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Abstract. Public transport systems are expected to reduce pollution
and contribute to sustainable development. However, disruptions in pub-
lic transport such as delays may negatively affect mobility choices. To
quantify delays, aggregated data from vehicle location systems are fre-
quently used. However, delays observed at individual stops are caused
inter alia by fluctuations in running times and the knock-on effects of de-
lays occurring in other locations. Hence, in this work, we propose both a
method detecting significant delays and a reference architecture, relying
on the stream processing engines in which the method is implemented.
The method can complement the calculation of delays defined as devia-
tion from schedules. This provides both online rather than batch identi-
fication of significant and repetitive delays, and resilience to the limited
quality of location data. The method we propose can be used with differ-
ent change detectors, such as ADWIN, applied to a location data stream
shuffled to individual edges of a transport graph. It can detect in an on-
line manner at which edges statistically significant delays are observed
and at which edges delays arise and are reduced. Such detections can be
used to model mobility choices and quantify the impact of regular rather
than random disruptions on feasible trips with multimodal trip mod-
elling engines. The evaluation performed with the public transport data
of over 2000 vehicles confirms the merits of the method and reveals that
a limited-size subgraph of a transport system graph causes statistically
significant delays.

Keywords: Stream processing · drift detection · public transport · GPS
sensors

1 Introduction

Public transport (PT) is expected to contribute to sustainable development by
reducing pollution and road congestion. However, disruptions may negatively
affect nominal and perceived journey time [12]. Hence, disruptions such as delays
or missed connections are quantified to measure the performance of a PT system.
Importantly, frequent public transport disruptions may negatively affect mobility
choices. Developments in automatic vehicle location (AVL) [10] systems have
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largely increased the availability of spatio-temporal datasets documenting both
the location of individual vehicles and real arrival and departure times. Such
data is typically used for real time monitoring of public transport services, and
improving operations [8]. Public transport schedules, such as schedules published
in General Transit Feed Specification (GTFS) format can be compared against
real departure times of PT vehicles. This provides for the aggregation of delays.
As an example, in [8] delays at individual stop points were aggregated to provide
features such as total delays per stop point, the number of times a bus was
delayed at a stop point and the average delay. Next, histograms of delays and
maps of locations with delays and significant delays were produced. Recently, the
newly available large volumes of delay report records have been used for more in-
depth analysis of delay data. In [10], a proposal to discretise delay changes into
hour time bins and delay time bins was made. This was to consider and normalise
the values associated with each bin separately. Importantly, the calculations
were performed for each edge representing a sequence of two stops consecutively
visited by a vehicle. Agglomerative clustering was used to identify clusters of PT
system edges grouping edges similar in terms of delays observed at these edges.

Importantly, the majority of works on long term delay analysis rely on batch
processing of data sets collected in the preceding periods. In [8], this included
hierarchical clustering and non-linear regression for delay prediction. In [10],
agglomerative clustering of edges was used, which allowed the identification of
stop pairs between which minor or major delay changes were observed under
different probabilities throughout the entire period under consideration.

Many studies on long term analysis were based on averaging delay data. How-
ever, delays in a PT system may occur due to various reasons such as traffic light
conditions preventing a vehicle from passing a crossroads, accidents, road recon-
struction, too demanding schedules or demand fluctuations affecting boarding
times at individual stops. Furthermore, some of the delays may be reported due
to limited precision of location data obtained from GPS receivers and wrongly
suggesting that a vehicle has not yet (or has already) departed from the stop.
Hence we propose a Streaming Delay Change Detection (SDCD) method. The
method can be used with varied change detectors applied to delay data to iden-
tify how frequently statistically significant delays occur at individual edges of a
PT system. The SDCD method we propose relies on stream processing, i.e. iden-
tifying changes in delay distribution in near-real-time rather than through batch
processing of historical data, and can be used with high volume data streams.

The primary contributions of this work are as follows:

– We propose the SDCD method to monitor and detect changes in delay dis-
tribution, and propose two variants of the method to detect changes during
entire days and individual time slots.

