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Abstract. Due to climate change, the hydrological drought is assuming
a structural character with a tendency to worsen in many countries. The
frequency and intensity of droughts is predicted to increase, particularly
in the Mediterranean region and in Southern Africa. Since a fraction of
the fresh water that is consumed is used to irrigate urban fabric green
spaces, which are typically made up of gardens, lanes and roundabouts,
it is urgent to implement water waste prevention policies. Evapotranspi-
ration (ETO) is a measurement that can be used to estimate the amount
of water being taken up or used by plants, allowing a better management
of the watering volumes but, the exact computation of the evapotran-
spiration volume is not possible without using complex and expensive
sensor systems.

In this study, several machine learning models were developed to esti-
mate reference evapotranspiration and solar radiation from a reduced-
feature dataset, such has temperature, humidity, and wind. Two main
approaches were taken: (i) directly estimate ETO, or (ii) previously
estimate solar radiation and then inject it into a function or method
that computes ETO. For the later case, two variants were implemented,
namely the use of the estimated solar radiation as (ii.1) a feature of the
machine learning regressors and (ii.2) the use of FAO-56PM method to
compute ETO, which has solar radiation as one of the input parameters.
Using experimental data collected from a weather station located in Vale
do Lobo, south Portugal, the later approach achieved the best result with
a coefficient of determination (R?) of 0.975 over the test dataset. As a
final notice, the reduced-set features were carefully selected so that they
are compatible with online freely available weather forecast services.
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1 Introduction

The hydrological drought is assuming a structural character with a tendency
to worsen in regions such as Algarve, Portugal. The problem is not particular
to the region occurring, e.g., in most countries of the Mediterranean basin. The
climate report, “Climate Change and Land”, from August 2019, by the Intergov-
ernmental Panel on Climate Change (IPCC) [18], predicts that, due to climate
change, the frequency and intensity of droughts will increase, particularly in the
Mediterranean region and in Southern Africa.

A fraction of the fresh water that is consumed by humans is used to irrigate
green spaces in the urban fabric, which are typically made up of gardens, lanes
and roundabouts, as well as green spaces in hotel and resort chains. The irriga-
tion methodology of these green spaces is commonly done using basic irrigation
controllers that are configured according to the experience of those responsible
for maintaining the green spaces, without the use of information regarding cli-
mate, plants, or soils, as well as data from sensors, nearby weather stations, and
from a weather forecast application programming interface (API) that can pro-
vide real-time and predicted information. Furthermore, common irrigation con-
trollers have no connectivity, are stand-alone solutions where irrigation schedules
are pre-programmed, and only in more complete versions allow irrigation inhibi-
tion by means of a rain detection sensor. This is the typical profile that can be
found in the overwhelming majority of green space irrigation control systems.

Evapotranspiration (ETO) is a measurement that can be used to estimate the
amount of water being taken up or used by plants, allowing a better management
of the watering volumes. However, its exact computation is not possible without
using complex and expensive sensor systems being many times estimated by
formulas or other methods. The use of one over the other depends many times
on the available weather parameters.

This paper presents part of a framework to estimate ETO supported by the
use of machine learning, acquired intelligence, meteorological data from weather
stations on the field, as well as meteorological data and forecasts from APIs
available on the internet. The framework will include the computation of crop
water requirements derived from the ETO prediction methods, providing an
optimal irrigation schedule in terms of start(s) and duration(s), in order to op-
timize water expenditure, energy expenditure, and the well-being of the crop.
This allows the development of an intelligent irrigation solution, technologically
differentiated from other platforms on the market, using innovative communi-
cations technology, hardware and software, aggregating devices such as probes,
field controllers, meteorological stations, among others. The development of the
full framework will be done in project GSSIC — Green Spaces SMART Irrigation
Control which is developing an innovative intelligent irrigation solution, in terms
of reducing water consumption, reducing reaction time in solving problems, in-
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creasing efficiency in detecting anomalies, and maintaining the quality of green
spaces.

The main contribution of this paper is the study and proposal of a set of
methods to estimate ETO and solar radiation using features commonly available
in most open weather forecast APIs.

