
Detecting SQL Injection vulnerabilities using nature-

inspired algorithms

Kevin Baptista1, Anabela Moreira Bernardino1[0000-0002-6561-5730] and Eugénia Moreira

Bernardino1[0000-0001-5301-5853]

1 Computer Science and Communication Research Center (CIIC), School of Technology and

Management, Polytechnic of Leiria, 2411-901, Leiria, Portugal
2190371@my.ipleiria.pt, anabela.bernardino@ipleiria.pt,

eugenia.bernardino@ipleiria.pt

Abstract. In the past years, the number of users of web applications has in-

creased, and also the number of critical vulnerabilities in these web applications.

Web application security implies building websites to function as expected, even

when they are under attack. SQL Injection is a web vulnerability caused by mis-

takes made by programmers, that allows an attacker to interfere with the queries

that an application makes to its database. In many cases, an attacker can see,

modify or delete data without proper authorization. In this paper, we propose an

approach to detect SQL injection vulnerabilities in the source code, using nature-

based algorithms: Genetic Algorithms (GA), Artificial Bee Colony (ABC), and

Ant Colony Optimization (ACO). To test this approach empirically, we used web

applications purposefully vulnerable as Bricks, bWAPP, and Twitterlike. We

also perform comparisons with other tools from the literature. The simulation

results verify the effectiveness and robustness of the proposed approach.

Keywords: SQL Injection, Nature-inspired Algorithms, Genetic Algorithms,

Swarm Optimization algorithms.

1 Introduction

The Open Web Application Security (OWASP) Top 10 is a standard awareness docu-

ment for developers and web application security that lists the top 10 web application

security risks for 2021 [1]. The focus of this paper is on SQL Injection.

OWASP defines SQL Injection as a type of injection attack that occurs when un-

trusted data is sent to an application as part of a query [1]. The main goal for the attacker

is to trick the interpreter into executing unintended queries to execute unauthorized ac-

tions like obtaining unauthorized data.

In the last years, several combinatorial optimization problems have arisen in the

communication networks field. In many cases, to solve these problems it is necessary

the use of emergent optimization algorithms [2]. We developed an automated tool,

based on the application of nature-based algorithms that tries to find the greatest num-

ber of vulnerabilities in the shortest time possible. We implemented Genetic Algorithm

(GA), Artificial Bee Colony (ABC), and Ant Colony Optimization (ACO). The main

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_38

https://dx.doi.org/10.1007/978-3-031-08760-8_38

2

purpose of this tool is to be used in a white box scenario, having access to the code

base. Thus, it could help developers to find potential vulnerabilities in their codebase.

To empirically evaluate our approach, we used several open-source PHP projects that

are known to have certain vulnerabilities, such as Bricks, bWAPP, and Twitterlike.

We compare the results obtained by our approach with manual analysis, the results

obtained in previous works by the same authors [3, 4], and with the tools Web Appli-

cation Protection (WAP) and SonarPHP that use a static analysis approach to detect

vulnerabilities in PHP web applications.

The paper is organized as follows. Section 2 presents some related works. Section 3

describes the problem representation. Section 4 describes the proposed algorithms and,

Section 5 discusses the experiments conducted and the results obtained. Section 6 pre-

sents the conclusions and some directions for future work.

2 Related Work

An intensive study was done before developing the approach presented in this docu-

ment. Since this article has a limited number of pages, we only highlight the most im-

portant works in the area.

Mckinnel et al. [5] made a comparative study of several Artificial Intelligence algo-

rithms in exploiting vulnerabilities. They compiled several works in the area to compare

several algorithms, including unsupervised algorithms, reinforcement Learning, GA,

among others. The authors conclude that GA performs better over time due to the evo-

lutionary nature of generations. They suggest that its applicability needs to take into

account a good definition of the fitness function in order to obtain better results.

Manual penetration tests, although effective, can hardly meet all security require-

ments that are constantly changing and evolving [6]. Furthermore, they require special-

ized knowledge which, in addition to presenting a high cost, is typically slower. The

alternative is to use automated tools that, although faster, often do not adapt to the con-

text and uniqueness of each application. In [6], the author developed a reinforcement

learning strategy capable of compromising a system faster than a brute force and ran-

dom approach. He concluded that it is possible to build an agent capable of learning

and evolving over time so that it can penetrate a network. Its effectiveness was equal to

human capacity. Finally, he concludes that although the initial objective was long, there

are still several directions to be explored, from the use of different algorithms for both

an offensive (red team) and a defensive (blue team) security perspective. It suggests the

application of game theory concepts [7], especially treating a problem like a Stackelber

Security Game. These techniques have been successfully applied in various security

domains such as finding the optimal allocation for airport security given the attackers'

knowledge.

