
Distributed Architecture for Highly Scalable
Urban Traffic Simulation

Micha l Zych, Mateusz Najdek, Mateusz Paciorek, and Wojciech Turek

AGH University of Science and Technology, Krakow, Poland

Abstract. Parallel computing is currently the only possible method for
providing sufficient performance of large scale urban traffic simulations.
The need for representing large areas with detailed, continuous space and
motion models exceeds the capabilities of a single computer in terms of
performance and memory capacity. Efficient distribution of such compu-
tation, which is considered in this paper, poses a challenge due to the
need of repetitive synchronization of the common simulation model. We
propose an architecture for efficient memory and communication man-
agement, which allows executing simulations of huge urban areas and
efficient utilization of hundreds of computing nodes. In addition to ana-
lyzing performance tests, we also provide general guidelines for designing
large-scale distributed simulations.

Keywords: Urban traffic simulation · Simulation scalability · HPC

1 Introduction

The demand for reliable simulations of complex social situations draws attention
of scientists towards the problems of simulation algorithms efficiency. Providing
valuable results requires detailed models of society members and their environ-
ment, which, together with the need for simulating large scenarios fast, exceeds
the capabilities of sequential algorithms. However, the problem of parallel exe-
cution of such simulations is not straightforward. The considered computational
task is focused on repetitive modifications of one large data structure, which,
when performed in parallel, must be properly synchronized. There are a few
successful examples [14,10] of parallel spacial simulation algorithms, however,
efficient utilization of HPC-grade hardware for simulating real-life scenarios with
continuous space and motion models remains an open problem.

In this paper we present the experiences with scaling the SMARTS simulation
system [11], which is presumably the first distributed simulator for continuous
urban traffic model. This work is the continuation of the preliminary research
presented in [8], where basic scalability issues were identified and corrected,
making it possible to execute a complex simulation task on 2400 computing cores
of a supercomputer. Here we propose a redesigned architecture of the simulation
system, which aims at overcoming limitations of the original approach.

The proposed architecture, together with other improvements introduced to
the SMARTS simulation system, made it possible to execute a simulation of

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

2 M. Zych et al.

100,000 square kilometers of intensively urbanised area with almost 5 million
cars. The system efficiently utilized 9600 computing cores, which is presumably
the largest hardware setup, executing a real-life scenario of urban traffic simu-
lation, reported so far.

The experiences with discovering the reasons for scalability limitations of
the original implementation may be also valuable in other applications. There-
fore, we provide a summary of guidelines for implementing super-scalable spacial
simulations. The guidelines concern the architecture of a distributed simulation
system, communication protocols and data handling. We believe that the sum-
mary may be valuable for researchers and engineers willing to use HPC-grade
hardware for large-scale simulations.

2 Scalable Traffic Simulations

The attempts towards implementing improvements of parallel urban traffic sim-
ulation have been present in the literature since the end of the 20th century –
popular microscopic model of traffic, the Nagel-Schreckenberg model, was the
first to be executed in parallel by its creator in 1994 [7]. Further research by the
same team [12] suggested that the global synchronization in parallel traffic sim-
ulation algorithm might not at all be necessary. Despite that, several centralized
approaches to the problem were tried later on. Methods described in [6] and [9]
have shown efficiency improvements only up to a few computing nodes. Identi-
fied problem of scalability limitations caused by synchronization was addressed
in [2] by increased time between global synchronization. It allowed better effi-
ciency, but also influenced the simulation results, which cannot be accepted. The
work presented in [13] proposed a method for solving this issue by introducing
a corrections protocol. This, however, again resulted in poor scalability.

Achieving significant scalability requires dividing the computational tasks
into parts, which are scale-invariant [1]. This refers to the number of compu-
tations but also to the volume of communication, which cannot grow with the
number of workers. Centralized synchronization of parallel computation guaran-
tees just the opposite.

Presumably, the first architecture of distributed traffic simulation system,
which follows these guidelines was described in [16]. The proposed Asynchronous
Synchronization Strategy assumes that each computing worker communicates
with a limited and constant number of other workers – those responsible for
adjacent fragments of the environment. The paper reports linear scalability up
to 32 parallel workers.