The paper is structured as follows. The next section presents the problem’s
background and the methodologies used by others to tackle the problem in study.
Section 3 explores the dataset and explains the computational setup. The fourth
section presents the proposed methods and the associated performance analysis.
The final section presents some conclusion and establishes some future work.

2 Problem’s Background

Water requirements depend on the reference evapotranspiration (ETO) which is
one of the fundamental parameters for irrigation scheduling as well as improving
the management and use of water resources. Prediction of reference evapotran-
spiration for the following days plays a vital role in the design of intelligent
irrigation scheduling, as it is proportional to the amount of water that will have
to be restored during the irrigation period [5].

Some of the main characteristics that distinguish crop evapotranspiration
(ET,) from ETO are (i) the crop cover density and total leaf area, (ii) the
resistance of foliage epidermis and soil surface to the flow of water vapor, (iii)
the aerodynamic roughness of the crop canopy, and (iv) the reflectance of the
crop and soil surface to short wave radiation [1]. In this context, known the
crop coefficient (K.), the crop evapotranspiration (ET..) value for a specific time
period can be estimated by

ET. = K.ETO. (1)

The crop coefficient can be simple or have two components, one representing the
basal crop coefficient (K) and another representing the soil surface evaporation
component (K.), being computed by

K.= KK+ K, (2)

where K, € [0, 1] is used to introduce a K, reduction in cases of environmental
stresses such as lack of soil water or soil salinity [1].

It is thus clear that to make a prediction of a crop’s water requirements (ET..),
it is necessary to accurately estimate the reference evapotranspiration (ETO),
which is the evapotranspiration of a reference surface, defined as hypothetical
grass with a uniform height of 0.12 m, a fixed surface resistance of 70 sm™!, and
an albedo (reflection coefficient) of 0.23 [2].

Historically several deterministic methods have been developed to estimate
evapotranspiration using single or limited weather parameters and are gener-
ally categorized as: temperature, radiation or combination based. Temperature
based methods include Thorntwait [20], Blaney-Criddle [3] and Hargreaves and
Samani [7]; Radiation methods include Priestley-Taylor [15] and Makkink [11];
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Combination methods include Penman [14], modified Penman [4] and FAO56-
PM[2].

Shahidian el al. [17] give an overview of several methods and compare their
performance under different climate conditions. For most of the methods, the
authors concluded that when applied to climates different from those on which
they were developed and tested they can yield a poor performance and may
require the adjustment of empirical coefficients to accommodate local climate
conditions, which is not ideal.

The Food and Agriculture Organization of the United Nations (FAO) recom-
mends using the FAO-56 Penman-Monteith (FAO-56PM) formula as a reference
method for estimating ETO [2]. To give a deeper idea of the involved parameters,
the formula is given by

1O — 0.408A(R,, — G) + Y7o u2(€s — €a) 3)
A+ (14 0.34uz) ’

where R, is the net radiation at crop surface [M Jm~2day~!], G is the soil heat
flux density [MJm~2day~!], T is the air temperature at 2 m height [°C], us
is the wind speed at 2 m height [ms™!], e, is the saturation vapor pressure
[kPa)], e, is the actual vapor pressure [kPal, es — e, is the saturation vapor
pressure deficit [kPa], A is the slope vapor pressure curve [kPa’C~1], and v
is the psychrometric constant [kPa°C~!]. Being based on physical principles,
the formula has become widely adopted as a standard for ETO computation
since it performs well under different climate types. However, to compute ETO
using FAO56-PM the following main meteorological parameters are required:
temperature, solar radiation, relative humidity, and wind speed.

All parameters can be easily obtained from weather forecast APIs except
for solar radiation. Solar radiation forecasting APIs are, at the moment, not
common and present a high-cost penalty. So, apart from the water availability
in the topsoil, being the evaporation from a cropped soil mainly determined by
the fraction of the solar radiation reaching the soil surface [2], there is the need to
(i) develop alternative methods for ETO estimation using limited meteorological
parameters, that do not require solar radiation and are compatible with the
weather parameters obtained by freely available weather forecast and historical
weather data APIs, or (ii) to estimate the solar radiation itself and use it as an
approximation on the solar radiation dependent methods. This is also important
since in most situations a proper functioning, maintained, and calibrated weather
station, with solar radiation measurement capability is not close to the area of
interest.