– We evaluate the method with real Warsaw public transport data and make
the implementation of the method and data available to the research com-
munity1.

1 The source code of the SDCD method and the data used in this work are available
at https://github.com/przemekwrona/comobility-sdcd
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2 Related works

2.1 Quantifying delays and change detectors

Delays in public transport systems are typically analysed based on the data sets
aggregating delays observed for individual vehicles at stop points such as bus
stops [5, 8] or edges defined by two consecutive stop points [10]. Some studies
go beyond calculating average delay values. As an example, Szymanski et al.
proposed using bins of variable lengths for aggregating delay values e.g. grouping
delays of [-10.5 min,-5.5 min] in a single bin [10].

Yap et al. in [12] note the difference between the change in PT system per-
formance caused by stochastic demand or supply fluctuations i.e. the change
referred to as disturbance, and disruption, which is the change caused by dis-
tinctive incidents or events. Both these changes are examples of perturbations.
Importantly, disruptions can propagate in the PT system and their consequences
can be observed even in distant locations. Due to complex demand-supply inter-
actions, in the case of urban PT networks, simulations-based models are often
necessary to predict the impact of disruptions [12].

The volume of vehicle location data collected from AVL systems is growing.
It reached 12 mln records reported in a study for Stockholm [8], 16 mln for
Wroclaw [10] or even 2.9 bln of records collected for Warsaw over approximately
30 months [5]. This inspired research into the use of big data frameworks for the
storage and processing of location and delay records. A survey of related works
and a proposal for a unified architecture serving storage and analytical needs of
IoT data with emphasis on vehicle location data can be found in [5].

In parallel, developments in stream rather than batch processing of high
volume and velocity data raised interest in change detection methods applicable
to data streams. One of the popular detectors is ADWIN proposed in [1]. In
ADWIN, the adaptive window approach is used for streaming data and applied
to detect changes in the average value of a stream of bits or real-valued numbers.
The size of sliding windows used for change detection is not constant and defined
a priori, but depends on the rate of detections. Thus for stationary data, the
window is growing, but in the case of detection, the window is narrowing to
discard historical data. The only parameter of the detector is a confidence value
δ ∈ (0, 1), controlling the sensitivity of the detection, i.e. influencing the ratio of
false positives. A change is detected with a probability of at least 1 − δ .

Another recently proposed approach to concept drift detection relies on the
Kolmogorov-Smirnov test applied to sliding windows populated with recent data
instances from a data stream [7]. The parameters for the KSWIN detector are
the probability α of the test statistic and the sizes of two sliding windows used
for the detection of a difference between the distributions of data present in
the two windows. Concept change is detected when the distance between the
empirical cumulative distribution functions (eCDFs) of the two differently sized
windows exceeds the α-dependant threshold.

Research into change detectors is largely inspired by the need to detect when
an update of the learning model is needed to adapt the model to concept drift.
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A family of methods monitoring the mean estimated from real values with an
explicit focus on monitoring the values of performance measures of learning
models was proposed in [2]. The methods rely on HDDM algorithms proposed
in the study and use Hoeffding’s inequality to report warnings and actual drifts
based on two confidence levels – the parameters of the change detector.

The change detection methods applicable to data streams were not used until
very recently for transport data. Among the first works of this kind, Moso et al.
in [6] addressed the problem of collecting message exchanges between vehicles
and analysing trajectories. Variations of trajectories from normal ones were de-
tected to identify anomalies. This recent study is among the first studies exploit-
ing the use of Page-Hinkley and ADWIN change detection methods to process
Cooperative Awareness Messages produced by vehicles in order to perform road
obstacle detection. Out of the two methods, ADWIN yielded promising results,
which is unlike Page-Hinkley, which additionally required parameter tuning.

