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Abstract. Intelligent production requires maximum downtime avoid-
ance since downtimes lead to economic loss. Thus, Industry 4.0 (today’s
IoT-driven industrial revolution) is aimed at automated production with
real-time decision-making and maximal uptime. To achieve this, new
technologies such as Machine Learning (ML), Artificial Intelligence (AI),
and Autonomous Guided Vehicles (AGVs) are integrated into production
to optimize and automate many production processes. The increasing
use of AGVs in production has far-reaching consequences for industrial
communication systems. To make AGVs in production even more effec-
tive, we propose to use Federated Learning (FL) which provides a secure
exchange of experience between intelligent manufacturing devices to im-
prove prediction accuracy. We conducted research in which we exchanged
experiences between the three virtual devices, and the results confirm the
effectiveness of this approach in production environments.

Keywords: federated learning · predictive maintenance · smart produc-
tion · Artificial Intelligence · long-short term memory · recurrent neural
networks

1 Introduction

The main goal of Industry 4.0 is automated production with real-time decision-
making. Modern manufacturing relies on a complex ecosystem that consists of
many elements, various sensors, intelligent devices, people, and is a rich environ-
ment for data collection and analysis.

Leading technologies being rapidly adopted into production environments
include Autonomous Guided Vehicles (AGVs). The use of AGVs in production
systems has many advantages as it allows production lines to be automated
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and accelerates logistics. AI-driven analytics at the edge (i.e. edge computing)
plays a significant role in coordinating a fleet of AGVs and enabling robust
production cycles. These analytics cover the development and use of Machine
Learning (ML) algorithms to analyze the behavior of AGVs on the edge IoT
device to detect any anomalies, possible problems, or failures. However, AGVs
operate as separate units, with own characteristics and sometimes in specific
production environments. Thus, they gain experience during their operational
cycles within different environments (e.g., different types of pavement on the
floor, different temperature and air humidity in the room).

Real-time analysis of production data and advanced data exploration can
provide remote condition monitoring and predictive maintenance tools to detect
the first signs of failure in industrial environments long before the appearance of
the early alarms that precede failures of AGVs in a short period. However, for the
effective use of such approaches in real production, it is necessary to have large
amounts of useful information, which is very difficult and expensive to obtain.
Thus, to solve this problem and make AGVs in production more effective in
detecting failures on a broader scale, we investigate the use of Federated Learning
(FL), which allows the exchange of experience-data between AGVs.

The main idea of FL is that the same type of intelligent devices or AGVs
in production has the opportunity to share experiences. As a result of sharing
experience, it is possible to optimize production by increasing the amount of
knowledge about various breakdowns of production, which allows better predic-
tion and avoidance. To ensure security, and to prevent information from all these
devices from being intercepted or stolen, it is transmitted in the form of neural
network weights, which are suitable only for further processing at the highest
level, without carrying directly helpful information.

Federated Learning originated from the fact that much of the data containing
helpful information used to solve specific problems are challenging to obtain in
quantities that would be sufficient to train a powerful model of deep learning.
In addition to the helpful information needed to train the model, the data sets
also contain other information that is not relevant to the problem. Moreover,
Federated Learning benefits from the fact that IoT devices can store all the
necessary information for training. Therefore, there is no need to store vast
amounts of training data in the cloud, which improves decentralized, edge-based
data processing.

In this paper, we show that FL improves the efficiency of failure prediction
on edge IoT devices by building a global prediction model based on many local
prediction models of particular AGVs. The rest of the paper is organized as
follows. In section 2, we review the related works. Section 3 describes a new
approach to data exchange between devices, which allows intelligent devices to
share experiences with one another to increase the accuracy of recurrent neural
networks. In Section 5, we conduct a study that demonstrates the efficiency of
the proposed approach in a smart production environment. And finally, Section
5 concludes the paper.
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2 Related Works

Manufacturing companies use new technologies to monitor and better under-
stand their operations, perform them in real-time, thus, turning classical pro-
duction into intelligent production. Intelligent production is equipped with tech-
nology that ensures machine-machine (M2M) and machine-human (M2H) inter-
action in tandem with analytical and cognitive technologies so that decisions
are made correctly and in a timely manner [2]. The most significant and influ-
ential technologies that facilitate conversion from classical production to smart
production include Predictive Maintenance, Machine learning, Recurrent Neural
Networks, and Federated Learning. Predictive Maintenance (PdM) monitors the
state of production during its expected life cycle to provide advanced insights,
which ensures the detection of anomalies that are not typical for the task. The
purpose of predictive maintenance for manufacturing is to maximize their equip-
ment parts’ useful life, avoid unplanned downtime, and minimize planned down-
time [9]. An excellent example of this technology is described in [5, 7]. In [7],
the authors rely on the Numenta Anomaly Benchmark (NAB) [1]. NAB was de-
signed to fairly benchmark anomaly detection algorithms against one another.
The approach proposed by the authors scored 64.71 points, while LSTM and
GRU scored 49.38 and 61.06 points, respectively.

