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Abstract. Federated Learning (FL) has recently emerged as a promis-
ing method that employs a distributed learning model structure to over-
come data privacy and transmission issues paused by central machine
learning models. In FL, datasets collected from different devices or sen-
sors are used to train local models (clients) each of which shares its learn-
ing with a centralized model (server). However, this distributed learning
approach presents unique learning challenges as the data used at local
clients can be non-IID (Independent and Identically Distributed) and sta-
tistically diverse which decrease learning accuracy in the central model.
In this paper, we overcome this problem by proposing a novel personal-
ized federated learning method based One-Class Support Vector Machine
(FedP-OCSVM) to personalize the resulting support vectors at each
client. Our experimental validation showed that our FedP-OCSVM pre-
cisely constructed generalized clients’ models and thus achieved higher
accuracy compared to other state-of-the-art methods.

1 Introduction

The emerging Federated Learning (FL) concept was initially proposed by Google
for improving security and preventing data leakages in distributed environments
[9]. FL allows the central machine learning model to build its learning from a
broad range of data sets located at different locations. This innovative machine
learning approach can train a centralized model on data generated and located
on multiple clients without compromising the privacy and security of the col-
lected data. Also, it does not require transmitting large amount of data which can
be a major performance challenge especially for real-time applications. A good
application of FL is in the civil infrastructures domain specifically in Structural
Health Monitoring (SHM) applications where smart sensors are utilized to con-
tinuously monitor the health status of complex structures such as bridges to
generate actionable insights such as damage detection.

This motivates for developing a more intelligent model that utilizes the
centralized learning model but without the need to transmit the frequently-
measured data to one central model for processing unit. In this sense, we pro-
pose a federated learning approach for anomaly detection using One-class sup-
port vector machine (OCSVM)[12] which has been widely applied to anomaly
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detection and become more popular in recent years [2–4]. OCSVM has been suc-
cessfully applied in many application domains such as civil engineer, biomedical,
and networking [1, 8], and produced promising results. Although our approach
results in reducing data transmission and improving data security, it also raises
significant challenges in how to deal with non-IID (Independent and Identically
Distributed) data distribution and statistical diversity. Therefore, to address the
non-IID challenge in our proposed FL approach, we developed a novel method
to personalize the resulting support vectors from the FL process. The rationale
idea of personalizing support vectors is to leverage the central model in optimiz-
ing the clients’ models not only by using FL, but also by personalizing it w.r.t
its local data distribution. The contribution of the work in this study is twofold.

– A novel method of learning OCVSM model in FL settings.

– A novel method to personalize the resulting support vectors to addresses the
problem of non-IID distribution of data in FL.

2 Related Work

Federated Learning (FL) has gained a lot of interest in recent years and as a
result, it has attracted AI researchers as a new and promising machine learning
approaches. This FL approach attracts several well-suited practical problems
and application areas due to its intrinsic settings where data needs to be decen-
tralized and privacy to be preserved. For instance, McMahan et al.[11] proposed
the first FL-based algorithm named FedAvg. It uses the local Stochastic Gradient
Descent (SGD) updates to build a global model by taking average model coeffi-
cients from a subset of clients with non-IID data. This algorithm is controlled by
three key parameters: C, the proportion of clients that are selected to perform
computation on each round; E, the number of training passes each client makes
over its local dataset on each round; and B, the local mini-batch size used for
the client updates. Selected clients perform SGD locally for E epochs with mini-
batch size B. Any clients which, at the start of the update round, have not com-
pleted E epochs (stragglers), will simply not be considered during aggregation.
Subsequently, Li et al.[10] introduced the FedProx algorithm, which is similar
to FedAvg. However, FedProx makes two simple yet critical modifications that
demonstrated performance improvements. FedProx would still consider strag-
glers (clients which have not completed E epochs at aggregation time) and it
adds a proximal term to the objective function to address the issue of statisti-
cal heterogeneity. Similarly, Manoj et al.[6] addressed the effects of statistical
heterogeneity problem using a personalization-based approach (FedPer). In their
approach, a model is viewed as base besides personalization layers. The base
layers will be aggregated as in the standard FL approach with any aggregation
function, whereas the personalized layers will not be aggregated.
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3 Personalized Federated Learning for OCSVM:
FedP-OCSVM

