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Abstract. Industrial IoT systems, such as those based on Autonomous
Guided Vehicles (AGV), often generate a massive volume of data that
needs to be processed and sent over to the cloud or private data cen-
ters. The presented research proposes and evaluates the approaches to
data aggregation that help reduce the volume of readings from AGVs,
by taking advantage of the edge computing paradigm. For the purposes
of this article, we developed the processing workflow that retrieves data
from AGVs, persists it in the local edge database, aggregates it in prede-
fined time windows, and sends it to the cloud for further processing. We
proposed two aggregation methods used in the considered workflow. We
evaluated the developed workflow with different data sets and ran the
experiments that allowed us to highlight the data volume reduction for
each tested scenario. The results of the experiments show that solutions
based on edge devices such as Jetson Xavier NX and technologies such
as TimescaleDB can be successfully used to reduce the volume of data
in pipelines that process data from Autonomous Guided Vehicles. Addi-
tionally, the use of edge computing paradigms improves the resilience to
data loss in cases of network failures in such industrial systems.

Keywords: cloud computing, edge computing, automated guided vehi-
cles, data aggregations, internet of things, TimescaleDB, edge analytics

1 Introduction

In recent years, we’ve observed rapid growth of adoption of IoT systems for
various use cases, such as manufacturing [11][18][23], environmental monitoring
[7][13], smart cities applications [8][16], agriculture [12][15], health monitoring
[17][19] among others. In most of the mentioned cases, a massive volume of
data is generated. That data often needs to be sent over to the cloud or private
data centers, usually over the Internet, which can be challenging if the network
connection is unstable or offers limited bandwidth. In order to address that
problem, new computing paradigms such as fog [21] and edge [22] computing
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have been introduced. The main goal of these paradigms is to reduce the volume
of data that needs to be sent over to the cloud by performing data processing
directly on devices that are closer to the source of data. Additionally, it enables
such systems to react faster to the changes in the system, even in situations
where the Internet connection is slow, unreliable, or even not available most
of the time. Such edge devices are often responsible for ingestion of the data,
storage, aggregation of selected metrics, and sending the results to the cloud for
further processing.

Focusing on manufacturing and production, we see the growing popularity
of Autonomous Guided Vehicles (AGVs) [6] that allow to modernize production
lines, improve internal factory logistics, ensure better safety of factory workers,
which in turn enables more flexible and agile production systems. These vehicles
need to process data coming from various sensors such as lidars, cameras, optical
encoders in a time-efficient manner, which we believe can be improved with edge
computing-based techniques.

This paper aims to evaluate two selected approaches to data aggregation
performed directly on low-powered edge devices, such as Jetson Xavier NX, in
the context of using them for enhancing the industrial data acquisition pipeline
from AGVs. In the article, we focused on techniques that allow reducing the
volume of data that will need to be sent over to the cloud for further processing.
The paper is organized as follows. In section 2, we review the related works. In
section 3, we describe the considered workflow, data models, and approaches to
data aggregation. Section 4 contains a description of the testing environment. In
section 5, we present the performed experiments along with the results. Finally,
section 6 concludes the results of the paper.

2 Related Works

Scientific literature shows a variety of use cases for running data aggregations
and processing directly on edge devices. In [9], Luca Greco et al. propose an
edge-based analytical pipeline for real-time analysis of wearable sensor data.
The authors of the research selected Raspberry Pi as an edge computing device,
Apache Cassandra as a database, and Apache Kafka and Apache Flink for data
processing software. They conclude that selected software, except Apache Flink,
provided suitable performance and that the proposed processing pipeline archi-
tecture can be successfully used for anomaly detection in real-time.

Real-time processing with Raspberry Pi edge devices is also presented by
Abdelilah Bouslama et al. [5] for medical, sensor data. The authors proposed
a medical system dedicated to monitoring patients with reduced mobility or
located in isolated areas. For implementing the proposed solution, the authors
used Amazon Web Services cloud offering and edge devices running Node-Red
applications.

