
Learning I/O Variables from Scientific
Software’s User Manuals

Zedong Peng†, Xuanyi Lin‡, Sreelekhaa Nagamalli Santhoshkumar†, Nan Niu†,
and Upulee Kanewala?

†University of Cincinnati, Cincinnati, OH, USA 45221
‡Oracle America, Inc., Redwood Shores, CA, USA 94065

?University of North Florida, Jacksonville, FL, USA 32224
{pengzd,linx7,nagamasa}@mail.uc.edu, nan.niu@uc.edu,

upulee.kanewala@unf.edu

Abstract. Scientific software often involves many input and output
variables. Identifying these variables is important for such software en-
gineering tasks as metamorphic testing. To reduce the manual work, we
report in this paper our investigation of machine learning algorithms in
classifying variables from software’s user manuals. We identify thirteen
natural-language features, and use them to develop a multi-layer solution
where the first layer distinguishes variables from non-variables and the
second layer classifies the variables into input and output types. Our ex-
perimental results on three scientific software systems show that random
forest and feedforward neural network can be used to best implement
the first layer and second layer respectively.

Keywords: Scientific software, user manual, software documentation,
classification, machine learning.

1 Introduction

The behavior of scientific software, such as a neutron transport simulation [9]
and a seismic wave propagation [16], is typically a function of a large input space
with hundreds of variables. Similarly, the output space is often large with many
variables to be computed. Rather than requiring stimuli from the users in an
interactive mode, scientific software executes once the input values are entered
as a batch [46].

Recognizing the input/output (I/O) variables is a prerequisite for software
engineering tasks like metamorphic testing [14]. In metamorphic testing, a change
in some input variable(s) is anticipated to lead to a predictable effect on certain
output variable(s). For instance, a metamorphic test case for the Storm Water
Management Model (SWMM) [43] is: the surface water runoff is expected to de-
crease when bioretention cell is added [20], where “bioretention cell” is an input
variable and “runoff” is an output variable.

In the previous study, we identified I/O variables manually from the user
manual of SWMM [31]; however, this manual work was tedious and labor-
intensive. The total cost of consolidating 807 input and 164 output variables was

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

approximately 40 human-hours; yet we found that the I/O classification was not
exclusive, e.g., 53 variables introduced in the user manual of SWMM [34] were
both input and output variables.

To automate the I/O variable identification from a scientific software system’s
user manual, we investigate the use of machine learning (ML) in this paper.
Specifically, we build on the experience of our manual work to codify the natural-
language features that are indicative of the variable types (I, O, both I and O).
We then develop a two-layer ML approach by first distinguishing variables from
non-variables, followed by the classification of the variable types. We report the
experimental results of applying our ML solution to the user manuals of three
different scientific software systems, and further reveal the most influential ML
features for classifying I/O variables.

It is worth noting that user manuals represent only one source of I/O variable
identification and yet a complementary source to source code. Not only are user
manuals amenable to natural language processing techniques, but they tend to
be relatively stable in the face of frequent code changes. For instance, since the
user manual of SWMM v 5.1 was written in September 2015 [34], the code release
has been updated five times from v 5.1.011 to v 5.1.015 [48]. While there exists
an inherent tradeoff between code’s transitory nature and user manual’s stable
status, our objective is to automatically process documentation in support of
scientific software engineering tasks such as metamorphic testing.

The main contribution of this paper work is the two-layer ML approach along
with the natural-language features employed in these layers. The ML solution
could reduce the cost of identifying I/O variables from scientific software’s user
manuals and other types of documentation, e.g., user manuals [18] and release
notes [19]. In what follows, we provide background information in Section 2.
Section 3 presents our two-layer ML solution together with the exploited features,
Section 4 describes the experimental results, and finally, Section 5 draws some
concluding remarks and outlines future work.