The proposed distribution architecture was used and extended in [14], where
traffic simulation scaled linearly up to 19200 parallel workers executed on 800
computing nodes. The simulation of over 11 million cars run at 160 steps per
second, which is presumably the largest scenario tested so far in the domain of
traffic simulations. It opened new areas of application for such simulations, like
the real-time planning presented in [15]. While proving the possibility of creating
efficient HPC-grade traffic simulation, the implementation used discrete model

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

Distributed Architecture for Highly Scalable Urban Traffic Simulation 3

and did not support real-life scenarios. In order to provide these experiences
in a useful tool, we decided to investigate the possibility of redesigning the ar-
chitecture of an existing, highly functional traffic simulation tool. We selected
the SMARTS simulator [11], which supports importing of real cities models and
simulated continuous traffic models. The details of the original design and the
introduced improvements will be presented in the following sections.

3 The SMARTS System

SMARTS (Scalable Microscopic Adaptive Road Traffic Simulator) [11] is a traf-
fic simulator designed with an intent to support a continuous spatial model of
the environment with a microscopic level of details. The simulation is executed
in time steps representing a short duration of real-world time. During the sim-
ulation, each driver makes its own decisions based on one of the implemented
decision models and the state of the environment. Two decision models are
used: the IDM (Intelligent Driver Model) [4] predicts appropriate acceleration
based on the state of the closest preceding vehicle while the MOBIL (Minimizing
Overall Braking Induced by Lane Changes) [3] triggers lane changes. SMARTS
is implemented in Java. The most important features of SMARTS are:

– Loading data from OSM (OpenStreetMap 1).
– Static or dynamic traffic lights control.
– Commonly-used right-of-way rules.
– Different driver profiles that can affect the car-following behavior.
– Public transport modelling.
– Graphical user interface for easy configuration and visualization of results.
– Various types of output data, such as the trajectory of vehicles and the route

plan of vehicles.

SMARTS provides a distributed computing architecture, which can acceler-
ate simulations using multiple processes running at the same time. The initial
architecture of SMARTS (shown in Fig. 1) includes a server process and one or
more worker processes, which are responsible for performing the actual computa-
tion. Worker processes communicate with each other through TCP connections
using sockets. The architecture had a significant drawback, as it forced to run
each worker in its own separate virtual machine within shared cluster node,
which required environment map to be loaded from the drive and parsed by
each worker individually, causing increased heap memory usage.

SMARTS also uses two mechanisms to synchronize the simulation. The first
mechanism is a decentralized simulation mode. The very first version of SMARTS
ran in a centralized mode, where the server needed to wait for confirmation
messages from all the workers and to instruct all the workers to proceed at each
time step. Later, the decentralized mode was added. In this mode, the workers
do not need to communicate with the server during the simulation stage.

1 https://www.openstreetmap.org/

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://www.openstreetmap.org/
https://dx.doi.org/10.1007/978-3-031-08760-8_43

4 M. Zych et al.

C
lu

st
er

 N
od

e

JVM

Worker

JVM

Worker

WorkerWorker

map

Cluster Node

JVM process

Simulation
Master

C
lu

st
er

 N
od

e

Registration, configuration

Map loading

Direct communication
during simulation

JVM

Worker

JVM

Worker

WorkerWorker
map

Worker

map

Worker

map

map

map

map

map

JVM

JVMJVM

JVM

JVM

JVM

Fig. 1: Initial architecture of the simulation system.

The second mechanism is called Priority Synchronous Parallel (PSP) model,
where a worker uses a two-phase approach to reduce the impact of the slowest
worker [5]. During the first phase, the worker simulates the vehicles in a high
priority zone at the boundary of its simulation area. This zone covers all the
vehicles that may cross the boundary of the area at the current time step. During
the second phase, the worker sends the information about the border-crossing
vehicles to its neighbors while simulating the rest of the vehicles, i.e., the vehicles
that are within the boundary but are not in the high priority zone.

24 240 480 960 1440 1920 2400

100

150

200

250

300

350

400

450

Number of Workers

S
im

 S
te

p
Ti

m
e

(m
s)

Fig. 2: Simulation step times for problem size increasing in proportion to the
number of workers.