2.2 Analysing multi-modal connections and the impact of
perturbations on travel times

Delays of individual PT vehicles not only have an impact on travel time, but also
may cause lost transfers. As some trips require multiple connections and multi-
modal routes, to estimate travel times under static schedules and real conditions,
simulation software is needed. A popular solution is to use OpenTripPlanner
(OTP)2 - an open-source and cross-platform multi-modal route planner. OTP
gives the ability to analyse varied transport data. That includes modifications
of schedules (also in real-time) and changes to the street network. Importantly,
OTP can model the effects of road infrastructure changes and examine the con-
sequences of temporary changes in schedules [13].

Several recent scientific works used OTP as an analytic tool. Lawson et al.
examined a “blended data” approach, using an open-source web platform based
on OTP to assist transit agencies in forecasting bus rider-ship [3]. Ryan et al.
used OTP to examine the critical differences between the two representations of
accessibility, calculating door-to-door travel times to supermarkets and health-
care centres [9]. To perform connection planning both static PT schedules made
available in GTFS format [11, 9] and real feed of vehicle arrival and departure
times in the form of GTFS Realtime3 [4] can be used. In particular, a comparison
of travel times estimated by OTP under planned schedules and real departure
times provided in GTFS Realtime can be made.

While the stream of real arrival and departure times, including possible de-
lays, can be forwarded to a modelling environment such as OTP, this does not
answer whether delays exemplify systematic problems at some edges of the PT
graph or occasional fluctuations. Hence, in our study, we focus on detecting
statistically significant perturbations in the performance of a public transport
system. In this way, we aim to reduce the risk of reporting disruptions caused by

2 http://www.opentripplanner.org/
3 https://developers.google.com/transit/gtfs-realtime
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Fig. 1: The architecture of delay detection and impact modelling system

stochastic fluctuations, unless these disruptions occur frequently. Hence, rather
than averaging delays possibly observed occasionally and caused by limited pre-
cision of GPS readouts, variability in the number of passengers or traffic light
conditions, we aim to identify these delays which occur frequently and over
longer periods. To make this possible, we propose a method applying change
detectors to data collected at individual edges of public transport graph and the
architecture within which the method can be implemented.

Furthermore, let us note that such detections can provide basis for generating
schedules reflecting regular statistically significant delays and using them in a
simulation environment such as OTP.

3 Architecture of delay detection and modelling system

To validate the approach proposed in this work, we implemented SDCD method
as a part of IoT platform collecting and analysing sensor data, including data
from AVL systems. The platform we used for the collection and processing of
vehicle location and delay data is an update and extension of USE4IoT architec-
ture [5]. Let us note that without the loss of generality, by delays we mean both
arrivals before and after scheduled time. The USE4IoT is an Urban IoT platform
designed as an extension of Lambda architecture. It fulfils the requirements of
the Lambda pattern and adds extra layers matching the needs of smart cities.

Fig. 1 presents the architecture of the part of the system related to the SDCD
method. In the analysed case, input data comes from the open data portal of
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the city of Warsaw4 and additional open sources. Some data is collected online
from a public transport localisation stream. Other data, such as timetables, are
downloaded periodically. The data ingestion layer is responsible for collecting
the data from the various data sources. It requires a combination of components
and frameworks. In the case of USE4IoT, Apache NiFi is used to poll the data
sources for the most recent data and convert new data records into data streams.

Big data, including location data streams, are archived using the Hadoop
Distributed File System to store tabular data, including data collected as online
data streams and timetables downloaded daily. The vehicle location streams
are redirected to stream processing engines through Apache Kafka to ensure
high throughput and resilience to downstream performance. Next, the Apache
Flink application is used to process and merge the location of vehicles with PT
timetables. The architecture provides stream processing with a mean delay of
less than 2.5 seconds [5].

