes or No), Turb for Turbulent
(Yes or No), CGE for Complex Geometries (Yes or No), OS for Operating System
(Windows (W), macOS (M), Linux (L)))

4 Comparison to Community Ranking

To address RQ3 we need to compare the ranking by best practices to the com-
munity’s ranking. Our best practices ranking comes from the AHP ranking (Sec-
tion 2.4). We estimate the community’s ranking by repository stars and watches.
The comparison will provide insight on whether best practices are rewarded by
popularity. However, inconsistencies between the AHP ranking and the com-
munity’s ranking are inevitable for the following reasons: i) the overall quality
ranking via AHP makes the unrealistic assumption of equal weighting between
quality factors; ii) stars are not a particularly good measure of popularity, be-
cause of how people use stars and because young projects have less time to
accumulate them [28]; iii) and, as for consumer products, there are more factors
influencing popularity than just quality.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://dx.doi.org/10.1007/978-3-031-08760-8_45


Digging Deeper 9

Table 2 compares the AHP ranking of the LBM package to their popularity in
the research community. Nine packages do not use GitHub, so they do not have
a star measure. Looking at the stars of the other 15 packages, we can observe
a pattern where packages that have been highly ranked by our assessment tend
to have more stars than lower ranked packages. The best ranked package by
AHP (ESPResSo) has the second most stars, while the ninth ranked package
(Sailfish) has the highest number of stars. Although the AHP ranking and the
community popularity estimate are not perfect measures, they do suggest a
correlation between best practices and popularity.

Name Our
Ranking

Repository
Stars

Repository
Star Rank

Repository
Watches

Repository
Watch Rank

ESPResSo 1 145 2 19 2
Ludwig 2 27 8 6 7
Palabos 3 34 6 GitLab GitLab
OpenLB 4 N/A N/A N/A N/A
LUMA 5 33 7 12 4
pyLBM 6 95 3 10 5
DL_MESO (LBE) 7 N/A N/A N/A N/A
Musubi 8 N/A N/A N/A N/A
Sailfish 9 186 1 41 1
... ... ... ... ... ...
LatBo.jl 24 17 10 8 6

Table 2. Excerpt from Repository Ranking Metrics [11]

5 Comparison of Artifacts to Other Research Software

We answer RQ4 by comparing the artifacts that we observe to those observed
and recommended for research software in general. While filling in the measure-
ment template (Section 2.4), the domain software is examined for the presence
of artifacts, which are then categorized by frequency as: common (more than
2/3 of projects), uncommon (between 1/3 and 2/3), and rare (less than 1/3).
The observed frequency of artifacts should then be compared to the artifacts
recommended by research software guidelines, as summarized in Table 3.

As Table 3 shows, the majority of LBM generated artifacts correspond to gen-
eral recommendations from research software developers. Areas where LBM de-
velopers could improve include providing: API documentation, a product roadmap,
a code of conduct, code style guide, and uninstall instructions.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://dx.doi.org/10.1007/978-3-031-08760-8_45


10 S. Smith and P. Michalski

[30] [18] [1] [32] [20] [8] [29] [5] [14] LBM

LICENSE X X X X X X X X C
README X X X X X X X C
CONTRIBUTING X X X X X X X U
CITATION X X X U
CHANGELOG X X X X U
INSTALL X X X X C

Uninstall X R
Dependency List X X X C
Authors X X X C
Code of Conduct X
Acknowledgements X X X R
Code Style Guide X X X X R
Release Info. X X X U
Prod. Roadmap X X X R

Getting started X X X X C
User manual X X U
Tutorials X C
FAQ X X X R

Issue Track X X X X X X C
Version Control X X X X X X X X C
Build Scripts X X X X X X C

Requirements X X X
Design Doc. X X X X X X U
API Doc. X X X X R
Test Plan X X U
Test Cases X X X X X X X X U

Table 3. Comparison of Recommended Artifacts in Software Development Guidelines
to Artifacts in LBM Projects (C for Common, U for Uncommon and R for Rare)