Recently, as an alternative, several authors have used machine and deep
learning to estimate ETO. For instance, Granata [6] compared three different
evapotranspiration models, which differ in the input variables, using data col-
lected in Central Florida, a humid subtropical climate. For each of this models
four variants of machine learning algorithms were applied: M5P Regression Tree,
Bagging, Random Forest, and Support Vector Machine (SVM). However, all
three models included as input variable the net solar radiation. Wu and Fan [22]
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evaluated eight machine learning algorithms divided in four classes: neuron based
(MLP — Multilayer Perceptron, GRNN — General Regression Neural Network,
and ANFIS — Adaptive Network-based Fuzzy Inference System), kernel-based
(SVM, KNEA - Kernel-based Non Linear Extension of Arps decline model),
tree-based (M5Tree — M5 model tree, Extreme Gradient Boosting — XGBoost),
and curve based (MARS — Multivariate Adaptive Regression Spline). The meth-
ods were applied to data collected from 14 weather stations in various climatic
regions of China and used only temperature or temperature and precipitation as
input to the models. Daily ETO estimates were satisfactory, but can be possibly
improved by including further weather parameters and using different machine
learning algorithms. Ferreira et al. [5] used six alternative empirical reduced-set
equations, such as Hargreaves and Samani [7], and compared the estimated val-
ues with the ones from an Artificial Neural Network (ANN) and SVM model.
Data was collected from 203 weather stations and used for daily ETO estimation
for the entirety of Brazil. Temperature or temperature and humidity was used
as input features. They concluded that in general ANN was the best performing
model when including, as input features, data from up to four previous days. Re-
sults were good considering that only temperature or temperature and humidity
were used as inputs.

In this study, we explore and develop machine learning based ETO prediction
models supported on data from a weather station placed in the Algarve region,
in south Portugal, as it will be described in Sec. 3.

3 Dataset and experimental setup

Data from February 2019 up to September 2021 was collected from a weather
station that uses sensors from Davis Instruments, located in Vale do Lobo, in
south Portugal. The following weather parameters were periodically measured
throughout the day and stored with a daily resolution: temperature (minimum,
maximum, and average), dew point (minimum, maximum, and average), rela-
tive humidity (minimum, maximum, and average), solar radiation (maximum
and average), wind speed (minimum, maximum, and average), wind direction,
atmospheric pressure (minimum, maximum, and average), rain intensity, and
precipitation.

The time series was split using a ratio of 75 % for training and 25 % for test-
ing, naturally without shuffling. This results in test data starting from February
4, 2021 onward. Furthermore, train data was divided into 10 folders using time
series cross-validation [9] and a grid search was used to tune the hyperparameters
for each model that was used. As foreseeable, all presented model evaluation met-
ric values are obtained using the test data that the models never saw while train-
ing. In this context, for model statistical evaluation and performance comparison
the coefficient of determination (R?), mean absolute error (MAE) and mean ab-
solute percentage error (MAPE) were used. Considering y; the actual value and
U the estimated value at instants ¢ = 1,2,...,n, and § the mean value of the
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actual samples, they are defined as R =1 — (37, (v — 4)*) /(i (v — 9)?),
MAE = LY Iy — i, and MAPE = L5070 [ | 100%.

t

The FAO-56PM equation, see Eq. (3), was used to compute the target ETO
from the data collected from the weather station. When using solar radiation as
target, the average solar radiation from the weather station was used.

During the conduction of this study the following widely known machine
learning regression models were used: Ordinary Least Squares (OLS), Ridge
regression (Ridge), Lasso regression (Lasso), k-Nearest Neighbors (kNN), Sup-
port Vector Machine (SVM), Decision Tree (Tree), and Random Forest (For-
est) [10,19]. Table 9 (Appendix A) summarizes the sets of hyperparameters used
in the grid search procedure, being the final configurations presented in the
corresponding sections.