In this work, we propose three OTP instances, each serving different needs.
The OTP instances are updated from three types of sources. Static GTFS data is
created based on static schedules and uploaded into the first OTP instance. The
stream analytics modules detect delays and untypical events and supplies OTP
with a real-time GTFS. Therefore, the real-time OTP instance can calculate
multi-modal connections considering current vehicle location and delays. Finally,
we propose the SDCD module to detect statistically important changes in public
transport delays. This can provide the basis for GTFS files containing credible
schedules, i.e. the schedules reflecting statistically significant delays that update
the static departure times, to be used in the SDCD-based OTP instance. In this
way, a comparison between travel options and times under a) static schedules, b)
real-time situation and c) schedules reflecting significant delays possibly observed
frequently over preceding days can be made.

Finally, the entire architecture was created to make it possible to forward
the results through the data exposition layer to the application layer, possibly
including third-party applications. However, the core part of the solution, which
we focus on in this work, is the SDCD method providing the basis for online
detection of statistically significant delay changes.

4 Streaming delay change detection

Let L denote the set of PT lines, each defined by a sequence of bus or tram stops
{sl,1, . . . , sl,j}. Let us note that when describing PT system, we will rely on the
notation similar to the notation proposed in [12]. In our case, we assume that
sl,j = sl,1 i.e. a line is defined by a loop, while stops visited in one direction are
not necessarily the stops visited by a vehicle travelling in the opposite direction.

Let PT network be a directed graph G = (S,E), where S is the set of all
stops in the network e.g. in the urban PT network and E is the set of edges. An
edge (si, sj), i ̸= j exists i.e. (si, sj) ∈ E if and only if at least one line l exists
such that the two consecutive stops of the line are si and sj .

4 https://api.um.warszawa.pl
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Algorithm 1: Streaming delay change detection algorithm

input : stream: a stream of vehicle locations S1,S2, . . .
GetDetectorId(V ): a function returning the identifier of the change
detector to be used
∆ ∈ {TRUE,FALSE} - the parameter defining whether to process
∆d() or d() delays

output: detections: A stream of detected changes in delay stream

1 ConceptChangeDetectors← {} # Initialize empty map of detectors

2 i = 1;
3 while stream has next element do

4 V ← Si
5 K ← GetDetectorId(V )
6 D ← ConceptChangeDetectors.getDetector(K)

7 if D is NULL then
8 D ← newConceptChangeDetector()
9 ConceptChangeDetectors.putDetector(K,D)

10 if ∆ then
11 delay ← ∆d(V )

12 else
13 delay ← d(V )

14 D.addDelay(delay)

15 if D.detectedChange () then
16 detections.save(V,D.identifier)

17 i = i + 1;

Furthermore, let S1,S2, . . . be the stream of location records received over
time from an AVL system. Without the loss of generality, we assume each Si

contains both current geocoordinates of a vehicle course v, the line l operated
by the vehicle, and the identifiers of two most recently visited stops si, si−1 by
the vehicle. Real departure times and planned departure times as defined in
static schedules are also available for both of these stops. These are denoted by
tR(s, v) and tS(s, v), respectively. Hence, d(Sj) = d(si, v) = tR(si, v) − tS(si, v)
denotes delay i.e. the difference between real and planned departure time for
a vehicle course v observed at stop si i.e. the most recently left stop during
course v. Let us note that if raw data from AVL include no line identifiers, they
can be retrieved from schedule data. Furthermore, if needed stop identifiers can
be identified based on past vehicle coordinates and stop coordinates of the line
served by the vehicle. The data of vehicles not in service are skipped.

Our approach to detect changes in a stream of delays uses change detectors
such as detectors relying on the ADWIN algorithm [1]. The SDCD method is
defined in Alg. 1. As an input stream, we use the location stream of PT vehicles
S1,S2, . . . described above. Furthermore, the location stream can be shuffled into
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substreams linked to individual edges of PT graph or bins linked to a combination
of an edge and an hour h = 0, . . . , 23 of the day. In the first case, which we call
edge-based, all vehicle location records describing vehicles visiting the sequence
of two stops defining an edge will be gradually processed by one change detector.
In the bin-based approach, all records related to an edge and time of the day
defined by a one-hour time slot will be processed together. Hence, the intuition
behind the edge-based approach is to identify delays and delay reductions as they
appear over time. In this case, the detector is recognised by pair of stops. Thus,
for each pair of stops, one detector that collects data all the time is created.