6 Comparison of Tools to Other Research Software

Software tools are used to support the development, verification, maintenance,
and evolution of software, software processes, and artifacts [4, p. 501]. To an-
swer RQ5 we summarize tools that are visible in the repositories and that are
mentioned during the developer interviews. The tools for LBM are as follows:

Development Tools: Continuous Integration (CI), Code Editors, Development
Environments, Runtime Environments, Compilers, Unit Testing Tools, Cor-
rectness Verification Tools

Dependencies: Build Automation Tools, Technical Libraries, Domain Specific
Libraries

Project Management Tools: Collaboration Tools, Email, Change Tracking
Tools, Version Control Tools, Document Generation Tools

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://dx.doi.org/10.1007/978-3-031-08760-8_45


Digging Deeper 11

Once the data on tools is collected, the use of two specific tools should be
compared to research software norms: version control and CI. A little over 10
years ago version control was estimated to be used in only 50% of research
software projects [13]. More recently, version control usage rates for active mesh
generation, geographic information system and statistical software packages were
close to 100% [21]. Almost every software guide cited in Table 3 includes the
advice to use version control. For LBM packages 67% use version control. The
high usage in LBM software matches the trend in research software in general.
CI is rarely used in LBM (3 of 24 packages or 12.5%). This contrasts with the
frequency with which CI is recommended in guidelines [1,5,29].

7 Comparison of Processes to Other Research Software

The interview data on development processes is used to answer RQ6. This data
should be contrasted with the development process used by research software in
general. The literature suggests that scientific developers naturally use an agile
philosophy [2,19], or an amethododical process [10]. Another point of comparison
is on the use of the frequently recommended peer review approach [8,14,30].

The LBM example confirms an informal, agile-like, process. The develop-
ment process is not explicitly indicated in the artifacts. However, during inter-
views one developer (ESPResSo) told us their non-rigorous development model
is like a combination of agile and waterfall. A loosely defined process makes sense
for LBM software, given the small self-contained teams. One of the developers
(ESPResSo) also noted that they use an ad hoc peer review process.

8 Developer Pain Points

To answer RQ7 and RQ8, we ask developers about their pain points and compare
their responses to the literature [31,16]. Pain points to watch for include: cross-
platform compatibility, scope bloat, lack of user feedback, dependency manage-
ment, data handling concerns, reproducibility, and software scope.

An example pain point noted for LBM is a lack of development time. Small
development teams are common for LBM software packages (Figure 1). Lack of
time is also highlighted by other research software developers [16,15,31].

9 Threats To Validity

The measures in the measurement template [22] may not be broad enough to
accurately capture some qualities. For example, there are only two measures
of surface robustness. Similarly, reusability is assessed by the number of code
files and LOC per file, assuming that a large number of relatively small files
implies modularity. Furthermore, the measurement of understandability relies
on 10 random source code files. It is possible that the 10 files that were chosen
to represent a software package may not be representative.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://dx.doi.org/10.1007/978-3-031-08760-8_45


12 S. Smith and P. Michalski

Another risk is missing or incorrect data. Some software package data may
have been missed due to technology issues like broken links. Some pertinent
data may not have been specified in public artifacts, or may be obscure within
an artifact or web-page. For the LBM example, the use of unit testing and CI was
mentioned in the artifacts of only three (ESPResSo, Ludwig, Musubi) packages.
However, interviews suggested a more frequent use of both unit testing and CI in
the development processes. Given that we could not interview a representative
for every project, to keep the measures consistent we did not modify our initial
repository inspection based CI count.

10 Concluding Remarks

To improve the development of research software, both in terms of productivity,
and the resulting software quality, we need to understand the current state of
the practice. An exciting strategy to approach this goal is to assess one domain
at a time, collecting data from developer interviews and digging deeply into their
code repositories. By providing feedback specific to their domain, the developer
community can be drawn into a dialogue on how to best make improvements
going forward. Moreover, they can be encouraged to share their best practices
between one another, and with other research software domains.