The original version of SMARTS [11] was only able to utilize up to 30 workers,
depending on simulated environment size, which also determined the limits of
the original scalability tests. After our initial improvements, presented in [8], we
were able to successfully run simulation that involved the number of vehicles
growing in proportion to the increasing computing power (1000 vehicles per

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

Distributed Architecture for Highly Scalable Urban Traffic Simulation 5

core), with execution times shown in Fig. 2. The experiment was based on the
road network in 59km×55km area in Beijing, China. The real-world map model
was prepared from OSM map. The road network graph contained approximately
220 thousand nodes and 400 thousand directional edges, which represent roads
in this model. The whole simulation process consisted of 1500 steps with a step
duration equal to 200 ms. It is equivalent to 5 minutes of real-time traffic. The
execution times of the last 1000 steps were measured and the average time of
one in every 50 steps was recorded. The software architecture of this solution
was not yet optimized for High Performance Computing Systems, although it
showed promising results. All average execution times of simulation steps were
within similar range and the median stabilized on the level of about 250 ms.

96 240 480 960 1440 1920 2400

200

400

600

800

1000

1200

1400

1600

Number of Workers

S
im

 S
te

p
Ti

m
e

(m
s)

Fig. 3: Simulation step times with fixed problem size for increasing number of
workers.

We also prepared an experiment to analyze the strong scalability for the
original architecture. It involved a predefined number of 2.4 million vehicles
in total, distributed across whole environment. Fig. 3 shows that in each case
the increasing number of workers, and hence the computing power, resulted in
reduction of average simulation time of a single step, therefore improving overall
simulation performance.

The original architecture exposed significant limitations in these experiments.
The scalability was not satisfactory and the system was unable to run scenarios
larger that the one used in the tests.

4 New Communication Architecture

Despite the improvements proposed in the previous paper [8], SMARTS still
have limitations that prevent efficient executions of large scenarios. The main
problems are: the inability to run simulations above 2400 cores and memory
leaks when simulating huge areas.

These memory problems are mainly caused by the requirements posed by the
Worker-based architecture, to store the entire map in each Worker. A computing
node with multiple cores to exceed all available memory when simulating a large

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

6 M. Zych et al.

map. It is important to note that only the area simulated by a Worker is changed,
thus the rest of the map is used for read-only operations (e.g. path planning).
The other crucial problem is the impossibility to start the simulation correctly if
more than 2400 Workers are used. The server trying to handle all server-worker
connections, needs to create too many threads, which consequently causes an
error at the initialization stage.

This paper proposes a new architecture for the simulator, which is shown
in Fig. 4. A proxy instance, the WorkerManager, was created to handle the
communication with the server and to manage the lifecycle of the Workers that
are under its control. By using this type of architecture, the number of JVMs
created on a node was reduced (1 JVM per node instead of 1 per core). By
appropriately assigning tasks to the proxy instance, the main problems of the
simulator can be eliminated.

C
lu

st
er

 N
od

e

JV
M

 p
ro

ce
ssWorker

Manager

Worker WorkerWorkerWorker

Worker

map

map

p

a

m

Cluster Node

JVM process

Simulation
Master

C
lu

st
er

 N
od

eRegistration, configuration

Creation, initialization

Direct communication
during simulation JV

M
 p

ro
ce

ssWorker
Manager

Worker WorkerWorkerWorker

Worker

map

map

p

a

m

Fig. 4: Modified architecture of the simulation system.

By using a WorkerManager instance, all read-only objects can be stored only
once in node memory. While the case is obvious for any kind of constants in
the simulation, it is not possible to store the whole map only once, because
each Worker uses part of it to execute the simulation. In this case, as shown
in figure Fig. 4, the following solution was selected: WorkerManager stores the
whole map area, which is used in read-only mode to generate vehicle routes
during the simulation, while at the initialization stage individual Workers copy
only the part of the map they are responsible for and a small fragment on the
boundary of the map division between Workers.

The use of separate simulation zones for individual Workers has also improved
simulation performance. Each core now searches for vehicles only in the part of
the map for which it is responsible. As a result, the work required to search for

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

Distributed Architecture for Highly Scalable Urban Traffic Simulation 7

vehicles in each step of the simulation has been reduced, which has a positive
impact on its efficiency.

Another significant change due to the new architecture is the possibility of
aggregating server-worker communication. As shown in Fig. 1, in the previous
implementation the communication between the server and the Worker was di-
rect. As can be seen in Fig. 4, the way of communication was changed by creating
a dedicated proxy instance. The server currently communicates only with Work-
erManagers. This results in a reduction of threads created by the server which
are responsible for handling communication. In addition, the server, thanks to
the message from the WorkerManager, possesses information which Worker is
controlled by which WorkerManager. Thanks to this, it aggregates messages that
should be sent to each of the Workers and sends them as a single message to
the proxy instance. In addition, for optimization purposes, the common parts
of messages were separated so as not to duplicate the information sent to the
WorkerManager.