We propose bin-based approach to identify possible changes in delays at the
same time of the day, e.g. between 8:00 and 8:59 over consecutive days and
occurring at one edge of PT graph. In this case, the detector identification is
extended by the hour that comes from the current vehicle timestamp. Hence, at
most 24 detectors are created for each pair of stops visited in a row. The two
approaches of defining detector keys are formally defined in Alg. 2.

Moreover, we propose to calculate delay change between stops, defined as
∆d(Sj) = d(si, v) − d(si−1, v). Let us note that d(Sj) > 0 may be accompanied
by ∆d(Sj) = 0 or even ∆d(Sj) < 0. As an example, it is possible that a delayed
vehicle (d(Sj) > 0) has reduced its delay when travelling between stops si−1 and
si i.e. ∆d(Sj) < 0. Hence, the third parameter of Alg. 1 is whether to detect
changes in d() or ∆d() streams of values.

Algorithm 2: The functions calculating detector identifiers.

1 Function getDetectorIdForEdge(V ):
2 return V.getCurrStopId().join(V.getPrevStopId())

3 Function getDetectorIdForEdgeAndTime(V ):
4 return V.getCurrStopId().join(V.getPrevStopId()).join(V.getHour())

During the algorithm initialisation, we create an empty map of detectors
(Line 1). Every time data for a new detector key, i.e. new edge or new bin, is
encountered in the stream for the first time, we create a new change detector
object (Lines 7-9). Next, we add the value of delay expressed in seconds to the
detector and check if the detector detected a change in the stream. Detected
change is saved together with detector key, i.e. edge identifier in the case of
edge-based, and edge and time slot in the bin-based approach.

Finally, once significant perturbations in the performance of a public trans-
port system defined by repetitive detections of delays are identified, we propose
to develop SDCD-based schedules, i.e. the public transport schedules reflecting
significant perturbations observed at individual edges. Next, by comparing the
behaviour of a public transport system under static schedules and SDCD-based
schedules, the impact of significant perturbations can be assessed. For example,
bus delays may cause missing a scheduled connection at a transfer stop and
largely increase overall travel time.
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5 Results

5.1 Reference data

The data used to validate the SDCD method comes from the Warsaw Public
Transport public API, which provides the current position of vehicles every 10
seconds, yielding 2.0-2.5 GB of data each day. The average daily number of
records over the period selected to illustrate the results of this study exceeds
4 million (839 thousand for trams and 3.17 million for buses), out of which
approx. 1.1 million are departure records. The ratio of records linked with a
static schedule reached 92%. The remaining records represent inter alia vehicles
not in service.

The public transport vehicles travel an average of 14.6 thousand edges E
daily, defined by the two following stops. An average edge of the public transport
network is visited by 54 vehicles (the median) per day. However, the actual range
is from a single vehicle course per edge to over ten thousand on some city centre
edges. The median delay at an edge reaches 104 seconds, which is considered
acceptable according to criteria adopted by the local public transport authority.

5.2 Change detections

In the first experiments, Alg. 1 was used with three change detectors – ADWIN
[1], KSWIN [7], and HDDM [2] – used to perform change detection. We selected
the two latter methods to enable the comparison of different detectors including
the ADWIN change detector, i.e. the detector already used for a related problem
of road obstacle detection in [6]. In the case of HDDM methods, HDDM A was
selected for the experiments. This relies on a lower number of parameters than
HDDM W, which additionally requires the weight given to recent data to be set.
Setting such a weight would require additional hyperparameter tuning. Hence,
for the sake of simplicity, HDDM and HDDM A will be used interchangeably
in the remainder of this study. In all experiments, the implementation of detec-
tors from the scikit-multiflow library was used, and default settings of the
ADWIN detector were applied. In the case of KSWIN and HDDM, the same
confidence setting as for ADWIN was applied.