3.1 OCSVM-FedAvg

In FL setting, learning is modeled as a set of C clients and a central server S,
where each client learns based on its local data, and is connected to S for solving
the following problem:

min
w∈Rd

f(w) :=
1

C

C∑
c=1

fc(wc) (1)

where fc is the loss function corresponding to a client c that is defined as follows:

fc(wc) := E[Lc(wc;xc,i)] (2)

where Lc(wc;xc,i measures the error of the model wc (e.g. OCSVM) given the
input xi. The Sequential Minimal Optimization (SMO) is often used in the
support vector machine. However, in the case of the nonlinear kernel model as
in OCSVM, SMO does not suit the FL settings well. Therefore, we propose a new
method for solving the OCSVM problem in FL setting using the SGD algorithm.

The SGD method solves the above problem defined in Equation 2 by repeat-
edly updating w to minimize L(w;xi). It starts with some initial value of w(t)

and then repeatedly performs the update as follows:

w(t+1) := w(t) + η
∂L
∂w

(x
(t)
i , w(t)) (3)

In fact, the SGD algorithm in OCSVM focuses on optimizing the Lagrange
multiplier α = [α1, α2, ..., αn] for all patterns xi where xi : i ∈ [n], αi > 0 are
called support vectors. Thus, exchanging gradient updates in FL for averaging
purposes is not applicable. Consequently, we modified the training process of
SGD to share the coefficients of the features in the kernel space under the con-
straints of sharing an equal number of samples across each client C. In this sense,
our SGD training process computes the kernel matrix K = φ(xi, xj)i,j=1,...,n

before looping through the samples. Then it computes the coefficients w after
performing a number of epochs as follows:

w(t+1) = αK; (4)

s.t α = α+ η(1−
n∑

i=1

w)

Each client performs a number of E epochs at each round to compute the
gradient of the loss over its local data and to send the model parameters wt+1
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to the central server S along with their local loss. The server then aggregates
the gradients of the clients and applies the global model parameters update by
computing the average value of all the selected clients model’s parameters as
follows:

w(t+1) :=
1

C

C∑
i=1

w
(t+1)
C ; (5)

where C is the number of selected clients.

The server then share the w(t+1) to all selected clients in which each one
performs another iteration to update w(t+1) but with setting w

(t)
i = w(t+1) as

defined in the traditional FedAvg method.

3.2 Personalized Support Vectors

Our proposed approach may work well when clients have similar IID data. How-
ever, it is unrealistic to assume that since data may come from different envi-
ronments or contexts in FL settings, thus it can have non-IID. Therefore, it is
essential to decouple our model optimization from the global model learning in a
bi-level problem depicted for personalized FL so the global model optimization
is embedded within the local (personalized) models. Geometrically, the global
model can be considered as a “central point”, where all clients agree to meet,
and the personalized models are the points in different directions that clients
follow according to their heterogeneous data distributions. In this context, once
the learning process by the central model is converged and the support vectors
are identified for each client, we perform a personalized step to optimize the sup-
port vectors on each client. Intuitively, to generate a personalized client model,
its support vectors must reside on the boundaries of the local training data (i.e.
edged support vector). Thus, we propose a new algorithm to inspect the spatial
locations of the selected support vector samples in the context of the FL set-
tings explained above. It is intuitive that an edge support vector xe will have
all or most of its neighbors located at one side of a hyper-plane passing through
xe. Therefore, our edge pattern selection method constructs a tangent plane for
each selected support vector xi : i ∈ [n], αi > 0 with its k-nearest neighbors data
points. The method initially selects the k-nearest data points to each support
vector xs, and then centralizes it around xs by computing the norm vector vni
of the tangent plane at xs . If all or most of the vectors are located at one side
of the tangent plane), we consider xs as an edge support vector denoted by xe,
otherwise, it is considered as an interior support vector and it is excluded from
the selected original set of support vectors.
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4 Experimental Results and Discussions

We validate our FedP-OCSVM method based on a real dataset collected from
a Cable-Stayed Bridge in Australia 1 to detect potential damage. In all ex-
periments, we used the default value of the Gaussian kernel parameter σ and
ν = 0.05.