Predictive maintenance often applies Machine learning (ML) for anomaly
detection. ML is a subset of artificial intelligence that is actively being used in
industrial settings. The use of machine learning in production is described in
detail in [10, 6], showing that ML and Deep Learning (DL) can make current
manufacturing systems more agile and energy-efficient and lead to optimization
of many production processes.

The analysis of literature related to PdM shows that one of the most promis-
ing failure forecasting methods is Artificial Neural Networks (ANNs). In the case
of manufacturing, it is even more appropriate to use Recurrent Neural Networks
(RNNs). The most popular architectures of RNNs in the production environ-
ment are Gated recurrent unit (GRU) and Long short-term memory (LSTM).
An example of using the GRU model for predictive analytics in intelligent man-
ufacturing is presented in [12]. The authors proposed a hybrid prediction scheme
accomplished by a newly developed deep heterogeneous GRU model, along with
local feature extraction. Essien and Giannetti [4] proposed to use a novel deep
ConvLSTM autoencoder architecture for machine speed prediction in an intel-
ligent manufacturing process by restructuring the input sequence to a super-
vised learning framework using a sliding-window approach. Table 1 provides the
summary of technologies and references to the literature related to intelligent
production.

The most recent works for detecting anomalies in production environments
rely on the idea of Distributed Learning and Federated Learning (FL) [8, 13, 14].
In [14], the authors introduced the architecture of the two-level FL named Real-
Time Automatic Configuration Tuning (REACT) with local servers hosting the
knowledge base for gathering the shared experience. This paper extends the idea
by pushing the construction of the local models down to the edge IoT devices
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without exchanging the production and operational data. In this work, we show
both alternative architectures and test the edge-based approach, in terms of the
accuracy of performed prediction.

Table 1. A brief summary of technologies related to smart production idea.

Technology Survey Brief description
Predictive Mainte-
nance for manufac-
turing

[5, 7, 1, 9] The purpose of predictive maintenance (PdM)
for manufacturing is to maximize the use-
ful life of their equipment parts, avoiding un-
planned downtime.

Recurrent Neural
Networks

[12, 4] Recurrent Neural Networks have effect of
“memory”, which will allow to create various
patterns of errors in production, in order to
understand what problems can await on it and
solve them in real-time.

AGVs in manufactur-
ing

[11, 3] The use of AGV in production systems has
many advantages as it allows production lines
to be automated and accelerates logistics,
moreover it can be introduced in almost all
branches of industry and areas of production.

Federated Learning [14, 8, 13] The main idea of FL is that intellectual devices
or AGVs in production has the opportunity to
safely share experiences with each other.

3 Federated Learning for Intelligent Manufacturing

Federated Learning allows companies to train machine learning models without
moving data from devices where this data is generated, and therefore, it has
the inherent characteristics of preserving the privacy of data and reducing the
amount of transferred data. These characteristics are required for industrial IoT
environments that need data processing solutions working in real-time. We have
been introducing this idea in the production environments operating based on
the fleet of AGVs that are manufactured by the AIUT company in Poland.
Fig. 1 shows the loaded Formica-1 AGV that we have been supplementing with
edge-based AI/FL methods.

The complete process of exchanging data between AGVs is called a round.
The round operates according to Algorithm 1 (also graphically visualized in
Fig. 2). First, each AGV trains a local model on a specific data set locally (lines
1-4). In the second step, all AGVs send updated local models to the server (lines
5-7). Next, all local models are averaged on the server to create a global model
that takes into account the experience of all AGVs (line 8). Finally, the server
sends the updated global model back to the AGVs to update their local model
with the new global model (lines 9-11).
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Fig. 1. The Formica 1 AGV used in our tests.

Fig. 2. The complete process of exchanging data between devices (Round)
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Algorithm 1: Algorithm of the round
Data: lm (Local models on AGVs), gm (Global model), AGV s (the fleet of

AGVs), N (the number of AGVs), sgm (Server with a global model)
Result: upAGV s (AGVs updated by global model)

1 for i← 1 to AGV s do
2 Train the RNN of AGVi locally on unique, AGV-specific data;
3 lm← weights of the local RNN;
4 end
5 foreach lm ∈ AGV s do
6 Send lm to the sgm;
7 end
8 Build the gm by averaging lms on the sgm;
9 foreach lm ∈ AGV s do

10 Update lm by the sgm;
11 end

Given the technical characteristics of the operational, industrial environment
for the AGVs, we have identified two main architectures for the integration of FL
into production. They are suitable for the manufacturing ecosystem, and their
choice depends on the specifics of the production.