Fig. 2 presents the edges whose detectors reported at least one delay change
during the reference period selected to visualise the results of this study, i.e. 18th

December 2021 (Saturday) to 21st December 2021 (Tuesday). The detectors are
organised into two types. The first type of detector analysed delay d() at the
destination stop si of edge e = (si−1, si), hereafter referred to as delay. The
second type analysed changes of delay ∆d() observed at an edge e, referred to as
∆delay in the remainder of this work. In this experiment, one detector analysed
the data from entire days to find delay changes, i.e. an edge-based approach was
used. For the sake of clarity the edges at which detections occurred are depicted
by points placed in the destination stop si of edge e = (si−1, si).

The ADWIN algorithm (Fig. 2a) detected the smallest number of delay
changes in comparison to KSWIN (Fig. 2b) and HDDM (Fig. 2c). Interestingly,
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(a) ADWIN delay (b) KSWIN delay (c) HDDM delay

(d) ADWIN ∆delay (e) KSWIN ∆delay (f) HDDM ∆delay

Fig. 2: The locations at which changes in delays were detected in the location
stream between 18th December 2021 and 21st December 2021 (best viewed in
color). Edge-based approach. The City of Warsaw area.

all algorithms detected more accelerations (d() < 0) than delays (d() > 0). It
may look positive. Still, accelerations are rare compared to the number of all
edges. A possible explanation of the larger number of acceleration events than
of delay events is that major delays are easy to attain at even short distances,
but reducing them inevitably takes more time i.e. longer distances over which
delay reduction has to be attained by the drivers, which is reflected by a larger
number of accelaration edges.

The detection of delay changes ∆d() is more diverse. While the ADWIN
(Fig. 2d) and HDDM (Fig. 2f) detect both directions of changes, the KSWIN
(Fig. 2e) detects mostly accelerations. It may be caused by the fact that the
KSWIN is comparing eCDF functions while the other algorithms compare the
mean values. Once again, the ADWIN algorithm detected the smallest number
of changes.

In the second experiment – instead of a single detector working throughout
the entire period – the bin-based approach divided the records related to an
edge into one-hour time slots. The rest of the conditions stay the same as in
the previous experiment. The results are presented in Figure 3. For the ADWIN
(Fig. 3a and Fig. 3d) and KSWIN (Fig. 3b and Fig. 3e) algorithms the number
of detected changes drops rapidly compared to edge-based approach. This effect
shows that most detected delay changes are statistically important compared to
other periods of the day but are rather typical for the specific hour, which sounds
reasonable because of dynamic traffic changes during the day. However, the drop
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(a) ADWIN delay (b) KSWIN delay (c) HDDM delay

(d) ADWIN ∆delay (e) KSWIN ∆delay (f) HDDM ∆delay

Fig. 3: The locations at which changes in delays were detected in the location
stream between 18th December 2021 and 21st December 2021 (best viewed in
color). Bin-based approach. The City of Warsaw area.

out effect is not observed for the HDDM algorithm (Fig. 3c and Fig. 3f), which
may suggests that the HDDM algorithm detects again too many events.

The ADWIN algorithm is the least demanding in the context of parametrisa-
tion. Moreover, the results of other algorithms are counterintuitive when KSWIN
detects only accelerations or the bin-based approach does not reduce the number
of HDDM detections. Therefore, the ADWIN was selected for further analysis.

Table 1 presents statistics for all ADWIN delay d() and delay change ∆d()
detections in the edge-based approach. The number of detections is relatively
small compared to the daily throughput and the number of analysed edges.
When one compares the medians, the detected delays d() > 0 are comparable to
the median delays of 104 seconds (see Section 5.1). Their standard deviation is
relatively high and similar to the median. Therefore, the detected changes have a
local character in the sense of a detection value (which would not necessarily be
an exception in another location), but are globally shifted to reductions, which
are taken as exceptions in contrast to the global delay level.