2 Background

Documentation provides valuable sources for software developers. Aghajani et
al. [2] showed that user manual was found helpful for most of the 15 surveyed
software engineering tasks (especially the operations and maintenance tasks) by
at least one fifth of the 68 industrial practitioners. In scientific software develop-
ment, a user manual describes the scope, purpose, and how-to of the software.
The survey by Nguyen-Hoan et al. [23] showed that 70% of scientific software
developers commonly produced user manuals, and Pawlik et al. [27] confirmed
that it is most likely that user manuals will be prepared when scientific software
is expected to be used outside a particular, typically limited, group.

Using software documentation to support metamorphic testing was first pro-
posed by Chen et al. [8] in order to form I/O relations by systematically enu-
merating a pair of distinct complete test frames of the input domain. Zhou et
al. [50] relied on the online specifications of the search engines to construct five

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

I/O relations for metamorphic testing, whereas Lin et al. [17, 18] exploited user
forums to find such relations. No matter which documentation source is used, the
identification of I/O variables themselves remains manual in these contemporary
approaches.

Despite the lack of automated support for variable classification in the con-
text of metamorphic testing, researchers have shown promise in building ML
solutions to analyze software requirements written in natural languages: deter-
mining which statements actually represent requirements [1], separating func-
tional and nonfunctional requirements [10], recognizing the temporal require-
ments that express the time-related system behaviors and properties [7], tracing
requirements [47], just to name a few. Motivated by these ML solutions, we next
present an automated approach to classifying variables from scientific software’s
user manuals.

3 Classifying Variables via Machine Learning

We gained experience in manually identifying variables from SWMM’s user man-
ual [31]. SWMM, created and maintained by the U.S. Environmental Protec-
tion Agency (EPA), is a dynamic rainfall-runoff simulation model that com-
putes runoff quantity and quality from primarily urban areas. Figure 1-a shows
SWMM’s integrated environment for defining study area input data, running
hydrologic, hydraulic, and water quality simulations, and viewing the results.
Although graphical user interfaces like Figure 1-a help visualize some I/O in-
formation, user manual more completely introduces the I/O variables of the
scientific software.

Figure 1-b shows an excerpt of SWMM user manual [34]. This excerpt is
also annotated with the results from our variable classifier. We notice that vari-
ables are nouns or noun phrases (NPs); however, not every noun or NP is a
variable. Indeed, non-variable greatly outnumbers variable, and this generally
holds in scientific software’s user manual. For this reason, we build a multi-layer
variable classifier, the architecture of which is shown in Figure 2. Compared
to a single, holistic classifier, the multi-layer architecture enables different ML
algorithms to tackle problems at different granularity levels, thereby better han-
dling imbalanced data and becoming more scalable for hierarchical training and
classification [5].

As shown in Figure 2, the preprocessing involves a few steps. If the user
manual is a PDF file, we use the ExtractPDF tool [37] to convert it into a plain
text file. We then apply NLTK in Python [26] to implement the tokenizer that
breaks the text file’s content into tokens (e.g., words, numbers, and symbols).
NLTK is further used to split the tokens into sentences based on conventional
delimiters (e.g., period and line break), and to assign the part-of-speech (PoS)
tags (e.g., noun and verb) to each token. Our final preprocessing step uses the
TextBlob Python library [39] to extract NPs.

The nouns and NPs are candidates for variable classification, and our classi-
fier shown in Figure 2 works at the sentence level. Supervised learning is used

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

(a) Storm Water Management Model (SWMM) [43] performs single event or
long-term runoff simulations

(b) SWMM user manual [34] annotated with the I/O variables

Fig. 1. SWMM screenshot and its user manual excerpt.

at both layers: the first layer distinguishes which nouns or NPs are variables
and which ones are not, and the second layer further predicts if a variable is the
scientific software’s input, output, or both input and output. The both category
is of particular interest because the same variable can be one simulation’s input
and another’s output. In SWMM, for example, “pollutant washoff” may be a
key input variable for a wastewater treatment engineer, but at the same time
can be an important output variable that a city manager researching low impact
development (LID) pays attention to.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

Fig. 2. Two-layer variable classifier: first layer distinguishes variables from non-
variables, and second layer decides if a variable is input, output, or both.