One of the important problems while processing data streams is detecting
data patterns directly on edge devices instead of doing all processing in the
cloud. Eduard Renart et al. [20] proposed a processing framework dedicated to
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stream processing of data from smart city environments. The authors compare
their solution to a single-cloud deployment of Apache Storm and Apache Kafka
and conclude that for considered workflows, their solution can offer up to 78%
latency reduction and 56% computation time reduction.

In another research, Fatos Xhafa et al. [25] mention the challenges related to
processing IoT data streams in the context of edge computing. They focus on
processing data coming from cars and experimentally evaluate an infrastructure
based on a Raspberry Pi device using Node-Red. The authors conclude the pa-
per with performance tests of the proposed infrastructure. They highlight that a
single Raspberry Pi is not suitable for the selected use cases as it cannot process
all incoming data in a time-efficient manner.

However, Raspberry Pi is frequently used as the edge device, which is visi-
ble in Hikmat Yar et al. [26]. The authors proposed a smart home automation
system based on the Raspberry Pi device, which serves as a central controlling
unit, analytical engine, and storage system for data generated by smart home
devices. Thanks to processing sensor data directly at the edge, authors managed
to reduce bandwidth, computation, and storage costs.

Edge computing is also used in other areas. M. Safdar Munir et al. [14] pro-
posed an intelligent irrigation system based on the edge computing paradigm.
The authors take advantage of edge servers to collect data from sensors, validate
it, and preprocess before sending it to the cloud service for further evaluation
against trained machine learning models. The authors highlight that the use of
the edge computing paradigm allows reducing the volume of data sent over and
improves the overall speed and efficiency of the whole system.

Zhong Wu and Chuan Zhou in [24] propose a system dedicated to detecting
the riding posture of equestrian athletes to propose improvements to it in real-
time, using the edge computing paradigm for data processing. After performing
packet loss rate, driving, and riding tests, the authors conclude that the pro-
posed solution can be successfully used in practical applications.

In another paper, Hong Zhang et al. [27] described an object tracking system
dedicated to smart cities, based on IoT and edge computing paradigm. The ma-
jor contribution is the proposal of a correlation filter algorithm for lightweight
computation tracking that can successfully run on low-power consumption IoT
devices such as Raspberry Pi or Xilinx SoC platforms. The proposed solution of-
fers better tracking accuracy and robustness than comparable existing systems.

In [10], Grzesik et al. evaluate the possibility of running metagenomic analy-
sis in real-time in the edge computing environment. The authors evaluate Jetson
Xavier NX in multiple power modes, running basecalling and classification work-
loads. After performance experiments, the authors conclude that Jetson Xavier
NX can serve as a portable, energy-efficient device capable of running metage-
nomics experiments.

The above examples show that there is a lot of interest in performing data
processing and aggregations directly on edge devices, taking advantage of the
edge computing paradigm. This paper aims to expand knowledge in this area in
the context of processing industrial data from AGVs. We show two strategies for
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reducing the amount of data transferred to the data center for further analysis,
relying on low-powered boards such as Jetson Xavier NX [1] and software such
as TimescaleDB [3].

3 Analytical workflow, data models, and aggregation
methods

The analytical workflow consists of a few steps. Firstly, the AGV client period-
ically retrieves the data from each AGV and persists it in a local database. A
separate process is responsible for running aggregations on data retrieved from
the local storage. The results from these aggregations are also persisted sepa-
rately in a local database. Lastly, the third process is responsible for retrieving
the aggregated data, performing optional filtering, and sending the aggregated
data to the cloud for further processing. The workflow diagram is presented in
Fig. 1.

Fig. 1: Diagram of the aggregation workflow on the edge device.