Alenezi and Javed [8] analyzed several open-source projects in order to identify vul-

nerabilities. They concluded that most of these errors are due to negligence on the part

of developers as well as the use of bad practices. The authors suggest the development

of a framework that encourages programmers to follow good practices and detect pos-

sible flaws in the code.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_38

https://dx.doi.org/10.1007/978-3-031-08760-8_38

3

In [9], the authors propose a solution to detect XSS (cross-site scripting) vulnerabil-

ities based on the use of GAs as well as a proposal to remove the vulnerabilities found

during the detection phase. The aim, therefore, was to find as many vulnerabilities as

possible with as few tests as possible. The results obtained with GAs were compared

with other static analysis tools.

In [3] and [4] the same authors of this paper proposed an approach to detect SQL

injection vulnerabilities in the source code, using GA [3] and swarm-based algorithms

[4]. In these works were used different representations of the individuals. We also com-

pare our results with these results.

3 Problem Representation

In order to use a nature-inspired algorithm as an optimization algorithm to find SQL

Injection vulnerabilities, the process was divided into two steps: (1) identification of all

SQL queries; and (2) use of GA, ABC, or ACO to generate attack vectors to be injected

in the queries.

 In order to obtain all non-parametrized queries, first, it is necessary to perform a

search to list all PHP files recursively in a given folder. Afterward, all variables in the

code are indexed and their history is kept. This step is crucial to capture SQL queries

that are parametrized, but still vulnerable because the vulnerabilities occurred before in

the code. These queries and all non-parametrized queries are kept in a list to be used in

the second phase by the algorithm.

The main goal of the second phase is to find a vector that could compromise one of

the queries listed in the previous step. So, the algorithm starts by initializing all the

needed parameters, then it either goes through the GA, ABC, or ACO. Each one has its

specific steps and parameters, but the fitness calculation is common to all of them. More

information about these steps can be found in [3, 4].

Here, each individual is made up of a set of five genes. Each gene is a String (values

are derived from SQL injection database which was constructed based on resources

[10] and [11]). In Fig. 1, there is a possible representation for the individual, where each

gene is an attack vector.

Fig. 1. Example of an individual.

Following this approach, an individual can generate up to N different attack vectors,

where N is the number of genes in the individual. individuals (bees in ABC and ants in

ACO). As represented in Fig. 1, each gene in the individual is going to be tested as an

attack vector.

The queries executed for this scenario are illustrated in Table 1 (an individual with

5 genes executes 5 queries). In this example, only two are vulnerable.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_38

https://dx.doi.org/10.1007/978-3-031-08760-8_38

4

Table 1. Executed queries.

Query Vulnerable

SELECT * FROM users WHERE ua=’--1=1’ No

SELECT * FROM users WHERE ua=’x’ or 1=1; --’ Yes

SELECT * FROM users WHERE ua=’’) OR 1=1--’ No

SELECT * FROM users WHERE ua=’\”;DROP TABLE users; --’ Yes

SELECT * FROM users WHERE ua=’or 1=1--' No

A fitness value is used to evaluate the performance of an individual. An individual with

bigger fitness means that it is able to crack successfully more queries. The fitness func-

tion used for this problem is as follows:

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) =
𝑈𝑣𝑢𝑙∗5+𝐺𝑣𝑢𝑙∗2

𝑡𝑜𝑡𝑎𝑙𝐺𝑒𝑛𝑒𝑠
 (1)

where 𝑖 is the individual being tested, 𝑡𝑜𝑡𝑎𝑙𝐺𝑒𝑛𝑒𝑠 is the total number of genes in an

individual, 𝑈𝑣𝑢𝑙 is the number of unique vulnerabilities detected by the individual, and

𝐺𝑣𝑢𝑙 is the number of genes that detected at least one vulnerability.

4 Algorithms

The nature-inspired algorithms are used to generate attack vectors to be injected into

the queries. Evolutionary Algorithms (EAs) are randomized search heuristics, inspired

by the natural evolution of species [2, 12]. The main idea is to simulate the evolution

of candidate solutions for an optimization problem. GA is an example of an EA [2].

The basic concept of GA is designed to simulate processes in a natural system nec-

essary for evolution, specifically those that follow the principles first laid down by

Charles Darwin - the survival of the fittest [12]. GAs are EAs that use techniques in-

spired by evolutionary biology, such as inheritance, mutation, selection, and crossover.

More information about the steps of this algorithm can be found in [2, 12].

The area of Swarm Intelligence (SI) relies on the collective intelligence of agents

that interactively explore the search space. Some of the best-known areas of swarm

intelligence are ACO, Particle Swarm Optimization, and bees-inspired algorithms [13,

14].