As noun/NP and sentence represent the unit to classify and the context
of classification respectively, our feature design is driven by the terms and the
sentences. We group the features into term-based and sentence-based in Tables 1
and 2 respectively. These tables also provide our intuition behind each feature,
leading up to the feature’s inclusion and exclusion of the first layer (variable
or non-variable) and the second layer (I, O, or both). We orient our features

Table 1. Term-Based Features for Variable Learning (• means the feature is used in
a specific layer)

ID Name Description
First Second
Layer Layer

hasNumerical-
A noun or NP containing a statistical term or

f1
StatisticalTerm

symbol (e.g., “percent”, “%”, “ratio”, “max”, •
etc.) could imply an I/O variable.

f2 hasInitTerm
A noun or NP containing “initial” or “init” • •

could indicate an I variable.

hasSummary-
A noun or NP containing statistical terms (e.g.,

f3
Term

“final”, “average”, and “total”) could • •
indicate an O variable.

hasInputIn-
If the heading of chapter, section, etc. to which

f4
Heading

the noun or NP belongs contains “input”, • •
the noun or NP is likely to be an I variable.

If the heading of chapter, section, etc. to which

f5
hasOutputIn- the noun or NP belongs contains “output”, • •
Heading “result”, or “summary”, the noun or NP is

likely to be an O variable.

hasHighFre-
If a noun or NP is part of the top 1% of most

f6
quency

frequently occurred terms in the user manual, •
it is likely a domain concept of the software.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

Table 2. Sentence-Based Features for Variable Learning (• means the feature is used
in a specific layer)

ID Name Description
First Second
Layer Layer

f7 singleNoun
If a non-heading sentence contains only •

one noun or NP, it is likely a variable.

If a sentence contains a noun or NP and •
nounWith-

a unit (e.g., inch or inches) within the
f8

NearUnit
5-term neighborhood, the sentence
likely introduces the noun or NP
variable with unit.

If a non-heading sentence begins with a

f9
beginsWith- noun or NP, then the sentence likely •
Noun provides details about the noun or NP

details about the noun/NP variable.

If a non-heading sentence has a noun or

f10
hasNoun- NP subject, the sentence likely explains •
Subject the noun or NP variable or describes

the variable’s operations.

If a sentence has the linking verb (e.g.,

hasBEVerb-
“is”) followed by a noun or NP, the

f11
WithNoun

sentence likely provides definitional •
information about the noun or NP
variable.

If a sentence has a noun or NP and a

f12
nounWith- value within the 5-term neighborhood, • •
NearNum the sentence likely introduces the default

value of the noun or NP input variable.

If a non-heading sentence has a noun or NP
subject followed by a second sentence

f13
nounSubject- containing a numerical value, then it is •
WithNum likely the first sentence introduces the

noun or NP input variable and the
second sentence gives the default value.

around syntactic and semantic properties that are meaningful irrespectively of
the exact characteristics of individual user manual. Of particular note are f8 and
f12 that associate a noun/NP with a measuring unit or a numerical value within
the 5-term neighborhood. It is worth bearing in mind that such a distance of
five terms is not a parameter but a property of the English language [21].

Classification is carried out according to the feature matrix at either layer,
and the output is the identification of scientific software’s I/O variables. Exam-
ining which ML algorithms best implement our multi-layer variable classifier is
addressed next in the evaluation section.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

4 Experimental Evaluation

4.1 Research Questions

We set out to answer three research questions.

RQ1: Which ML algorithms yield the most accurate I/O variable classifications?

As ML classification algorithms can be broadly grouped into mathematical, hi-
erarchical, and layered categories [38], we compare the classification accuracy
measured by recall, precision, and F-measure of five ML algorithms: logistic re-
gression and support vector machine (mathematical category), decision tree and
random forest (hierarchical category), and feedforward neural network (layered
category).

RQ2: Is the two-layer approach better than the single-layer counterpart for
classifying I/O variables?