3.1 Data models and aggregation approaches

Each data point collected from the AGV consists of metrics such as battery cell
voltage, momentary and cumulative power, energy, and current consumption,
cumulative distances, and momentary frequencies. Each reading is additionally
timestamped and tagged with the unique AGV identifier. Table 1 shows the
structure of a single data point with corresponding data types, their sizes in
bytes, and aggregation methods that will be applied to that field. The total size
of a single data point from AGV is equal to 84 bytes. The data readings were
obtained during real-world experiments with the Formica-1 AGV (Fig. 2) per-
forming different types of workflows and it was collected with the intention of
using it for performing predictive maintenance analysis in a cloud-based envi-
ronment with the use of machine learning algorithms.
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Table 1: Data model of raw readings from AGVs
Value Type Size in bytes Aggregation methods

AGV ID Integer 4 -

Timestamp Timestamp 8 -

Momentary current consumption Decimal 8 AVG, MAX, MIN

Battery cell voltage Decimal 8 LAST

Momentary power consumption Decimal 8 AVG, MAX, MIN

Momentary energy consumption Decimal 8 AVG, MAX, MIN

Cumulative energy consumption Decimal 8 LAST

Momentary frequency left Decimal 8 AVG, MAX, MIN

Momentary frequency right Decimal 8 AVG, MAX, MIN

Cumulative distance left Decimal 8 LAST

Cumulative distance right Decimal 8 LAST

Table 2: Data model of aggregated AGV readings
Value Type Size in bytes

AGV ID Integer 4

Aggregation timestamp Timestamp 8

Average momentary current Decimal 8

Max momentary current Decimal 8

Min momentary current Decimal 8

Last battery voltage Decimal 8

Average momentary power Decimal 8

Min momentary power Decimal 8

Max momentary power Decimal 8

Min momentary energy Decimal 8

Max momentary energy Decimal 8

Average momentary energy Decimal 8

Last cumulative energy Decimal 8

Average momentary frequency left Decimal 8

Max momentary frequency left Decimal 8

Min momentary frequency left Decimal 8

Average momentary frequency right Decimal 8

Max momentary frequency right Decimal 8

Min momentary frequency right Decimal 8

Last cumulative distance left Decimal 8

Last cumulative distance right Decimal 8
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3.1.1 Window aggregation

The first considered method of reducing the volume of the data is called
window aggregation and is presented in Algorithm 1. Firstly, the data points
collected from AGVs p ∈ P are filtered against agvid for each of N AGVs and
the aggregation window start ws and end we, which is shown in line 6 of the
algorithm. Afterward, the filtered readings p′ ∈ P ′ are sorted by the timestamp
property. Next, each field of the filtered readings p′ ∈ P ′ is aggregated over
time, which is shown in line 8 of the algorithm. For particular types of values,
we have decided that we will only report the last recorded value in the aggre-
gation period, while for others, we decided to report average, maximum, and
minimal values in the aggregation period. Afterward, the resulting aggregation
point is appended to the result array A. After processing data for all AGVs in
a given time window, the aggregation window start ws and end we are incre-
mented by time window size ∆t (lines 14-15). The processing stops after the
algorithm reaches the end aggregation timestamp te (line 3). The structure of
aggregated data A, along with the selected aggregation operations for each data
point property, is presented in Table 2. The total size of a single aggregation
data point is equal to 164 bytes.

Algorithm 1: Data aggregation algorithm

Data: P (all raw readings from AGVs), ∆t (aggregation window size), ts
(start aggregation timestamp), te (end aggregation timestamp), N (the
number of AGVs)

Result: A (all aggregated data points)
1 ws← ts ; /* aggregation window start */

2 we← ts+∆t ; /* aggregation window end */

3 agvid ; /* identifier of a single AGV */

4 while we < te do
5 for agvid← 1 to N do
6 P ′ ← ∅ ; /* readings set for aggregation window */

7 foreach p ∈ P do
8 if p.agvid = agvid and p.timestamp > ws and

p.timestamp <= we then
9 P ′ ← P ′ ∪ p;

10 end

11 end
12 Sort set of filtered readings p′ ∈ P ′ by timestamp property;
13 Aggregate each field of filtered readings p′ ∈ P ′ over time;
14 Append aggregation points to result array A;

15 end
16 ws← ws+∆t;
17 we← te+∆t;

18 end
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3.1.2 Window aggregation with delta updates

Another method of reducing the volume of the data we considered is called
window aggregation with delta updates and operates according to Algorithm 2.
The aggregation step is the same as in section 3.1.1. However, when sending
the aggregation data, an additional step is introduced in which all aggregated
readings from AGVs a ∈ A are first filtered against agvid for each of N AGVs.
The result of that operation is assigned to the AF property, which is shown in
line 5 of the algorithm. Then, the readings af ∈ AF are sorted by the timestamp
property. In the next step, starting in line 9 of the algorithm, the aggregation
results AF [i] are compared with aggregation results for the previous time window
AF [i − 1] when constructing the data point p. If the value for the field did not
change compared to the previous time window, it is not included in the resulting
data point p. The data point p is appended to the array of delta updates D with
data points that will be sent to the cloud for further processing.