The ACO algorithm is essentially a system based on agents which simulate the nat-

ural behavior of ants, including mechanisms of cooperation and adaptation [16, 17, 18].

In real life, ants indirectly communicate among themselves by depositing pheromone

trails on the ground, influencing the decision processes of other ants. This simple com-

munication form among individual ants causes complex behaviors and capabilities in

the colony. The real ant behavior turns into an algorithm establishing a mapping be-

tween (1) the real ant search and the set of feasible solutions to the problem; (2) the

amount of food in a source and the fitness function; and (3) the pheromone trail and an

adaptive memory [18]. The pheromone trails serve as distributed, numerical infor-

mation which ants use to probabilistically build solutions to the problem to be solved

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_38

https://dx.doi.org/10.1007/978-3-031-08760-8_38

5

and which they adapt during the execution of the algorithm to reflect their search expe-

rience. More information about the steps and the formulas used to initialize/update the

pheromone trails of this algorithm can be found in [4, 13, 14, 17].

The minimal model of swarm-intelligent forage selection in a honey-bee colony, that

ABC algorithm adopts, consists of three kinds of bees: employed bees, onlooker bees,

and scout bees [19, 20]. In ABC each iteration of the search consists of four steps: (1)

sending the employed bees onto their food sources and evaluating their nectar amounts;

(2) after sharing the nectar information of food sources, selecting food source regions

by the onlookers and evaluating the nectar amount of these food sources; (3) determin-

ing the scout bees and then sending them randomly onto possible new food sources;

and (4) memorizing the best food source [19, 20]. These four steps are repeated through

a predetermined number of iterations defined by the user. In a robust search process,

the exploration and exploitation processes must be carried out together. In the ABC

algorithm, while onlookers and employed bees carry out the exploitation process in the

search space, the scouts control the exploration process. More information about the

steps of this algorithm can be found in [2, 4, 19, 20].

5 Experimental Results

In order to implement the approach described, we develop a tool in Java. To conduct

the experiments, we collected different open-source web applications purposefully vul-

nerable as Bricks, bWAPP, and Twitterlike. All experiments were performed on a

Raspberry PI 4 Model B with 8GB of RAM and a quad-core 64-bits of 1.5Ghz.

In order to obtain the best combination of parameters, several smoke tests were per-

formed. Table 2 shows the best combination of parameters obtained for the algorithms

GA, ACO, and ABC.

Table 2. Best parameters.

Alg. Parameters

GA Max generations: 50; population size: 20; elitism: no; selection method: tournament

(size 6); crossover method: one cut (probability: 0.5); mutation probability: 0.05

ACO Max iterations (mi): 30; number of ants: 80; mi without improvement: 2; number of

modifications: 5; Q: 100; q probability: 0.1; pheromone evaporation rate: 0.3; phero-

mone influence rate: 0.3

ABC Max iterations: 100; number of employed bees: 75; number of onlooker bees: 100;

number of scout bees: 10% of employed bees; number of modifications: 11

We have first identified SQL Injection vulnerabilities manually since there is not an

official number of these vulnerabilities. The biggest problem with a manual approach

is that it takes a long time to detect all the vulnerabilities.

The results produced by our approach were compared with manual analysis and with

the tools WAP and SonarPHP that use a static analysis approach. We also compare our

results with the results obtained in previous works of the same authors that also use GA

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_38

https://dx.doi.org/10.1007/978-3-031-08760-8_38

6

[3], ACO [4], and ABC [4]. The solutions in these works are represented differently.

These results are shown in Table 3.

Table 3. Best results.

Project Manual GA ABC ACO GA [3] ABC [4] ACO [4] WAP SonarPHP

Bricks 12 12 12 12 11 11 11 11 12

bWAPP 56 52 33 33 30 47 51 15 14

Twitterlike 17 13 13 13 12 10 10 5 9

As we were able to see, when comparing with static analysis, our approach was able to

identify more vulnerabilities. All the algorithms implemented present better results in

comparison with static analysis. GA, using the representation of the individuals shown

in this paper, proves to be more efficient in terms of the number of vulnerabilities de-

tected.

As we can see most vulnerabilities are detected with GA, however, for the case of

bWAPP and Twitterlike GA did not find all vulnerabilities. This is probably due to the

fact that an individual has a fixed genome in terms of size, which sometimes leads to

invalid queries. An approach with a dynamic genome size could potentially bring better

results in terms of total SQL injection vulnerabilities found.