We compare multi-layer with single-layer in I/O variable classifications. We im-
plement the ML algorithms with scikit-learn in Python [36] and tune these al-
gorithms to maximize classification accuracy.

RQ3: What are the most influential ML features for classifying I/O variables?

We assess the importance of the features in Tables 1 and 2 via information
gain [49], which measures how efficient a given feature is in our multi-layer vari-
able classifier. The higher the information gain, the more discriminative power
a feature has. Our analysis here also offers insights into the performance of a
baseline classifier relying on the user manual headings (i.e., f4 and f5 of Table 1).
These two features make use of terms like “input” and “output” directly, and
hence provide straightforward classification cues.

4.2 Subject Systems

Our experiments are conducted on three subject systems. We choose these scien-
tific software systems due to their sustained developments, and open accesses to
their user manuals. Another reason was our familiarity to the water domain [6,
12, 22] and the EPA SWMM system [30–32]. Table 3 lists the characteristics of
the three subject systems.

Table 3. Subject System Characteristics

Basic Information User Manual Answer Set Size
Subject System years of written # of

source
of non- input (I) output (O) both I

existence in LoC pages variable variable variable and O
SWMM [43] 49 C 46,291 [34] 353 13,665 807 164 53
SWAT [40] 30 Fortran 84,296 [3] 650 24,894 1,006 454 78

MODFLOW [44] 36 Fortran 61,945 [41] 188 12,602 601 172 47

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

Besides SWMM simulating water runoff quantity and quality in primarily
urban areas [43], the Soil & Water Assessment Tool (SWAT) is a small wa-
tershed to river basin-scale model widely used in regional management (e.g.,
simulating soil erosion prevention and non-point source pollution control) [40].
In contrast, the original scope of the Modular Hydrologic Model (MODFLOW)
is solely limited to groundwater-flow simulation, though the simulation capabil-
ities have since been expanded to include groundwater/surface-water coupling,
solute transport, land subsidence, and other nonfunctional aspects [25, 44].

Although written in different programming languages and developed by dif-
ferent teams [4], the size of all three systems can be considered to be medium
(between 1,000 and 100,000 LoC) according to Sanders and Kelly’s study of
scientific software [35]. Due to the thousands of users worldwide, each software
maintains authoritative user manual where I/O variables are comprehensively
documented [3, 34, 41].

As our multi-layer variable classifier (cf. Figure 2) uses supervised learning,
labeled data are required for training. Three researchers therefore spent about
100 human-hours in total constructing the subject systems’ answer sets manually.
They first individually and independently labeled a randomly chosen chapter
from each user manual, resulting in a 0.87 Fleiss’ κ and hence achieving a strong
inter-rater agreement [11]. The discrepancies were resolved in a joint meeting,
and a protocol was agreed upon. The researchers then applied the protocol to
label the remaining user manuals separately. From Table 3, we can see that each
system contains hundreds of variables, confirming scientific software’s large input
and output spaces [46].

4.3 Results and Analysis

To answer RQ1, we use the manually labeled data to train the ML algorithms
in a ten-fold cross validation procedure. The average recall, precision, and F-
measure across the ten-fold validation are reported in Table 4. As F-measure is
the harmonic mean of recall and precision, Table 4 highlights in bold the best
accuracy. Among the five ML algorithms considered, random forest best imple-
ments the first layer of our variable classifier where a binary decision (variable
or non-variable) is made. This result is in line with Ibarguren et al.’s experi-
ence that random forest almost always has lower classification error in handling
uneven data sets [13]. Feedforward neural network, as shown in Table 4-b, is
advantageous to implementing our second layer where variables are further clas-
sified into I, O, or both. Logistic regression can also be an option since it achieves
the highest F-measure in SWAT. Table 4 demonstrates the modularity of our
multi-layer variable classifier where different ML algorithms can be deployed for
different classification tasks.