Finally, to carry out the study, Python v3.8.2, Numpy v1.20.3 [8], Pandas
v1.3.2 [12,16], Scikit-learn v0.24.2 [13], and PyET v1.0.1 [21] were used. Pandas
library was used for data analysis and manipulation, PyET to compute the
reference evapotranspiration using the FAO56-PM method, and Sklearn is a
widely used python machine learning framework that includes regressors, data
preprocessing, and model metrics evaluation tools.

4 Models for ETO estimation: tuning and feature
selection

This section divides in the following way. Firstly, in Sec. 4.1, a baseline method
for ETO estimation using the referred ML algorithms and having as input fea-
tures all weather parameters that are provided by the weather station is pre-
sented. Then, and while still using the measured solar radiation, a first attempt is
made at reducing the number of input features that are used, while maintaining
similar model performance metrics. In Sec. 4.2 ML ETO estimation models that
do not use solar radiation as a feature are explored. In general, solar radiation
either as a measurement or as a forecast is not available, hence the need to de-
velop models that do not use it as an input feature. Finally, since solar radiation
seems to be one of the main ETO drivers, in Sec. 4.3 ML solar radiation esti-
mation models that use a reduced feature set are explored. Then, two different
approaches are taken: (i) inject the solar radiation estimation into another ML
model to predict ETO or (ii) use FAO56-PM formula to compute ETO having
as input the estimated solar radiation.

4.1 An ETO baseline using ML methods and measured solar
radiation

To establish a baseline, the ML regression models were trained using all features
available in the data collected from Vale do Lobo weather station, including the
measured solar radiation. Furthermore, using the set of parameters described
in Tab. 9, the conducted grid search established the parameters values outlined
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in Tab. 10 (Appendix A) as the best configurations. Table 1 summarizes the
attained metrics results. It can be seen that the best performing methods are
OLS, Ridge, and Random Forest regressors with the best R? equal to 0.981,
which corresponds to a MAE of 0.18 mm and a MAPE of 5.51 %.

In a second phase, with the objective of reducing the feature set served as in-
put to the algorithms (recall that, besides algorithms constraints, this reduction
is important since many weather stations and weather APIs do not provide data
for all relevant weather parameters), analysis of the Lasso coefficients and of the
Random Forest feature importance was conducted, resulting in a new model with
a reduced-set of features. As it can be seen on Tab. 2, it was observed that when
using maximum and minimum temperature, average humidity, average wind,
and average solar radiation as features, the models had similar performance to
the previous results, and some even improved their metrics values. In this case,
random forest gives the best R? score being closely followed by OLS. This is
an important result since, except for solar radiation, these features are easily
obtained through weather forecast APIs.

4.2 ETO estimation using ML methods with limited set of features
(excluding solar radiation)

In a first attempt to use ML algorithms to directly estimate ETO without us-
ing solar radiation as a feature, and using a tuning strategy similar to the one
described in Sec. 4.1 (to simplify our explanation and avoid an exhaustive de-
scription, due to space constraints, only final settings and conclusions are sum-
marized), it was found that Month € {1,2,...,12} was an important feature.
I.e., when comparing with the feature-set used to obtain the results in Tab. 2,

Table 1. Comparison of several regression methods for ETO estimation using
all available features, including measured solar radiation, namely: Month, Day,
TempMazx, TempAvg, TempMin, HumidityMax, HumididtyAvg, HumidityMin,
DewpointMax, DewpointAvg, DewpointMin, PressureMax, PressureAvg,
PressureMin, WindMax, WindAvg, WindGust, RainlIntensity, Precipitation,
Solar RadiationAV G, and Solar RadiationM azx.