3.1 AI on the local servers

In this case, each production line must have its own local database and comput-
ing resources, which will collect information and analyze all AGVs in this line
(Fig. 3). Data from devices are sent to local servers (marked in blue in Fig. 3).
These local servers create the global neural network model for this line, taking
into account data from all devices in this line. The second step covers transferring
the weights of neural networks from the local knowledge base to the data center
(e.g., in the cloud), where a general global model is created. This global model
takes the experience of all production lines (blue lines). And this global model
of a neural network is sent back to all local knowledge bases (green lines). This
approach is cheaper and suitable for improving prediction accuracy for static
production lines.

3.2 AI on the on-board IoT devices

In this case, each AGV creates its own local neural network (Fig. 4). It learns
from its unique data, thereby modifying the weights of neural networks. In the
next step, the weights of the local neural networks are sent to the data center
in the cloud (marked with blue lines), where one global model is created, taking
into account the experience of all similar devices. Finally, the global model from
the cloud is sent to all devices (marked with green lines). As a result, this process
allows each AGV to gain experience from other AGVs, taking more anomalies
and production-critical situations into account.
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Fig. 3. Distributed architecture with AI/FL on the local servers.

Fig. 4. Distributed architecture with AI on the on-board IoT devices.
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Also, the data obtained in real-time are compared with those predicted by
our FL-based neural network on the IoT devices themself, thus checking whether
the AGV is working correctly. The advantages of this architecture are:

1. The capability to detect failures as quickly as possible;
2. Maximum data security, as data from AGVs are not transmitted to the

cloud, and most of them will be processed locally. Only the weights of neural
networks are transferred, from which it will not be possible to extract any
information.

4 Testing Effectiveness of FL

We conducted several experiments with the real Formica-1 AGVs, obtaining var-
ious data from them, including momentary and cumulative power consumption,
battery cell voltage, motor RPM, energy consumption and current consumption,
cumulative distances, bearing temperatures, transportation pin actuator signals,
and momentary frequencies. However, at present, this data set is not sufficient
to train models that can be shared between other AGVs, since the work on
embedding intelligence into the AGVs is still ongoing. Thus, we simulated the
working environment with virtual AGVs (virtual clients). For this purpose, we
used a Numenta Anomaly Benchmark (NAB) data set [1] that contains infor-
mation from temperature sensors of an internal component of a large, industrial
machine. The temperature is one of the essential monitored parameters for the
proper operation of many production machines. For example, changes in the
bearing temperature may suggest its failure and, consequently, the shutdown of
the production machine or increased energy consumption and shorter operating
time of the AGV. The data from the NAB data set were collected around the
clock for 70 days at a sampling interval of 5 minutes. This data set allowed us
to understand the problems of implementing FL in AGVs as well as average
deviations of device temperature over time. For this study, we used FL architec-
ture with the AI/FL implemented on the IoT device monitoring the AGV. This
option does not require additional local servers for separate production lines. It
also provides better security for industrial data, as all the data will be processed
locally on the devices and won’t be sent anywhere, reducing the communication
needs (and the amount of transferred data). We divided the data set into four
main parts. The first three parts of the data (each one of them was 30 percent
of the data set) were used as training data for three different virtual clients.
Then, we used the last part of this data set (10 percent) to test the efficiency
of local models from the virtual clients and the global model to compare their
effectiveness with each other.

4.1 Choosing Artificial Neural Network model

Given the fact that we work with time series, we decided to use Recurrent Neu-
ral Networks (RNN). Therefore, we decided to use modified RNN architectures
based on Long short-term memory (LSTM) cells.
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A key component of the LSTM cell-based architecture is the state of the
cell. It goes directly through the whole cell, interacting with several operations.
The information can easily flow on it, without any changes. However, LSTM
can remove information from the cell state using filters. Filters allow skipping
information based on some conditions and consist of a sigmoid function layer
and element-multiplication operation. LSTM is well-suited to predict time se-
ries given time lags of unknown duration. It trains the model by using back-
propagation.

4.2 Comparison of classical Machine Learning and Federated
Learning

To verify the suitability of implementing FL in the AGV-based production envi-
ronment, we decided to compare the effectiveness of three virtual clients trained
with different parts of the training data set to the effectiveness of Federated
Learning. For the FL-based approach, the model was obtained as a result of
averaging the weights of neural networks of these clients.