We have outlined a methodology for assessing the state of the practice for
any given research software domain based on a list of about 30 representative
projects. In addition to interviews, we use manual and automated inspection of
the artifacts in each project’s repositories. The repository data is collected by
filling in a 108 question measurement template, which requires installing the soft-
ware on a VM, running simple tests (like completing the getting started instruc-
tions (if present)), and searching the code, documentation and test files. Using
AHP the projects are ranked for 9 individual qualities (installability, correct-
ness and verifiability, reliability, robustness, usability, maintainability, reusabil-
ity, surface understandability, visibility/transparency) and for overall quality.
Perspective and insight is shared with the user community via the following:
i) comparing the ranking by best practices against an estimate of the commu-
nity’s ranking of popularity; ii) comparing artifacts, tools and processes to cur-
rent research software development guidelines; and, iii) exploring pain points via
developer interviews. Using our methodology, spreadsheet templates and AHP
tool, we estimate (based on our experience with using the process) the time to
complete an assessment for a given domain at 173 person hours.

For the running example of LBM we found that the top packages engaged
in most of recommended best practices, including examples of practising peer
review. However, we did find room for improvement with respect to providing
API documentation, a roadmap, a code of conduct, programming style guide,
uninstall instructions and CI.

In the future, we would like reduce measurement time down by increased
automation. We would also like to conduct a meta-analysis, where we look at
how different domains compare to answer new research questions like: What

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://dx.doi.org/10.1007/978-3-031-08760-8_45


Digging Deeper 13

lessons from one domain could be applied in other domains? What differences
exist in the pain points between domains? Are there differences in the tools,
processes, and documentation between domains?

References

1. Brett, A., Cook, J., Fox, P., Hinder, I., Nonweiler, J., Reeve, R., Turner, R.: Scottish
covid-19 response consortium. https://github.com/ScottishCovidResponse/
modelling-software-checklist/blob/main/software-checklist.md (August
2021)

2. Carver, J.C., Kendall, R.P., Squires, S.E., Post, D.E.: Software development en-
vironments for scientific and engineering software: A series of case studies. In:
ICSE ’07: Proceedings of the 29th International Conference on Software Engi-
neering. pp. 550–559. IEEE Computer Society, Washington, DC, USA (2007).
https://doi.org/http://dx.doi.org/10.1109/ICSE.2007.77

3. Dong, A.: Assessing the State of the Practice for Medical Imaging Software. Mas-
ter’s thesis, McMaster University, Hamilton, ON, Canada (September 2021)

4. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edn. (2003)

5. van Gompel, M., Noordzij, J., de Valk, R., Scharnhorst, A.: Guidelines for soft-
ware quality, CLARIAH task force 54.100. https://github.com/CLARIAH/
software-quality-guidelines/blob/master/softwareguidelines.pdf
(September 2016)

6. Grannan, A., Sood, K., Norris, B., Dubey, A.: Understanding the landscape of sci-
entific software used on high-performance computing platforms. The International
Journal of High Performance Computing Applications 34(4), 465–477 (2020).
https://doi.org/10.1177/1094342019899451

7. Hannay, J.E., MacLeod, C., Singer, J., Langtangen, H.P., Pfahl, D., Wilson, G.:
How do scientists develop and use scientific software? In: Proceedings of the 2009
ICSE Workshop on Software Engineering for Computational Science and Engineer-
ing. pp. 1–8. SECSE ’09, IEEE Computer Society, Washington, DC, USA (2009).
https://doi.org/10.1109/SECSE.2009.5069155

8. Heroux, M.A., Bieman, J.M., Heaphy, R.T.: Trilinos developers guide part II: ASC
softwar quality engineering practices version 2.0. https://faculty.csbsju.edu/
mheroux/fall2012_csci330/TrilinosDevGuide2.pdf (April 2008)

9. Kågström, B., Ling, P., Van Loan, C.: Gemm-based level 3 blas: High-performance
model implementations and performance evaluation benchmark. ACM Transac-
tions on Mathematical Software (TOMS) 24(3), 268–302 (1998)