What is also important, the communication between individual Workers dur-
ing the simulation has not been changed in any way. It still takes place directly
in an asynchronous way. The server sends information about all Workers, so they
can establish direct communication.

Through the use of proxy instances and communication aggregation, a new
algorithm for the initialization and finalization of the simulation was created.
The new method of initialization can be described as follows:

– Creating WorkerManagers and registering them to the server.
– The server creates a map using the OSM data and divides it into a desired

number of fragments. Then it sends all simulation settings, such as path
to the file containing the simulation map, number of Workers and other
simulation properties.

– WorkerManagers create a map of the simulation using the file and validate
the map (the server sends a hash of the map it created from the file). After
this stage is completed they send back a message to the server about the
successful creation of the map.

– Server orders the creation of Workers.
– WorkerManagers create a desired number of Workers and send their data to

the server.
– Server assigns map fragments and initial number of vehicles for each fragment

to individual Workers. Then this information is sent to WorkerManagers.
– WorkerManagers pass the message to individual Workers. Each Worker copies

the corresponding fragment of the map and generates vehicle routes. When
every Worker finishes this step, the WorkerManager sends a message about
being ready to start the simulation.

– After receiving all messages about readiness, server orders to start the sim-
ulation stage.

Using the new architecture allowed the simulation to run correctly with up
to 9600 computing cores. In addition, the server sends far fewer messages at the
initialization stage than before, which has a positive impact on the performance

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

8 M. Zych et al.

of this stage of the entire process. Moreover, by storing common parts such as a
simulation map only once, it is now possible to run much larger test scenarios.

Another improvement is the new distribution of the initial number of cars to
individual Workers. Previously, when calculating the number of cars, the value
was always rounded down and the last Worker was assigned the rest of the cars.
In the case of the largest scenario tested in this study, such a division resulted
in the last Worker receiving about 9000 cars, while the rest received only 499.
This caused an uneven imbalance from the very beginning of the simulation. The
presented example shows how important the seemingly non-obvious details are
during the design of systems for such a large scale.

The extended versions of the SMARTS system, used for conducting the pre-
sented experiments, is available online2.

5 Evaluation

In order to measure the scalability of the simulation using the proposed architec-
ture, two experiments were prepared. Both experiments used the same simulation
scenario: cars navigating the road network from a real-world area. The map rep-
resented the area of size 101, 000 km2 in north-eastern China, containing Beijing
and neighboring cities. The map was created with use of OSM data.

In both experiments each worker process was assigned to one computing core,
thus the names ”worker” and ”core” are used interchangeably when the quan-
tities are discussed. The experiments are explained in detail in their respective
sections below.

The evaluation was executed with the use of the Prometheus supercomputer
located in the AGH Cyfronet computing center in Krakow, Poland. Prometheus
is the 440th fastest supercomputer (TOP5003 list for November 2021). It is a
peta-scale (2.35 PFlops) cluster using HP Apollo 8000 nodes connected via In-
finiBand FDR network. Each node contains two Xeon E5-2680v3 12-core 2.5GHz
CPUs. The total number of available cores is 55,728, accessible as HPC infras-
tructure with a task scheduling system.

5.1 Constant number of cars

The first experiment followed the usual rules of strong scalability evaluation:
the size of the problem was constant and the number of computing power was
increased to analyze the scalability of the solution. The number of cars was set to
4.8M. The numbers of cores used for the execution of the experiment were: 240,
480, 1200, 2400, 4800, 7200, and 9600, allocated in groups of 24 per node due
to the architecture of used computing environment. The size of the experiment
precluded the execution on number of cores lesser than 240, one of the reasons
being the portion of a problem assigned to single node exceeding memory limits.

2 https://github.com/zychmichal/SMARTS-extension
3 https://www.top500.org/system/178534/#ranking

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://github.com/zychmichal/SMARTS-extension
https://www.top500.org/system/178534/#ranking
https://dx.doi.org/10.1007/978-3-031-08760-8_43

Distributed Architecture for Highly Scalable Urban Traffic Simulation 9

Fig. 5 shows the measured execution times, sampled from all workers in
various iterations. As can be observed in Fig. 5a, the execution on 240 cores
resulted in several values that do not match the general distribution of measured
times, achieving more than four times the median value. These values are caused
by Java Garbage Collector invocations, which were required due to the size
of tasks assigned to single nodes. After increasing the number of nodes such
situations did not occur.

