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Abstract. Fish and birds can propel themselves efficiently by acting in groups 
and clarifying their hydrodynamic interactions will be very useful for engineer-
ing applications. In this study, concerning the work of Becker et al., we per-
formed three-dimensional unsteady simulations of an infinite array of airfoils, 
which is one of the models of schooling, and we clarified the structure of the 
flow between them. The model velocities obtained from the simulations show a 
good correspondence with the experimental data of Becker et al. The vortex 
structure created by the airfoil is very complicated, and it is visually clear that 
the vortices generated from the left and right ends of the airfoil also contribute 
to the formation of the upward and downward flows.  
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1 Introduction 

Fish and birds can propel themselves by periodically moving or morphing their body. 
Many researchers and experts have conducted experiments and numerical simulations 
for oscillating airfoils to understand the propulsion mechanism hidden in their behav-
ior [1]. In addition, it is known that migratory birds and small fishes such as sardines 
can travel with high energy efficiency by forming schools [2]. Inspired by them, 
Becker et al. [3] investigated the fluid-mediated interactions among the collective 
locomotion of self-propelled bodies through experiments and numerical simulations 
of array of flapping airfoils. In their study, the system was numerically calculated as 
the horizontal translational system of two-dimensional array of airfoils, since it is 
known that it shows a good comparison with the rotational system. Although it might 
be true, the flow structure of the three-dimensional array should be different from the 
two-dimensional one. The flow structure and the properties of the horizontal array of 
flapping airfoils with finite spans is still unclear.  

Our research aims to clarify the flow structure of the three-dimensional horizontal 
array of flapping airfoils numerically. In this paper, the Moving-Grid Finite-Volume 
Method was adopted [4-5]. This method can satisfy the physical conservation laws 
while moving or morphing the grids, so it is suitable for our study. To realize the self-
propelled body in the simulation, we also adopt the concept of the Moving Computa-
tional Domain (MCD) method [6] .  
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2 Simulation 

2.1 Governing equations 

As the governing equations, the incompressible Navier Stokes (NS) equations are 
adopted. They are expressed as 
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Here, the variables 𝑢, 𝑣, 𝑤 are velocity and 𝑝 is pressure.  
Also, the mass conservation law is written as 
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+
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The governing equations shown above are nondimensionalized using the character-
istic length 𝑐, velocity 𝑈∞, density 𝜌∞ and viscosity 𝜇∞. The Reynolds number be-
comes 

Re =
𝜌∞𝑈∞𝑐

𝜇∞

. (5) 

Here, 𝑐 = 0.06 m is a cord length of the airfoil. 𝑈∞ = 0.1 m/s, and the viscosity 

and the density are 𝜌∞ = 1000.0 kg/m3and 𝜇ஶ = 0.001 Pa･s, referring to the values 
in [3]. 

2.2 Numerical Approach 

In this study, the moving-grid finite-volume method [4-5] is used to solve the flow 
field with a moving object. In this method, the governing equations are integrated and 
discretized in a four-dimensional control volume of a unified space and time domain, 
so that the conservation law can be satisfied even when the grid is moving or de-
formed. In this study, we apply this method to the unstructured grid using cell-
centered and collocated arrangement. In addition, the MCD method [6] is applied to 
analyze the free propulsion of an airfoil in this paper. To solve the incompressible NS 
equation discretized by the above method, the Fractional Step method [7] is adopted 
in this study. To solve the linear system of equations for both steps, the Lower-Upper 
Symmetric Gauss Seidel (LU-SGS) method [8] is used for the pseudo velocity and the 
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Successive Over Relaxation (SOR) method is used for the pressure equations. All 
computations in this paper are conducted by in-house code. 