6 Conclusion

SQL injection can cause serious problems in web applications. In this paper we pre-

sented an approach to detect SQL Injection vulnerabilities in the code base, using a

white-box approach. To optimize the search of potential vulnerabilities in the code we

use nature-inspired algorithms: GA, ACO, and ABC. The optimization problem was

formulated to find the best set of attack vectors. The proposed approach was divided

into two steps, the first being a pre-analysis of queries in the source code that were used

for the next phase, in which the various algorithms were used. This abstraction of con-

cepts is quite convenient, allowing scalability of functionalities and the opportunity to

implement several algorithms.

With more optimizations, better adaptations to the code of the algorithms, we think

that it will be possible to improve the results obtained. The tool should be expanded to

support multiple languages. At this phase, our approach only supports PHP applica-

tions. The scope of this article was constrained to SQL injection, but other vulnerabili-

ties could potentially benefit from this approach.

Acknowledgements

This work was supported by national funds through the Portuguese Foundation for Sci-

ence and Technology (FCT) under the project UIDB/04524/2020.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_38

https://dx.doi.org/10.1007/978-3-031-08760-8_38

7

References

1. Stock, A., Glas, B., Smithline, N., Gigler, T.: OWASP Top Ten. OWASP Homepage.

https://owasp.org/www-project-top-ten/, last accessed 2022/02/18.

2. Yang, X.-S.: Nature-Inspired Optimization Algorithms. 1st edn. Elsevier (2014).

3. Batista, K., Bernardino A.M, Bernardino E.M: Exploring SQL Injection Vulnerabilities Us-

ing Genetic Algorithms. Proceedings of the XV. international research conference, Lisboa

(2021).

4. Batista, K., Bernardino E.M, Bernardino A.M: Detecting SQL injection vulnerabilities using

Artificial Bee Colony and Ant Colony Optimization. Lecture Notes in Networks and Sys-

tems, Springer (2022).
5. McKinnel, D.R., Dargahi, T., Dehghantanha, A., Choo, K.-K.R.: A systematic literature re-

view and meta-analysis on artificial intelligence in penetration testing and vulnerability as-
sessment. Computers & Electrical Engineering, 75, pp. 175-188 (2019).

6. Niculae, S.: Applying Reinforcement Learning and Genetic Algorithms in Game-Theoretic
Cyber-Security. Master Thesis (2018).

7. Nguyen, T.H., Kar, D., Brown, M., Sinha, A., Xin Jiang, A., Tambe, M.: Towards a Science
of Security Games. In: Toni B. (eds) Mathematical Sciences with Multidisciplinary Appli-
cations. Springer Proceedings in Mathematics & Statistics, 157. Springer, Cham (2016).

8. Alenezi, M., Javed, Y.: Open source web application security: A static analysis approach.
In: 2016 International Conference on Engineering and MIS (2016).

9. Tripathi, J., Gautam, B., Singh, S.: Detection and Removal of XSS Vulnerabilities with the

Help of Genetic Algorithm. International Journal of Applied Engineering Research, 13(11),
pp. 9835-9842 (2018).

10. Friedl, S.: SQL Injection Attacks by Example. http://www.unixwiz.net/techtips/sql-injec-
tion.html (2017), last accessed 2022/02/18.

11. Mishra, D.: SQL Injection Bypassing WAF. https://www.owasp.org/in-
dex.php/SQL_Injection_Bypassing_WAF, last accessed 2022/02/18.

12. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg

(2015).

13. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufmann, San Francisco

(2001)

14. Wahab, M.N.A., Nefti-Meziani, S., Atyabi, A.: A comprehensive review of swarm optimi-

zation algorithms. PLoS One, 10(5), e0122827 (2015).

15. Karaboga, D., Akay, B. A survey: algorithms simulating bee swarm intelligence. Artif Intell

Rev 31, 61 (2009).
16. Dorigo, M.: Ottimizzazione, apprendimento automatico, ed algoritmi basati su metafora na-

turale (Optimisation, learning and natural algorithms). Doctoral dissertation. Dipartimento
di Elettronica e Informazione, Politecnico di Milano, Italy (1991).

17. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of coop-
erating agents. IEEE Transactions on Systems, Man, and Cybernetics 26, pp. 29–41 (1996).

18. Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the quadratic assignment
problem. J. Operational Research Society 50(2), pp. 167–176 (1999).

19. Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Technical

report TR06. Erciyes University, Engineering Faculty, Computer Engineering Department

(2005).

20. Karaboga, D., Akay, B.: A comparative study of Artificial Bee Colony algorithm. Applied

Mathematics and Computation, 214:108–32 (2009).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_38

https://owasp.org/www-project-top-ten/
http://www.unixwiz.net/techtips/sql-injection.html
http://www.unixwiz.net/techtips/sql-injection.html
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF
https://dx.doi.org/10.1007/978-3-031-08760-8_38