(a) Box-and-whisker plot (b) Average times of time-step stages

Fig. 5: Simulation time-steps with constant number of cars for increasing number
of workers.

The measured times were analyzed using the speedup and efficiency metrics.
The speedup should be calculated with the reference to single-core execution
of the program. As the execution of the experiment on a single worker is not
feasible, a different way of determining reference value was used. Assuming con-
stant amount of work to be performed in each experiment, the average time of
vehicle simulation (i.e. the time not spent in communication or waiting for other
workers) in 240 cores run, multiplied by 240, was chosen as the approximation
of single-core execution time.

Fig. 6 shows the described metric values derived from the results presented
in Fig. 5. As can be observed in Fig. 6a, the speedup does not follow the ideal
line that could be observed for embarrassingly parallel problems. It is expected,
as both communication and waiting for other workers contribute to the longer
execution times, which impacts the speedup. Nevertheless, by eliminating the
bottleneck in form of single point of synchronization, the speedup grows when
new resources are added, achieving ca. 2000 for 9600 cores.

The decrease in the benefits from adding new cores is also seen in Fig. 6b,
which shows the efficiency based on the measured times. The outlying values
for 240 cores impacting the average cause the efficiency for this execution to
be significantly worse than expected, which can be additionally observed in the
large standard deviation in efficiency for this run.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

10 M. Zych et al.

24
0

12
00

24
00

48
00

72
00

96
00

number of cores

0

2500

5000

7500

10000

sp
ee

du
p

ideal
measured

(a) Speedup

24
0

12
00

24
00

48
00

72
00

96
00

number of cores

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y

ideal
measured

(b) Efficiency

Fig. 6: Speedup and efficiency in experiment with constant problem size. Blue
markers show mean value and standard deviation, red dotted lines show ideal
values for linear scalability.

The most significant cause for this loss of efficiency is the uneven distribution
of workload. The time of idle waiting for the other workers (Fig. 5b) reduces as
the cores are added, but its proportion to the total time of simulation increases.
This limits the benefits that can be obtained by adding the resources. The uneven
load might result from the fluctuations in the car density — if an area simulated
by any given worker contains less cars than the average, then some other workers
have to simulate more cars than the average, and all other workers will have to
wait until the most loaded one finishes its work.

The results presented in Fig. 3 were obtained in an experiment similar to this
one, although with half the number of cars and smaller road network. The median
execution time of a single time step for the largest number of cores (2400) was ca.
250 ms. Therefore, a good approximation of expected average execution time of
a single step for the same scenario as the experiment presented above would be
ca. 500 ms. However, the same number of cores yielded average execution time of
ca. 60 ms. The new architecture is clearly outperforming the old one, achieving
the execution time 5 times better for large numbers of computing resources.

5.2 Growing number of cars

The second experiment was inspired by the weak scalability evaluation. However,
due to the predefined and irregular simulation environment, it was impossible
to scale the environment to match the computing power. Therefore, the only
parameter that was changed was the number of cars. As the size of the environ-
ment does influence the complexity and the time of the simulation, the resulting
experiment does not conform strictly to the rules of weak scalability.

The numbers of cores used in consecutive executions were the following: 24,
48, 120, 240, 480, 1200, 2400, 4800, 7200, and 9600. The number of cars was
kept at level of 500 per core.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

Distributed Architecture for Highly Scalable Urban Traffic Simulation 11

(a) Box-and-whisker plot (b) Cumulative times of step stages

Fig. 7: Simulation time-steps with number of cars growing with the number of
workers.

Fig. 7 shows the measured execution times, obtained in the same way as
in Fig. 5. As the Fig. 5a shows, for small numbers of workers the size of the
environment to process influences the time significantly. However, for 240 workers
and above, the execution time levels out, which is a desired behaviour in this
test. Adding new tasks and new resources allows preserving the execution time
constant.

Once again it is possible to compare to the results from previous architecture,
presented in Fig. 2. In this case, the number of cars per core was twice the value
in the described experiment. The median execution time of a single time step
for the largest number of workers (2400) was ca. 250 ms. The expected average
execution time for the number of cars in this experiment calculated from this
result would be ca. 125 ms. Once again, the results obtained using the new
architecture are far better, around 8 times faster execution is observed.