10. Kelly, D.: Industrial scientific software: A set of interviews on software develop-
ment. In: Proceedings of the 2013 Conference of the Center for Advanced Studies
on Collaborative Research. pp. 299–310. CASCON ’13, IBM Corp., Riverton, NJ,
USA (2013), http://dl.acm.org/citation.cfm?id=2555523.2555555

11. Michalski, P.: State of The Practice for Lattice Boltzmann Method Software. Mas-
ter’s thesis, McMaster University, Hamilton, Ontario, Canada (September 2021)

12. Nangia, U., Katz, D.S.: Track 1 Paper: Surveying the U.S. National Postdoctoral
Association Regarding Software Use and Training in Research. pp. 1–6. Zenodo
(Jun 2017). https://doi.org/10.5281/zenodo.814220

13. Nguyen-Hoan, L., Flint, S., Sankaranarayana, R.: A survey of scientific software
development. In: Proceedings of the 2010 ACM-IEEE International Symposium

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://github.com/ScottishCovidResponse/modelling-software-checklist/blob/main/software-checklist.md
https://github.com/ScottishCovidResponse/modelling-software-checklist/blob/main/software-checklist.md
https://doi.org/http://dx.doi.org/10.1109/ICSE.2007.77
https://doi.org/http://dx.doi.org/10.1109/ICSE.2007.77
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://github.com/CLARIAH/software-quality-guidelines/blob/master/softwareguidelines.pdf
https://doi.org/10.1177/1094342019899451
https://doi.org/10.1177/1094342019899451
https://doi.org/10.1109/SECSE.2009.5069155
https://doi.org/10.1109/SECSE.2009.5069155
https://faculty.csbsju.edu/mheroux/fall2012_csci330/TrilinosDevGuide2.pdf
https://faculty.csbsju.edu/mheroux/fall2012_csci330/TrilinosDevGuide2.pdf
http://dl.acm.org/citation.cfm?id=2555523.2555555
https://doi.org/10.5281/zenodo.814220
https://doi.org/10.5281/zenodo.814220
https://dx.doi.org/10.1007/978-3-031-08760-8_45


14 S. Smith and P. Michalski

on Empirical Software Engineering and Measurement. pp. 12:1–12:10. ESEM ’10,
ACM, New York, NY, USA (2010). https://doi.org/10.1145/1852786.1852802

14. Orviz, P., García, Á.L., Duma, D.C., Donvito, G., David, M., Gomes, J.: A set of
common software quality assurance baseline criteria for research projects (2017).
https://doi.org/10.20350/digitalCSIC/12543

15. Pinto, G., Steinmacher, I., Gerosa, M.A.: More common than you think: An in-
depth study of casual contributors. In: 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER). vol. 1, pp. 112–123
(2016). https://doi.org/10.1109/SANER.2016.68

16. Pinto, G., Wiese, I., Dias, L.F.: How do scientists develop and use scientific soft-
ware? an external replication. In: Proceedings of 25th IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering. pp. 582–591 (Feb 2018).
https://doi.org/10.1109/SANER.2018.8330263

17. Saaty, T.L.: The Analytic Hierarchy Process: Planning, Priority Setting, Resource
Allocation. McGraw-Hill Publishing Company, New York, New York (1980)

18. Schlauch, T., Meinel, M., Haupt, C.: DLR software engineering guidelines (Aug
2018). https://doi.org/10.5281/zenodo.1344612

19. Segal, J.: When software engineers met research scientists: A case study. Empiri-
cal Software Engineering 10(4), 517–536 (Oct 2005). https://doi.org/10.1007/
s10664-005-3865-y

20. Smith, B., Bartlett, R., Developers, x.: xsdk community package policies (Dec
2018). https://doi.org/10.6084/m9.figshare.4495136.v6

21. Smith, W.S.: Beyond software carpentry. In: 2018 International Workshop on Soft-
ware Engineering for Science (held in conjunction with ICSE’18). pp. 1–8 (2018)