The proportion between reductions and increases is more balanced for ∆delay
change detections. A very small median and several times higher standard de-
viation reveals that many detections concern minor delay change only, which
additionally helps focus on these edges at which major delay change occurs.

To sum up, the statistical results show that statistically significant delay
changes are rare for thousands of analysed connections. In practice, it is recom-
mended to use both types of detections (d() and ∆d()) with an additional cut
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Table 1: Delay changes detected with SDCD algorithm. ADWIN detector.
Delay type Date Departure records Increases Reductions Median[s] STD[s]

d()

2021-12-18 1181271 5 1059 131.0 125.0
2021-12-19 1242939 10 666 110.0 84.0
2021-12-20 1256871 7 862 107.0 91.0
2021-12-21 1049178 6 680 131.0 101.0

∆d()

2021-12-18 1181271 249 365 6.0 32.0
2021-12-19 1242939 199 299 4.0 29.0
2021-12-20 1256871 219 336 5.0 55.0
2021-12-21 1049178 202 310 5.0 45.0

off of the small absolute values to focus on delays which are both statistically
significant and high.

5.3 Peak hours analysis

To show how delay change detections can provide for more locally focused anal-
ysis, let us analyse detections observed during two separate periods containing
the morning and evening rush hours. Fig. 4 compares detections between 6 am
and 10 am (Fig. 4a and Fig. 4b), and 4 pm and 8 pm (Fig. 4c and Fig. 4d).

Comparison of morning and evening delay detections (Fig. 4a and Fig. 4c)
shows that some segments have acceleration or delay detected both in the morn-
ing and evening. That shows some segments of the traffic infrastructure with
issues regardless of the time of the day. Comparison of delay changes detections
(Fig. 4b and Fig. 4d) shows that some segments changed the direction of detected
delay as a direction of traffic jams changes between the morning and evening rush
hours. Finally, a comparison of both types of detectors shows segments with a
delay detected by both types of detectors. In fact, there is a segment (in a rect-
angle defined by 21-21.02 Longitude and 52.21-52.22 Latitude), which illustrates
the edges at which updates to static schedules could possibly be made.

6 Conclusions and future works

Delays in public transport may have a significant impact on mobility choices
and discourage many citizens from using public transport services. However,
reports of delays based on vehicle location data may be caused both by inevitable
temporal fluctuations and limited precision of GPS-based readouts. Furthermore,
delays may occur due to short-term events such as a street temporarily partly
blocked due to maintenance work.

To identify and focus on statistically significant delays, in this work rather
than aggregating delays we propose the SDCD method. This makes it possible
to detect delays possibly arising or reduced in another part of the PT system
and propagated to the location of interest, as well as delays arising or reduced
at an edge of interest. Furthermore, we evaluate change detectors in terms of
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(a) Delay 06:00-10:00 (b) ∆Delay 06:00-10:00

(c) Delay 16:00-20:00 (d) ∆Delay 16:00-20:00

Fig. 4: Changes in the stream of delay and ∆delay values on 21st December 2021
(best viewed in color). Edge-based approach. The axis of the plots are longitude
and latitude in degrees.

their usability to identify ADWIN as the most promising solution. The methods
we propose rely on scalable online processing of location records rather than
batch processing of historical data. Hence, they can also provide a basis for the
detection of temporary problems irrespective of their causes, such as traffic jams
or broken PT vehicles.

The SDCD method is a part of the system integrating big data frameworks,
which ensure the scalability of the solution, and including OpenTripPlanner
instances. In the future, we will focus on how delay detections performed with
the SDCD method can be aggregated to identify long-term trends. One of the
objectives of such aggregation is to identify those city areas in which statistically
significant delays may have a substantial impact on the perception of public
transport quality. Hence, the development of features quantifying the frequency
and impact of delays both propagated to and arising at different edges of a public
transport graph on feasible connections is planned.
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