To answer RQ2, we compare our solution to a single-layer alternative. In
particular, we train the five ML algorithms with all the 13 features of Tables 1
and 2 to classify four variable types at once. Table 5 shows that our multi-layer
classifier outperforms the best single-layer solution where the average measure
across ten-fold validation are presented. The multi-layer solution achieves better

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

Table 4. ML Algorithm Selection Results (RQ1)

(a) First layer distinguishing variables from non-variables

Accuracy of ML SWMM SWAT MODFLOW

logistic
recall 0.755 0.767 0.693

regression
precision 0.778 0.769 0.717
F-measure 0.765 0.768 0.704

support recall 0.762 0.820 0.678
vector precision 0.827 0.820 0.802

machine F-measure 0.784 0.820 0.713

decision
recall 0.763 0.821 0.680

tree
precision 0.828 0.821 0.804
F-measure 0.785 0.821 0.715

random
recall 0.812 0.847 0.750

forest
precision 0.828 0.852 0.804
F-measure 0.815 0.849 0.768

feedforward recall 0.766 0.783 0.640
neural precision 0.778 0.804 0.816

network F-measure 0.771 0.793 0.673

(b) Second layer classifying I, O, or both-I-and-O variables

Accuracy of ML SWMM SWAT MODFLOW

logistic
recall 0.582 0.826 0.643

regression
precision 0.819 0.729 0.776
F-measure 0.620 0.763 0.659

support recall 0.573 0.815 0.643
vector precision 0.814 0.727 0.777

machine F-measure 0.614 0.757 0.660

decision
recall 0.582 0.810 0.643

tree
precision 0.819 0.724 0.776
F-measure 0.620 0.753 0.659

random
recall 0.620 0.815 0.643

forest
precision 0.786 0.727 0.776
F-measure 0.661 0.757 0.659

feedforward recall 0.705 0.815 0.696
neural precision 0.819 0.723 0.780

network F-measure 0.745 0.756 0.702

performances especially in classifying I and O variables of the scientific software.
We therefore suggest random forest and feedforward neural network to be the
first layer and second layer ML algorithm respectively for classifying variables
from scientific software’s user manual.

Our answers to RQ3 are listed in Table 6. The singleNoun feature (f7) of
Table 2 has the highest information gain and hence exhibits the most discrim-
inative power in distinguishing variables from non-variables. Other important
features in the first layer include keywords in headings (f4 and f5) and neighbor-
ing terms or verbs in a sentence (f8, f11, and f12). Surprisingly, f1—used only

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

Table 5. Comparing F-Measures (RQ2)

Accuracy of ML non- input (I) output (O) both I
(F-measure) variable variable variable and O

multi-layer 0.895 0.811 0.753 0.672
SWMM single-layer

0.900 0.396 0.499 0.652
(random forest)

multi-layer 0.940 0.916 0.741 0.632
SWAT single-layer

0.940 0.570 0.488 0.586
(decision tree)

MOD-
multi-layer 0.917 0.713 0.731 0.661

FLOW
single-layer

0.916 0.132 0.190 0.628
(random forest)

Table 6. Feature Importance (RQ3)

(a) Top-3 features ranked by the information gain scores

first layer second layer
SWMM SWAT MODFLOW SWMM SWAT MODFLOW

f7 f7 f7 f4 f5 f5
f12 f4 f4 f13 f12 f4
f8 f11 f5 f12 f4 f12

(b) Information gain ranking of baseline features: f4 and f5

first layer second layer
SWMM SWAT MODFLOW SWMM SWAT MODFLOW

f4 6th 2nd 2nd 1st 1st 2nd
f5 7th 4th 3rd 4th 3rd 1st

in the first layer—is not among the most discriminative features, and neither
is f13 in the second layer for SWAT and MODFLOW. As shown in Table 6-
b, keywords-in-the-heading as baseline features work well in the second layer,
but other features play complementary, and often more dominant, roles in ML-
based variable classification. From Table 6, we acknowledge the effectiveness of
the simple baseline features, and also emphasize the important role played by
sentence-based features such as f7 and f12.