22. Smith, W.S., Carette, J., Michalski, P., Dong, A., Owojaiye, O.: Methodology for
assessing the state of the practice for domain X. https://arxiv.org/abs/2110.
11575 (October 2021)

23. Smith, W.S., Lazzarato, A., Carette, J.: State of practice for mesh generation
software. Advances in Engineering Software 100, 53–71 (Oct 2016)

24. Smith, W.S., Lazzarato, A., Carette, J.: State of the practice for GIS software.
https://arxiv.org/abs/1802.03422 (Feb 2018)

25. Smith, W.S., Sun, Y., Carette, J.: Statistical software for psychology: Comparing
development practices between CRAN and other communities. https://arxiv.
org/abs/1802.07362 (2018), 33 pp.

26. Smith, W.S., Zeng, Z., Carette, J.: Seismology software: State of the practice.
Journal of Seismology 22(3), 755–788 (May 2018)

27. Sood, K., Dubey, A., boyana norris, McInnes, L.C.: Repository-Analysis of Open-
source and Scientific Software Development Projects (2 2019). https://doi.org/
10.6084/m9.figshare.7772894.v2

28. Szulik, K.: Don’t judge a project by its github stars alone. https://blog.
tidelift.com/dont-judge-a-project-by-its-github-stars-alone (December
2017)

29. Thiel, C.: EURISE network technical reference. https://technical-reference.
readthedocs.io/en/latest/ (2020)

30. USGS: USGS software plannning checklist. https://www.usgs.gov/media/files/
usgs-software-planning-checklist (December 2019)

31. Wiese, I.S., Polato, I., Pinto, G.: Naming the pain in developing scientific software.
IEEE Software pp. 1–1 (2019). https://doi.org/10.1109/MS.2019.2899838

32. Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., Teal, T.K.: Good
enough practices in scientific computing. CoRR abs/1609.00037 (2016), http:
//arxiv.org/abs/1609.00037

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_45

https://doi.org/10.1145/1852786.1852802
https://doi.org/10.1145/1852786.1852802
https://doi.org/10.20350/digitalCSIC/12543
https://doi.org/10.20350/digitalCSIC/12543
https://doi.org/10.1109/SANER.2016.68
https://doi.org/10.1109/SANER.2016.68
https://doi.org/10.1109/SANER.2018.8330263
https://doi.org/10.1109/SANER.2018.8330263
https://doi.org/10.5281/zenodo.1344612
https://doi.org/10.5281/zenodo.1344612
https://doi.org/10.1007/s10664-005-3865-y
https://doi.org/10.1007/s10664-005-3865-y
https://doi.org/10.1007/s10664-005-3865-y
https://doi.org/10.1007/s10664-005-3865-y
https://doi.org/10.6084/m9.figshare.4495136.v6
https://doi.org/10.6084/m9.figshare.4495136.v6
https://arxiv.org/ abs/2110.11575
https://arxiv.org/ abs/2110.11575
https://arxiv.org/abs/1802.03422
https://arxiv.org/abs/1802.07362
https://arxiv.org/abs/1802.07362
https://doi.org/10.6084/m9.figshare.7772894.v2
https://doi.org/10.6084/m9.figshare.7772894.v2
https://doi.org/10.6084/m9.figshare.7772894.v2
https://doi.org/10.6084/m9.figshare.7772894.v2
https://blog.tidelift.com/dont-judge-a-project-by-its-github-stars-alone
https://blog.tidelift.com/dont-judge-a-project-by-its-github-stars-alone
https://technical-reference.readthedocs.io/en/latest/
https://technical-reference.readthedocs.io/en/latest/
https://www.usgs.gov/media/files/usgs-software-planning-checklist
https://www.usgs.gov/media/files/usgs-software-planning-checklist
https://doi.org/10.1109/MS.2019.2899838
https://doi.org/10.1109/MS.2019.2899838
http://arxiv.org/abs/1609.00037
http://arxiv.org/abs/1609.00037
https://dx.doi.org/10.1007/978-3-031-08760-8_45