OLS Ridge Lasso kNN SVM Tree Forest

R? 0.981 0.979 0.967 0.910 0.967 0.938 0.972
MAE (mm) 0.18 0.19 0.22 0.40 0.21 0.34 0.20
MAPE (%) 5.51 5.60 6.41 10.67 6.60 9.18 5.54

Table 2. Comparison of several regression methods for ETO estimation using lim-
ited features, but including measured solar radiation, namely: TempMax, TempMin,
HumididtyAvg, WindAvg, and Solar RadiationAV G.

OLS Ridge Lasso kNN SVM Tree Forest

R? 0.969 0.962 0.967 0.934 0.967 0.933 0.971
MAE (mm) 0.21 0.23 0.22 0.31 0.22 0.32 0.21
MAPE (%) 6.60 6.52 6.70 7.70 6.72 8.91 5.89
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Fig.1. Target ETO vs Random Forest estimation where solar radiation, actual or
estimated, was not used as feature.

it can be seen that the used features are similar except for adding Month and
dropping the average solar radiation. Table 3 shows the results obtained with
this set of features, and it can be clearly seen that Random Forest is the best
performing model with an R? of 0.936, a MAE of 0.32 mm, and a MAPE of 9.11
%. Figure 1 sketches the ETO target, the ETO estimated using the Random
Forest model, and the absolute error. The plot includes the predictions for the
full dataset but, the shadowed region corresponds to the test data, the one used
to compute the metrics, being visible the increase of the absolute error for those
dates.

Maintaining the hyperparameters tuning strategy, attempts were made to
improve the models’ performance by doing some feature engineering, namely
with new features constructed by: (i) computing the inverse of the features values
(justified by the fact that some features appear in the denominator of reference
FAO56-PM equation, Eq. (3)), (ii) polynomial features, and (iii) adding time
lags. However, the success was minor and not noticeable to be presented here
but, the idea was not abandoned as will be seen in the next sections.

4.3 ETO estimation using approximated solar radiation values

In order to try to improve the limitation and results obtained in the previous
sections, a different approach was tried. The idea was to use a reduced-set of

Table 3. Comparison of several regression methods for ETO estimation using limited
features, namely: Month, TempMax, TempMin, HumididtyAvg, WindAvg.

OLS Ridge Lasso kNN SVM Tree Forest

R? 0.856 0.855 0.859 0.893 0.855 0.814 0.936
MAE (mm) 0.53 0.53 0.53 0.43 0.53 0.56 0.32
MAPE (%) 15.15 15.20 14.78 11.93 15.16 16.24 9.11
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features to previously estimate solar radiation and then either inject that so-
lar radiation prediction into another ML regressor (with the same reduced-set
features) or use FAO56-PM formula, Eq. (3), to simply approximate the ETO
values. Both approaches are presented next.

Estimating solar radiation using ML methods In this section the solar ra-
diation measured in the weather station was used as the target, i.e., the value to
be estimated. Following the same tuning procedures as before (namely, the anal-
ysis of Lasso coeflicients and Random Forest feature importance), the conclusion
was that the best configuration for solar radiation estimation was attained for
the Random Forest method with the following features: month, day, maximum
and minimum temperature, average humidity, average wind speed, and average
dew point. More precisely, the results presented in Tab. 4 show that the Random
Forest model is the one with more satisfactory performance, with an R? of 0.814,
a MAE of 21.31 W/m?, and a MAPE of 11.29 %.

Again, further attempts were made to improve the models’ performance by
doing feature engineering such as polynomial features, inverse of features, and
adding time lags. Of these, only polynomial features were helpful in improving
models’ performance. After individually analyzing the features’ relevance for the
models, it was found that by adding the following reduced-set polynomial feature
Month? x Day, the performance metrics were improved for all models, except
Ridge and Lasso. The justification for such is not obvious and, as such, will not
be discussed here. Detailed in Tab. 5, Random Forest is still the best performing
model, now with an R? of 0.822, a MAE of 20.63 W/m?, and a MAPE of 10.99
%. Figure 2 plots the target solar radiation, the approximated solar radiation
obtained with the Random Forest method, and absolute error curves (shadowed
is the test set). This improved solar radiation estimation will be used next to
predict the ETO values.