The whole experiment was organized as follows:

1. We divided the whole data set into four parts. Three parts were used to
conduct training on different virtual devices (using the LSTM). The fourth
part of this data set was used to test the effectiveness of models.

2. On each IoT device (virtual client), we conducted the training and saved the
trained model in the form of weights of neural networks.

3. The models of these three virtual devices were transferred to a separate
device (which played the role of the general knowledge base), which averaged
the models and created a global model based on the experience of all devices.

4. Local models on virtual devices were updated to a global model.
5. Based on the global model, we predicted the temperature of the device for

a particular timestamp.

Our experiments also allowed us to compare the effectiveness of local models
on virtual clients and global models obtained through Federated Learning. To
verify the effectiveness of the built models, we used several metrics, including
Mean Squared Error (MSE), Mean absolute percentage error (MAPE), and Root
Mean Squared Error (RMSE). The effectiveness of the local models for virtual
client 1, client 2, client 3 and the global model is shown in Fig. 5, Fig. 6, Fig. 7,
and Fig. 8, respectively. We can observe that client 2 (Fig. 6) provides the
best prediction results. The curves for the predicted and actual temperature
are following a similar path. The MSE, MAPE, and RMSE are on the low level,
which proves that this client predicts the temperature well. The results provided
by clients 1 and 3 are not so good as for client 2. Especially above the timestamp
1,500, the temperature prediction is much worse, which is also visible in Figs. 5
and 7 and the values of the error metrics.

In order to see the difference in accuracy between all the models in more
detail, we decided to show them all in one Fig. 9. The results show that the
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Fig. 5. Effectiveness of the local model
for the virtual client 1.

Fig. 6. Effectiveness of the local model
for the virtual client 2.

Fig. 7. Effectiveness of the local model
for the virtual client 3.

Fig. 8. Effectiveness of the global
model.

Fig. 9. Comparison of the prediction effectiveness of local models and the global model
with real data.
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accuracy of the prediction for the global model has increased compared to local
models of virtual clients. In particular, we can see the most significant increase
for the first client. Due to learning the neural network only on local data, the
MSE was equal to 39.97. After averaging the models of three virtual clients and
obtaining a global model, the MSE decreased to 9.43, which indicates better
model performance. For the third client, the improvement of effectiveness is not
so significant, but before the update of the prediction model, the value of MSE
was equal to 11.81. For the second client, the value of MSE before updating
the global model was 4.74. This result indicates that this client carried most
of the valuable information at the time of testing. It could learn based on the
most appropriate cases to predict the temperature level adequately. In contrast,
clients 1 and 3 (for which the effectiveness is shown in Figs. 5 and 7) seem
not to have many occasions to learn correctly, and thus, their prediction results
are not perfect. As a result, the second client shared his experience with other
clients, making the global model predictions for the test data set more accurate.
However, we can also see that the aggregated experience includes also aggregated
errors. This is visible in Fig. 9 for timestamps above 1,500, where we can observe
the increased prediction error between the real temperature and the one that was
predicted by the FL global model. The FL global model aggregates the wrong
experience from clients 1 and 3, and this resulted in imperfect (but still better
than for client 1 and 3) global model prediction accuracy in this period.

5 Discussion and Conclusions

Federated Learning is currently being actively integrated into Industry 4.0. In
smart production, responding to changes in real-time is very important to ensure
uninterrupted operation. Predictive Maintenance is used to predict anomalies
and breakdowns in production. The more data is available, the more accurate the
detection of anomalies and prediction of failures. However, managing such data
requires the integration of efficient and secure mechanisms for data exchange
between intelligent production devices. In order to provide a secure exchange
of experience between smart devices both within one production and between
different production environments, we proposed the use of Federated Learning.
It provides the maximum safety for industrial data and allows increasing the
effectiveness of predicting time-series parameters for big industrial machines or
AGVs. In [14], the authors proposed to use a two-level FL architecture based
on AI on the local servers, which is well suited for a static production line,
demonstrating the benefits of such architecture for their case. However, in our
case, we are dealing with AGVs that move independently in production. In this
case, it is more appropriate to use the architecture of FL based on AI on the on-
board IoT devices, which will provide a deeper understanding of the production
environment for AGVs. Our results also show that despite aggregating some
prediction errors the accuracy of predicting time-series parameters of the device
increases after sharing experiences between AGVs. We have tested the proposed
model on virtual clients and conducted experiments to evaluate the effectiveness
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of Federated Learning. The results show that the overall accuracy of prediction
among all virtual clients is increased, which allows better detection of anomalies
in autonomously controlled devices and leads us to the conclusion that this
approach can be deployed on the AGVs, like the Formica-1 we smarticize.
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