Algorithm 2: Delta updates optimization

Data: A (all aggregated readings from AGVs), N (the number of AGVs)
Result: D (delta updates data points)

1 for agvid← 1 to N do
2 AF ← ∅;
3 foreach a ∈ A do
4 if a.agvid = agvid then
5 AF ← AF ∪ a;

; /* readings set for given AGV */

6 end

7 end
8 Sort set of filtered readings af ∈ AF by timestamp property and assign

result to AF ;
9 for i← 0 to len(AF ) do

10 if i = 0 then
11 D ← D ∪AF [i];
12 else
13 Compare each property of AF [i] with AF [i− 1] and include only

the fields that are different in the resulting point p;
14 D ← D ∪ p;

15 end

16 end

17 end
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4 Testing environment

The testing environment consists of a group of autonomous guided vehicles
equipped with sensors and a central edge device that serves as a database, AGV
client, and an analytical engine for the AGV data. Fig. 3 presents the diagram of
the described edge computing system. The AGV that was used for data collection
was Formica 1, produced by AIUT Ltd. and is presented on Fig.2.

Fig. 2: Autonomous Guided Vehicle Formica 1.

The edge computing device selected for this experiment was Jetson Xavier
NX, with its full technical specification presented below [1]:

– CPU - 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6 MB L2 + 4 MB
L3

– GPU - NVIDIA Volta™ architecture with 384 NVIDIA® CUDA® cores
and 48 Tensor cores

– Memory - 8 GB 128-bit LPDDR4x 51.2GB/s
– OS Storage - SDHC card (32 GB, class 10)
– DB Storage - Solid State Drive, PNY 500GB M.2 PCIe NVMe XLR8 CS3030
– OS - Ubuntu 18.04.5 LTS with kernel version 4.19.140-tegra

Fig. 3: Diagram of the edge computing system.
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For persistence and analytical aggregations, we selected TimescaleDB, which
is an open-source, written in C, time-series database, distributed as an exten-
sion to PostgreSQL [2]. It extends traditional tables to form data structures
called hypertables, which are abstractions for single, continuous tables. Inter-
nally, hypertables are split into chunks, which are implemented using standard
PostgreSQL tables[4] and represent data for specific time intervals. It offers sup-
port for all PostgreSQL client libraries and SQL operations. It can be used as a
drop-in replacement of traditional relational databases that additionally provides
significant improvements for storing and processing time-series data, namely, fast
data ingestion and support for analytical queries over time windows [3].

5 Performance experiments

To experimentally test the data reduction rates with the aggregation strategies
presented in the paper, we simulated the production environment with 10 AGVs
generating data based on the actual sensor readings obtained from operational
cycles of the Formica 1 vehicle. From each AGV, we read 1,380 data points in
regular time intervals. In the experiment, we used three such data sets, with
readings generated every 200, 500, and 1,000 milliseconds, which resulted in
41,400 data points used for testing. The generated data was based on actual
readings recorded during real-world tests with the Formica-1 AGV.

For the purposes of running the experiments, we prepared several Python
software packages developed to carry out each step of the workflow. Firstly, the
generated data was persisted to the database to three separate tables, each for
different data set based on sampling frequency (200, 500, and 1000 milliseconds
between reads). Then, the second package was responsible for generating data
aggregates, taking advantage of native database aggregation functions, and the
results were persisted to separate tables. Aggregations were run for each data set
with different aggregation time windows - 2, 5, and 10 seconds. Lastly, for each of
the aggregation approaches, we computed the total number of bytes that would
have to be sent to the cloud for further processing and compared the results
against the baseline of the number of bytes that would be sent if we forwarded
all readings directly to the cloud.