Table 4. Comparison of several regression methods for average solar radiation
estimation using limited features, namely: Month, Day, TempMazx, TempMin,
HumididtyAvg, WindAvg, DewpointAvg.

OLS Ridge Lasso kNN SVM Tree Forest

R? 0.532 0.505 0.382 0.580 0.312 0.594 0.814
MAE (W/m?) 39.05 40.48 45.59 36.30 48.09 30.67 21.31
MAPE (%) 19.61 20.55 22.32 19.33 23.26 16.34 11.29

Table 5. Comparison of several regression methods for average solar radiation es-
timation using polynomial features, namely: Month, Day, TempMax, TempMin,
Humididty Avg, WindAvg, DewpointAvg, Month* x Day.

OLS Ridge Lasso kNN SVM Tree Forest

R? 0.553 0.313 0.375 0.590 0.400 0.605 0.822
MAE (W/m?) 38.04 49.08 46.53 32.48 43.87 30.36 20.63
MAPE (%) 18.99 24.74 23.4 16.69 22.21 16.33 10.99
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SR - Target vs Forest Prediction, using polynomial features
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Fig. 2. Target solar radiation vs Random Forest estimation with polynomial features.

ETO estimation using ML and the approximated solar radiation The
predicted values from the best performing solar radiation estimation model in
the previous section, which was the Random Forest model with polynomial re-
stricted features (see Tab. 5), were injected as a feature together with maximum
temperature, average humidity and average wind into the early studied methods
to estimate the ETO, being the obtained results summarized in Tab. 6. It can be
seen that the Random Forest is the best performing model, with an R? of 0.951,
a MAE of 0.26 mm and a MAPE of 7.44 %. This result is close to the before
presented ETO baseline that used ML and limited features, but included the
measured solar radiation (see Tab. 2). As a reference, in that case, the MAPE
was equal to 5.89 %. As before, some feature engineering was tested but brought
no further improvement. Figure 3 (top) plots the target ETO, the estimated
ETO, and corresponding error curves for the train and test (shadowed) dataset.

ETO estimation using FAO56-PM equation and the approximated so-
lar radiation To finalize our study, a hybrid approach was tested. In this case,
the predicted solar radiation is used with the FAO56-PM equation to estimate
target ETO, being the results shown on Tab. 7. With an R? of 0.975, MAE of
0.18 mm and MAPE of 5.51 % over the unseen test data, this result is better
than any of the previously obtained ones, even better than the ML reduced-set

Table 6. Comparison of several regression methods for ETO estimation using limited
features and previously estimated solar radiation, namely: TempM ax, Humididty Avg,
WindAvg, SolarRadAV G _prediction_forest

OLS Ridge Lasso kNN SVM Tree Forest

R? 0.944 0.944 0.893 0.934 0.937 0.921 0.951
MAE (mm) 0.30 0.30 0.38 0.32 0.31 0.37 0.26
MAPE (%) 9.36 8.99 9.64 8.58 9.60 10.54 7.44
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Table 7. Result obtained when computing ETO using FAO56-PM equation and using
as solar radiation the previously calculated prediction from best performing Random
Forest model.

FAO56-PM + SR_pred

R? 0.975
MAE (mm) 0.18
MAPE (%) 5.51
ETO - Target vs Forest Estimation
10 Test Data

— ETO Target
— ETO Forest Estimation
— Absolute Error

ETO fmm]

P PV VOUSIVAPUIN S RSO " At s MAWMNA

+ t t t t
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Date
ETO - Target vs FAO56-PM computed using estimated Solar Radiation

104
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— Absolute Error
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Fig. 3. Target ETO vs Random Forest estimation (top) and FAO56-PM equation (bot-
tom) using estimated solar radiation.

baseline (see Sec. 4.1) that used the weather station measured solar radiation
as a feature. Figure 3 (bottom) plots ETO target, estimated ETO, and error
curves, being evident the improvement in the error when compared with the top
plot.