6 Design Guidelines for Scalable Spacial Simulations

In this section we summarize the conclusions from our previous [8] work and
the architecture patterns of the current work, which tends towards more gen-
eral design guidelines for scalable spacial simulation. As authors of the work [1]
observed, to be able to achieve super-scalability in the parallelization of algo-
rithms, they should be scale invariant by design. This applies to all aspects of the
task size, including the amount of calculations, but also the volume of possessed
and process data, the number and the volume of messages exchanged with other
tasks and the number of connections. Besides these requirements concerning the
computation itself, serious problems can occur during initialization and results
collecting phases.

Although the initial size of tasks can be even in spacial simulations, preserving
the evenness during simulation is non-trivial. Simulated entities are transferred
between workers, altering the balance and causing the need of waiting for most
loaded stragglers. Dynamic load balancing is a complex challenge in this area.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

12 M. Zych et al.

Memory-related issues exhibit their significance only when large scenarios
are considered. They are often neglected at the beginning of parallel program
development, which magnifies their impact in large scale. Therefore, at the de-
sign stage, all data structures should be divided into three categories: task-
independent, static task-dependent and dynamically growing task-dependent.
All task-dependent structures have to be split between workers in order to sup-
port starting large simulations and preserve the scale-invariant assumption. Dy-
namically growing structures (e.g. simulation results) have to be explicitly man-
aged and serialized when necessary. Failing to address this issue causes run-time
problems, which are far more complex to identify.

Probably the most important element of a salable design is the commu-
nication architecture and synchronization schema. Centralized communication
cannot be used during the simulation process – there are no exceptions here. If
it is necessary to distribute messages across all the workers then proper com-
munication topology should be introduced and messages should be aggregated
wherever possible. In our case worker managers on each cluster node are respon-
sible for aggregation of incoming and outgoing communication with the server.
It is very important to ensure only a limited number of connections per worker,
but also per all other elements of the system – the managers tend to become
bottlenecks also. When proper simulation occurs, it is a key to ensure direct
communication between workers. The algorithm has to ensure limited number
of this communication type by proper division of the task.

Another important condition of scalable spacial simulation is the proper syn-
chronization approach. In every case, central synchronization should be removed
and implicit synchronization strategy should be used instead. After computing a
simulation step, each worker sends messages to its neighbours and expects them
to do the same. After that, the computation continues.

An additional issue, which currently prevents us from following all the pre-
sented guidelines, is the feature of the simulation algorithm, which requires access
to the whole model. In the considered traffic simulation new cars need a path,
which is calculated using the whole map. In general, such situations violate the
scale-invariant condition and should be disallowed. In our case we could require
require all the paths in advance. Otherwise we propose to extract the opera-
tions, which require access to the whole model into a single entity located at
each computing node to reduce the memory demand.

The described guidelines concern the execution of the simulation task itself,
which is not the only source of scalability problems. The phases of initialization
and finalization can also burden the efficiency or prevent the simulation from
running at all. A few typical challenges to point out here are: model division,
distribution and loading and results collecting. Distributing the model data and
collecting the results can become bottlenecks, when implemented as one-to-many
communication. Our experience show, that far better results are achieved by
using a shared file system for both these tasks, while the communication is used
only for configuring them.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

Distributed Architecture for Highly Scalable Urban Traffic Simulation 13

The model division algorithm has to split the model into fragments for spec-
ified number of nodes and cores. Existing algorithms are typically sequential,
which is a huge waste of resources, waiting idle for the simulation task. Re-
search on parallel splitting methods continues, however, a simpler approach can
be adopted in the meantime. By using a faster and less accurate stochastic algo-
rithm, running in many instances on all available nodes, we can often compute
a better solution in shorter time. One should also keep in mind that event a
perfect initial division does not solve the imbalance problem.

7 Conclusions and Further Work

The presented distributed architecture, together with proper data handling mech-
anisms allowed simulating great-scale real-life scenario with continuous space and
motion model. The use of HPC-grade hardware provides significant performance
improvements, but is also necessary due to memory required by the simulation
model. The conclusions from the presented work formulate a set of guidelines
for achieving super-scalability in spacial simulations.