Firstly, we analyzed results obtained for data readings that were collected
every 200 milliseconds. With aggregations being done every 2 seconds, the total
size of data that needs to be sent to the cloud was reduced from the baseline of
1,159,200 bytes to 226,320 bytes with just aggregations and to 153,680 bytes with
additional optimization of sending only data that changed between aggregation
results (delta updates). For aggregations done every 5 seconds, we measured
91,840 bytes for the aggregation alone and 73,920 bytes with delta updates,
where for the time window of 10 seconds, the results were 45,920 and 40,640
bytes, respectively. The results for that data set are presented in Fig. 4.
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Fig. 4: Dependency between data volume for various data aggregation scenarios
and different sizes of the aggregation window for data readings collected every
200 milliseconds.

For data readings collected every 500 milliseconds, we’ve obtained the follow-
ing results. The baseline number of bytes was once again 1,159,200 bytes, and
it was reduced to 565,800 and 323,960 bytes for a 2-seconds time window, to
226,320 and 153,680 bytes for 5-seconds time window, and finally to 113,160 and
86,040 bytes for 10-seconds aggregation window for aggregation and aggregation
with delta updates. The results for that data set are presented in Fig. 5.

Fig. 5: Dependency between data volume for various data aggregation scenarios
and different sizes of the aggregation window for data readings collected every
500 milliseconds.
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Lastly, we have considered the data set that contained readings collected ev-
ery 1000 milliseconds, which had the same baseline number of 1,159,200 bytes.
For the 2-seconds aggregation window, we’ve achieved a reduction to 1,131,600
and 538,880 bytes, for the 5-seconds window to 452,640 and 275,680 bytes, and
for the 10-seconds aggregation window, the results were 226,320 and 153,680
bytes, respectively for aggregation and aggregation with delta updates optimiza-
tion. The results for that data set are presented in Fig. 6.

Fig. 6: Dependency between data volume for various data aggregation scenarios
and different sizes of the aggregation window for data readings collected every
1000 milliseconds.

Thanks to proposed aggregation techniques, we achieved data volume reduc-
tion from 2% for 1000 ms data set and window aggregation method done every
2 seconds to as much as 81.1% for 200 ms data set and window aggregation with
delta updates method done every 10 seconds. The data size reductions for each
data set and each aggregation method are summarized in Table 3. We also ob-
serve that the delta updates technique is more effective for smaller aggregation
windows, which is best visible for a 1000 ms data set. Here, it helped to improve
data volume reduction from 2% to 44.9% for a 2-seconds aggregation window.

Table 3: Data size reduction for considered aggregation methods
Aggregation Agg. with delta updates

Aggregation time window [s] 2 5 10 2 5 10

Data size reduction for 200 ms data set [%] 67.6 77.3 80.7 72.8 78.6 81.1

Data size reduction for 500 ms data set [%] 43 67.6 75.8 60.5 72.9 77.8

Data size reduction for 1000 ms data set [%] 2 51.2 67.6 44.9 64 72.9
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6 Concluding Remarks and Future Work

The decision to take advantage of the edge-based data processing pipeline can
have multiple benefits for the overall industrial system. As shown in the experi-
ments presented in the paper, both proposed aggregation strategies can greatly
help with reducing the volume of readings data from AGVs that need to be send
over to the cloud for further processing. In addition to reducing the use of the
network bandwidth, using edge storage system based on TimescaleDB database
improves resiliency to network outages, because the data is additionally persisted
on the edge device, which prevents potential data loss in such scenarios. The ag-
gregated data available at the edge of the network can also be used to make
quicker decisions based on the state of the system and improve reaction time to
changing environments. In our paper, we proved that the solution based on such
edge devices like Jetson Xavier NX and using technologies such as TimescaleDB
could successfully help reduce the volume of data in industrial data acquisition
pipelines for Autonomous Guided Vehicles. In the future works, we plan to ex-
pand the proposed algorithms to evaluate if we can achieve better efficiency and
data volume reduction, while preserving data quality, exploring techniques such
as GPU acceleration.
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