4.4 Threats to Validity

We discuss some of the most important factors that must be considered when
interpreting our experimental results. A threat to internal validity concerns the
quality of the scientific software’s user manual. Like other approaches based on
software documentation [2], our ML-based I/O classification could be hindered
if mistakes exist in the user manual. For this reason, we share our manual-
labeling results in an institution’s digital preservation repository [29] to facilitate
reproducibility.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

A factor affecting our study’s external validity is that our results may not
generalize to other scientific software systems from SWMM, SWAT, and MOD-
FLOW. In fact, the three systems that we studied are within the water domain
and developed by government agencies. Producing user-oriented documentation
has become a requirement for scientists-developers mandated by organizations
like the U.S. EPA [42] and the U.S. Geological Survey (USGS) [45]. Therefore,
it is interesting to extend the variable classification via ML to other scientific
software systems.

5 Conclusions

In this paper, we have presented an automatic approach that classifies I/O vari-
ables from the user manual. Our evaluations on SWMM, SWAT, and MOD-
FLOW show the accuracy of ML-based I/O classification, and support the hier-
archy and modularity of a multi-layer ML solution. Specifically, we recommend
random forest for distinguishing variables from non-variables, and feedforward
neural network for further classifying the variables into input and output types.

Our future work includes expanding the experimentation to other scientific
software systems, building more efficient ML solutions by using a subset of the
most important features, releasing the solutions as cloud-based tools [33], in-
tegrating the classified variables into metamorphic testing [28], and performing
theoretical replications [15, 24]. Our goal is to better support scientists in im-
proving the effectiveness and efficiency of their software development and main-
tenance activities.

Acknowledgments. We thank the EPA SWMM team, especially Michelle Si-
mon, for the research collaborations. We also thank the anonymous reviewers for
their constructive comments.

References

1. S. Abualhaija, C. Arora, M. Sabetzadeh, L. C. Briand, and E. Vaz. A machine
learning-based approach for demarcating requirements in textual specifications. In
International Requirements Engineering Conference, pages 51–62, 2019.

2. E. Aghajani, C. Nagy, M. Linares-Vásquez, L. Moreno, G. Bavota, M. Lanza, and
D. C. Shepherd. Software documentation: the practitioners’ perspective. In Inter-
national Conference on Software Engineering, pages 590–601, 2020.

3. J. G. Arnold, J. R. Kiniry, R. Srinivasan, J. R. Williams, E. B. Haney, and S.
L. Neitsch. Soil & Water Assessment Tool (SWAT) Input/Output Documenta-
tion (Version 2012). https://swat.tamu.edu/media/69296/swat-io-documentation-
2012.pdf Last accessed: April 9, 2022.

4. T. Bhowmik, N. Niu, W. Wang, J-R. C. Cheng, L. Li, and X. Cao. Optimal group
size for software change tasks: a social information foraging perspective. IEEE
Transactions on Cybernetics, 46(8): 1784–1795, 2016.

5. A. A. Burungale and D. A. Zende. Survey of large-scale hierarchical classification.
International Journal of Engineering Research and General Science, 2(6): 917–921,
2014.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

6. H. Challa, N. Niu, and R. Johnson. Faulty requirements made valuable: on the role
of data quality in deep learning. In International Workshop on Artificial Intelligence
and Requirements Engineering, pages 61–69, 2020.

7. A. Chattopadhyay, N. Niu, Z. Peng, and J. Zhang. Semantic frames for classifying
temporal requirements: an exploratory study. In Workshop on Natural Language
Processing for Requirements Engineering, 2021.

8. T. Y. Chen. P.-L. Poon, and X. Xie. METRIC: METamorphic Relation Identifi-
cation based on the Category-choice framework. Journal of Systems and Software,
116: 177–190, 2016.

9. K. Clarno, V. de Almeida, E. d’Azevedo, C. de Oliveira, and S. Hamilton. GNES-R:
global nuclear energy simulator for research task 1: high-fidelity neutron transport.
In American Nuclear Society Topical Meeting on Reactor Physics: Advances in Nu-
clear Analysis and Simulation, 2006.