The presented results clearly show, that there is still space for further im-
provements in the area of load balancing. Uneven distribution of work between
computing nodes results in significant waste of computational power. This prob-
lem poses significant challenge for future research because of high dynamics of
load changes in this particular problem.

Acknowledgments

The research presented in this paper was funded by the National Science Centre,
Poland, under the grant no. 2019/35/O/ST6/01806. The research was supported
by PL-Grid Infrastructure.

References

1. Engelmann, C., Geist, A.: Super-scalable algorithms for computing on 100,000
processors. In: Proceedings of the 5th International Conference on Computational
Science - Volume Part I. p. 313–321. ICCS’05, Springer-Verlag, Berlin, Heidelberg
(2005). https://doi.org/10.1007/11428831 39

2. Kanezashi, H., Suzumura, T.: Performance optimization for agent-based traffic
simulation by dynamic agent assignment. In: Proc. of 2015 Winter Simulation
Conference. pp. 757–766. WSC ’15, IEEE Press, Piscataway, NJ, USA (2015)

3. Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for
car-following models. J. of Transportation Research Board 1999(1), 86–94 (2007)

4. Kesting, A., Treiber, M., Helbing, D.: Enhanced intelligent driver model to access
the impact of driving strategies on traffic capacity. Trans. of Royal Society of
London A 368(1928), 4585–4605 (2010)

5. Khunayn, E.B., Karunasekera, S., Xie, H., Ramamohanarao, K.: Straggler mit-
igation for distributed behavioral simulation. In: 2017 IEEE 37th Int. Conf. on
Distributed Computing Systems (ICDCS). pp. 2638–2641. IEEE (2017)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://doi.org/10.1007/11428831_39
https://dx.doi.org/10.1007/978-3-031-08760-8_43

14 M. Zych et al.

6. Klefstad, R., Zhang, Y., Lai, M., Jayakrishnan, R., Lavanya, R.: A distributed,
scalable, and synchronized framework for large-scale microscopic traffic simulation.
In: Proc. 2005 IEEE Intelligent Transportation Systems, 2005. pp. 813–818 (2005)

7. Nagel, K., Schleicher, A.: Microscopic traffic modeling on parallel high performance
computers. Parallel Computing 20(1), 125 – 146 (1994)

8. Najdek, M., Xie, H., Turek, W.: Scaling simulation of continuous urban traffic
model for high performance computing system. In: International Conference on
Computational Science. pp. 256–263. Springer (2021)

9. O’Cearbhaill, E.A., O’Mahony, M.: Parallel implementation of a transportation
network model. Journal of Parallel and Distributed Computing 65(1), 1–14 (2005)

10. Paciorek, M., Turek, W.: Agent-based modeling of social phenomena for high per-
formance distributed simulations. In: International Conference on Computational
Science. pp. 412–425. Springer (2021)

11. Ramamohanarao, K., Xie, H., Kulik, L., Karunasekera, S., Tanin, E., Zhang, R.,
Khunayn, E.B.: SMARTS: Scalable microscopic adaptive road traffic simulator.
ACM Trans. on Intelligent Systems and Technology (TIST) 8(2), 1–22 (2016)

12. Rickert, M., Nagel, K.: Dynamic traffic assignment on parallel computers in tran-
sims. Future Generation Computer Systems 17(5), 637 – 648 (2001)

13. Toscano, L., D’Angelo, G., Marzolla, M.: Parallel discrete event simulation with
erlang. In: Proceedings of the 1st ACM SIGPLAN Workshop on Functional High-
performance Computing. pp. 83–92. FHPC ’12, ACM, New York, NY, USA (2012)

14. Turek, W.: Erlang-based desynchronized urban traffic simulation for high-
performance computing systems. Future Generation Computer Systems 79, 645–
652 (2018)

15. Turek, W., Siwik, L., Byrski, A.: Leveraging rapid simulation and analysis of large
urban road systems on HPC. Transportation Research Part C: Emerging Tech-
nologies 87, 46–57 (2018)

16. Xu, Y., Cai, W., Aydt, H., Lees, M., Zehe, D.: An asynchronous synchronization
strategy for parallel large-scale agent-based traffic simulations. In: Proceedings of
the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
pp. 259–269. SIGSIM PADS ’15, ACM, New York, NY, USA (2015)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_43

https://dx.doi.org/10.1007/978-3-031-08760-8_43