In short, Tab. 8 presents an overview of the best ETO estimators that where
previously presented. Comparing the first two columns it can be concluded that
when the measured solar radiation is available, the use of a reduced-set has low
impact on model performance. Further, the use of previously estimated solar
radiation (last two columns) improves results when solar radiation measurement
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Table 8. Overview of the best ETO estimators for each method that was presented.

Measured solar radiation No solar radiation Estimated solar radiation

Table 1 Table 2 Table 3 Table 6 Table 7
R? 0.981 0.971 0.936 0.951 0.975
MAE (mm) 0.18 0.21 0.32 0.26 0.18
MAPE (%) 5.51 5.89 9.11 7.44 5.51

is not available. The hybrid method (last column) gives similar results to those of
the ML baseline when using all the weather parameters provided by the weather
station, and gives better performance than the reduced-set ML baseline that
used the actual measured solar radiation.

5 Conclusion and future work

In this study, several ML models and a hybrid approach for the ETO estimation
were tested with different degrees of success. Since solar radiation is the main
ETO driver, as stated by several authors and also concluded by us, models were
also developed for estimating solar radiation using features usually available
in the common weather forecast APIs. This allowed both the injection of the
previously estimated solar radiation in ML regressors to estimate ETO, but also
the possibility to use the hybrid approach where solar radiation is previously
estimated and then FAO56-PM algorithm is used to finally compute ETO. The
latter yielded the best results, with an R? of 0.975, a MAE of 0.18 mm and an
MAPE of 5.51 %, which when compared with other authors works, is a good
result considering the limited weather parameter features that were used.

Future work will include the use of other prediction methods (such as, recur-
rent neural network models) and a more extensive dataset, by using the existing
weather station infrastructure that is installed in the Algarve region, in south
Portugal. The objective will be to develop local and pooled models of ETO
predictors for the Algarve region. Also, since all limited feature models here pre-
sented are compatible with freely available weather forecast APIs a study needs
to be made to assess the impact of using such APIs as input data to the ML
models here developed.
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A Machine Learning algorithms parameters

Table 9. Sets of hyperparameters used in the grid search procedure (according to the
available parameters in the Scikit-learn suite [13])

Model Hyperparameters Range explored
OLS fit_intercept {False; True}
normalize {False; True
alpha {107%107%,...,10%}
Ridge fit_intercept {False; True}
normalize {False; True}
alpha 10-%,1073,...,102
Lasso fit_intercept { {False; True} ’
normalize {False; True}
n_neighbours {1,2,...,7}
KNN weights {uniform; distance}
leaf_size {1, 3, 5, 10, 20, 30, 40}
C {0.01, 0.1, 0.5, 1.0, 10.0, 100}
SVM max_iter 10000
fit_intercept {False; True}
DT splitter {best; random}
criterion {mse; friedman_mse; mae; poisson}
n_estimators {10, 100, 250, 500, 750, 1000}
min_samples_leaf {1, 2, 3, 5, 10}
Forest max_depth {3, 5, 10}
criterion {mse}
max_features {None; sqrt; log2}

Table 10. Tunned parameters

Model Hyperparameter Table 1 Table 2 Table 3 Table 4 Table 5 Table 6
OLS fit_intercept True False False True True False
normalize True False False False True False
alpha 100 0.1 100 100 1 0.1
Ridge fit_intercept True True False True True True
normalize False True False False True True
alpha 0.1 0.1 0.1 20 100 0.01
Lasso  fit_intercept True False False False False True
normalize False False False False False True
n_neighbours 4 2 2 4 2 2
KNN weights distance  distance  distance distance distance distance
leaf_size 1 1 1 1 1 1
C 0,01 0,01 0,01 0,1 0,1 0.01
SVM max_iter 10000 10000 10000 10000 10000 10000
fit_intercept True False False False True False
splitter Random best Random best best Random
DT . . . . . .
criterion friedman_mse mae friedman_mse friedman_mse friedman_mse friedman_mse
n_estimators 100 1000 500 100 100 1000
min_samples_leaf 1 1 1 1 1 1
Forest max-_depth 10 10 10 10 10 10
criterion mse mse mse mse mse mse
max_features None None None None None None
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