10. F. Dalpiaz, D. Dell’Anna, F. B. Aydemir, and S. Çevikol. Requirements classifica-
tion with interpretable machine learning and dependency parsing. In International
Requirements Engineering Conference, pages 142–152, 2019.

11. J. L. Fleiss and J. Cohen. The equivalence of weighted kappa and the intraclass
correlation coefficient as measures of reliability. Educational and Psychological Mea-
surement, 33(3): 613–619, 1973.

12. H. Gudaparthi, R. Johnson, H. Challa, and N. Niu. Deep learning for smart sewer
systems: assessing nonfunctional requirements. In International Conference on Soft-
ware Engineering: Software Engineering in Society, pages 35–38, 2020.

13. I. Ibarguren, J. M. Pérez, J. Muguerza, I. Gurrutxaga, and O. Arbelaitz. Coverage-
based resampling: building robust consolidated decision trees. Knowledge Based Sys-
tems, 79: 51–67, 2015.

14. U. Kanewala and T. Y. Chen. Metamorphic testing: a simple yet effective approach
for testing scientific software. Computing in Science & Engineering, 21(1): 66–72,
2019.

15. C. Khatwani, X. Jin, N. Niu, A. Koshoffer, L. Newman, and J. Savolainen. Ad-
vancing viewpoint merging in requirements engineering: a theoretical replication
and explanatory study. Requirements Engineering, 22(3): 317–338, 2017.

16. Y. Li, E. Guzman, K. Tsiamoura, F. Schneider, and B. Bruegge. Automated re-
quirements extraction for scientific software. In International Conference on Com-
putational Science, pages 582–591, 2015.

17. X. Lin, Z. Peng, N. Niu, W. Wang, and H. Liu. Finding metamorphic relations for
scientific software. In International Conference on Software Engineering (Compan-
ion Volume), pages 254–255, 2021.

18. X. Lin, M. Simon, Z. Peng, and N. Niu. Discovering metamorphic relations for
scientific software from user forums. Computing in Science and Engineering, 23(2):
65–72, 2021.

19. X. Lin, M. Simon, and N. Niu. Releasing scientific software in GitHub: a case study
on SWMM2PEST. In International Workshop on Software Engineering for Science,
pages 47–50, 2019.

20. X. Lin, M. Simon, and N. Niu. Scientific software testing goes serverless: creating
and invoking metamorphic functions. IEEE Software, 38(1): 61–67, 2021.

21. Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An information retrieval approach
for automatically constructing software libraries. IEEE Transactions on Software
Engineering, 17(8): 800–813, 1991.

22. N. Maltbie, N. Niu, M. Van Doren, and R. Johnson. XAI tools in the public
sector: a case study on predicting combined sewer overflows. In ACM Joint European

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 1032–1044, 2021.

23. L. Nguyen-Hoan, S. Flint, and R. Sankaranarayana. A survey of scientific software
development. In International Symposium on Empirical Software Engineering and
Measurement, pages 1–10, 2010.

24. N. Niu, A. Koshoffer, L. Newman, C. Khatwani, C. Samarasinghe, and
J. Savolainen. Advancing repeated research in requirements engineering: a theo-
retical replication of viewpoint merging. In International Requirements Engineering
Conference, pages 186–195, 2016.

25. N. Niu, Y. Yu, B. González-Baixauli, N. Ernst, J. Leite, J. Mylopoulos. Aspects
across software life cycle: a goal-driven approach. Transactions on Aspect-Oriented
Software Development, VI: 83–110, 2009.

26. NLTK. Natural Language Toolkit. https://www.nltk.org Last accessed: April 9,
2022.

27. A. Pawlik, J. Segal, and M. Petre. Documentation practices in scientific software
development. In International Workshop on Cooperative and Human Aspects of Soft-
ware Engineering, pages 113–119, 2012.

28. Z. Peng, U. Kanewala, and N. Niu. Contextual understanding and improvement of
metamorphic testing in scientific software development. In International Symposium
on Empirical Software Engineering and Measurement, pages 28:1–28:6, 2021.