We instrumented the Cable-Stayed Bridge with 24 uni-axial accelerometers
and 28 strain gauges. We used accelerations data collected from sensors Ai with
i ∈ {1, 2, . . . , 24}. Figure 1 shows the locations of these 24 sensors on the bridge
deck. Each set of sensors on the bridge along with one line (e.g A1: A4) is
connected to one client node and fused in a tensor node T to represent one
client in our FL network, which results in six tensor nodes T (clients).

Fig. 1: The locations on the bridge’s deck of the 24 Ai accelerometers used in
this study. The cross girder j of the bridge is displayed as CGj [5].

This experiment generates 262 samples (a.k.a events) each of which consists
of acceleration data for 2 seconds at a sampling rate of 600 Hz. We separated
the 262 data instances into two groups, 125 samples related to the healthy state
and 137 samples for the damage state.

For each reading of the uni-axial accelerometer, we normalized its magnitude
to have a zero mean and one standard deviation. The fast Fourier transform
(FFT) is then used to represent the generated data in the frequency domain.
Each event now has a feature vector of 600 attributes representing its frequencies.
The resultant data at each sensor node T has a structure of 4 sensors × 600
features × 262 events.

We randomly selected 80% of the healthy events (100 samples) from each
tensor node T for training multi-way of X ∈ R4×600×100 (i.e. training set). The
137 examples related to the two damage cases were added to the remaining 20%
of the healthy data to form a testing set, which was later used for the model
evaluation.

We initially study the effect of the number of local training epochs E on
the performance of the four experimented federated learning methods as sug-
gested in previous works [11, 7]. The candidate local epochs we consider are

1 The two bridges are operational and the companies which monitor them requested
to keep the bridge name and the collected data about its health confidential.
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Fig. 2: Convergence rates of various methods in federated learning applied on
Cable-Stayed Bridge with T = 6 clients.

Table 1: F1-score of various methods.

FedP-OCSVM FedProx FedPer FedAvg

Cable-Stayed Bridge 0.96±0.02 0.92±0.01 0.93±0.03 0.90±0.04

E ∈ {5, 10, 20, 30, 40, 50}. For each of the candidate E, we run all the methods
for 40 rounds and report the final F1-score accuracy generated by each method.
The result is shown in Figure 2(b). We observe that conducting longer epochs
on the clients improves the performance of FedP-OCSVM and FedPer, but it
slightly deteriorates the performance of FedProx and FedAvg. The second ex-
periment was to compare our method to FedAvg, FedPer and FedProx in terms
of accuracy and the number of communication rounds needed for the global
model to achieve good performance on the test data. We set the total number
of epochs E for FedP-OCSVM and FedPer to 50, and 30 for FedProx and Fe-
dAvg as determined by the first experimental study related to the local training
epochs E. The results showed that FedP-OCSVM outperforms FedAvg, FedProx
and FedPer in terms of local training models and performance accuracy. Table
1 shows the accuracy results of all experiments using F1-score. Although no
data from the damaged state has been employed to construct the central model,
each personalized local client model was able to identify the damage events re-
lated to ”Car-Damage” and ”Bus-Damage” with an average F1-score accuracy
of 0.96± 0.02.

5 Conclusions

In this paper, we present a novel machine learning approach for an effective and
efficient anomaly detection model in such applications like SHM systems that

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_31

https://dx.doi.org/10.1007/978-3-031-08760-8_31


A Personalized Federated Learning Algorithm for OCSVM 7

require information derived from many spatially-distributed locations through-
out large infrastructure covering various points in the monitored structure. Our
method employs a Federated Learning (FL) approach to OCSVM as an anomaly
detection model augmented with a method to personalize the resulting support
vectors from the FL process. Our experimental evaluation on a real bridge struc-
ture dataset showed promising damage detection accuracy by considering differ-
ent damage scenarios. In the ”Cable-Stayed Bridge” dataset, our FedP-OCSVM
method achieved an accuracy of 96%. The experimental results of this case study
demonstrated the capability of our FL-based damage detection approach with
the personalization algorithm to improve the damage detection accuracy.
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