29. Z. Peng, X. Lin, and N. Niu. Data of Classifying I/O Variables via Machine Learn-
ing. https://doi.org/10.7945/85j1-qf68 Last accessed: April 9, 2022.

30. Z. Peng, X. Lin, and N. Niu. Unit tests of scientific software: a study on SWMM.
In International Conference on Computational Science, pages 413–427, 2020.

31. Z. Peng, X. Lin, N. Niu, and O. I. Abdul-Aziz. I/O associations in scientific soft-
ware: a study of SWMM. In International Conference on Computational Science,
pages 375–389, 2021.

32. Z. Peng, X. Lin, M. Simon, and N. Niu. Unit and regression tests of scientific
software: a study on SWMM. Journal of Computational Science, 53: 101347:1–
101347:13, 2021.

33. Z. Peng and N. Niu. Co-AI: a Colab-based tool for abstraction identification. In
International Requirements Engineering Conference, pages 420–421, 2021.

34. L. A. Rossman. Storm Water Management Model User’s Manual Version
5.1. https://www.epa.gov/water-research/storm-water-management-model-swmm-
version-51-users-manual Last accessed: April 9, 2022.

35. R. Sanders and D. Kelly. Dealing with risk in scientific software development. IEEE
Software, 25(4): 21–28, 2008.

36. scikit-learn. Machine Learning in Python. https://scikit-learn.org/stable/ Last ac-
cessed: April 9, 2022.

37. Spikerog SAS. ExtractPDF. https://www.extractpdf.com Last accessed: April 9,
2022.

38. S. Suthaharan. Machine Learning Models and Algorithms for Big Data Classifica-
tion. Springer, 2016.

39. TextBlob. Simplified Text Processing. https://textblob.readthedocs.io Last ac-
cessed: April 9, 2022.

40. United States Department of Agriculture. Soil & Water Assessment Tool
(SWAT). https://data.nal.usda.gov/dataset/swat-soil-and-water-assessment-tool
Last accessed: April 9, 2022.

41. United States Department of the Interior & United States Geological Survey. Mod-
ular Hydrologic Model (MODFLOW) Description of Input and Output (Version
6.0.0). https://water.usgs.gov/ogw/modflow/mf6io.pdf Last accessed: April 9, 2022.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

42. United States Environmental Protection Agency. Agency-wide Quality System
Documents. https://www.epa.gov/quality/agency-wide-quality-system-documents
Last accessed: April 9, 2022.

43. United States Environmental Protection Agency. Storm Water Management
Model (SWMM). https://www.epa.gov/water-research/storm-water-management-
model-swmm Last accessed: April 9, 2022.

44. United States Geological Survey. Modular Hydrologic Model (MODFLOW).
https://www.usgs.gov/software/software-modflow Last accessed: April 9, 2022.

45. United States Geological Survey. Review and Approval of Scientific Software for
Release (IM OSQI 2019-01). https://www.usgs.gov/about/organization/science-
support/survey-manual/im-osqi-2019-01-review-and-approval-scientific Last ac-
cessed: April 9, 2022.

46. S. A. Vilkomir, W. T. Swain, J. H. Poore, and K. T. Clarno. Modeling input
space for testing scientific computational software: a case study. In International
Conference on Computational Science, pages 291–300, 2008.

47. W. Wang, N. Niu, H. Liu, and Z. Niu. Enhancing automated requirements trace-
ability by resolving polysemy. In International Requirements Engineering Confer-
ence, pages 40–51, 2018.

48. Wikipedia. Storm Water Management Model.
https://en.wikipedia.org/wiki/Storm Water Management Model Last accessed:
April 9, 2022.

49. I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2016.

50. Z. Zhou, S. Xiang, and T. Y. Chen. Metamorphic testing for software quality
assessment: a study of search engines. IEEE Transactions on Software Engineering,
42(3): 264–284, 2016.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_42

https://dx.doi.org/10.1007/978-3-031-08760-8_42