2.3 Computational model 

The model simulated in this paper is an array of equally spaced airfoils in a row. In 
the numerical simulation of [3], the array is realized by a single flapping airfoil with 
periodic boundary conditions. In this paper, we also compute the similar one to the 
computation, but the difference is that the flow domain is three-dimensional, and the 
wing has a finite span length. Then, our computational model is shown in Fig.1. The 
coordinate axes are x for the direction opposite to the airfoil's direction of motion, y 
for the direction of vibration, and z for the rest. The shape of the airfoil is 
NACA(National Advisory Committee for Aeronautics)0017 which has a chord length 
of c = 0.06 m and a span length of 0.15m. These dimensions are the same as in the 
experiment. The flow region has a length of 4c in span-wise direction, and the same 
lengths as the numerical simulation [3] in stream-wise and vertical direction. 

The airfoil is given a prescribed vertical motion written in the dimensionless form 
as 

𝑦(𝑡) = −
𝐴

2𝑐
sin(2𝜋𝑓𝑡), (6) 

where the amplitude is 𝐴 = 0.09m and the 𝑓  is a nondimensionalized frequency de-
fined as 

𝑓 =
𝑓 𝑐̅

𝑈∞

. (7) 

The frequency varies in the range 0.1 ≤ 𝑓 ̅ ≤ 0.3 Hz. 
The propulsive force of the airfoil is calculated by integrating the viscous and pres-

sure force acted on the surface. Using the force, propulsive velocity is determined by 
the Newton’s second law described as 

𝜌𝑉
𝑑𝑣𝑤𝑖𝑛𝑔

𝑑𝑡
= 𝐹𝑡ℎ𝑟𝑢𝑠𝑡, (8) 

where 𝜌 = 𝜌𝑤𝑖𝑛𝑔 𝜌∞⁄ .  𝜌𝑤𝑖𝑛𝑔 = 10𝜌∞ is the density of the airfoil. V is the volume of 

the airfoil. The airfoil is fixed in the span-wise direction so that it can move only in 
the propulsive and vertical directions, therefore the dynamical motion of the airfoil is 
determined only by equation (6) and (8). 
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Fig. 1. The three-dimensional model for this study. the wing and the flow domain move toward 
the negative x direction with flapping in vertical (yellow axis in the figure) direction.  

 As for the boundary conditions, no-slip conditions are imposed on the blade surfac-
es, fixed velocity conditions (𝐮 = 0) are upper and lower walls, and symmetric condi-
tions are imposed on the sides. For inflow and outflow, periodic boundary conditions 
are used to reproduce a model with an infinite array of airfoils. All pressures are set to 
zero gradients, and the mean value of the pressures is fixed for the simulation. 

Based on the above model, a spatial grid was created as follows. Fig.2 shows a 
cross section of the unstructured grid used in this study. MEGG3D [9] was used to 
create the unstructured grid for the computation. The number of elements is 
2,879,012. Prismatic layers are created on the surface of the airfoil and upper and 
lower walls. The minimum grid width is wide enough to capture the viscous sub-
layer, and the number of layers is 17 to reduce the size ratio to the tetra grid. All di-
mensions are nondimensionalized.  

 

Fig. 2. Cross section of the unstructured grid for the computation of flapping airfoil. 

3 Results 

Fig.3 shows a comparison of the propulsive velocity calculated as described above 
with that of the experiment in [3], where the amplitude is 𝐴 = 0.1m. Since the origi-
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nal data in the experiment is expressed in terms of rotational frequency F[1/s], it is 
necessary to convert it to translational velocity for comparison. In this study, based on 
the dimensions of the water tank in the experiment in [3], the reference value of the 
propulsive velocity is calculated as follows, 

𝑣 = 2𝜋𝑅𝐹 . (5) 

In equation (5), R=26cm is a distance from the axis of rotation to the mass center 
of each airfoil. From the figure, it can be seen that the speed of progression in the 
literature [3] and that in this study are in good agreement, although the amplitudes and 
the flow geometries are different. It is mentioned that the flows observed in rotational 
geometry compare well with those in translational one [3,10], therefore it can be said 
that our result is also true.  

 

Fig. 3. The horizontal velocity of the airfoils. white circles are current results, and a solid line is 
the result by Becker et al. 

Next, we describe the flow field. The isosurfaces of the Q-criterion are shown in 
Fig. 4 to clarify the vortex structure. The Q criterion is the second invariant of the 
velocity gradient tensor, and the region of Q > 0 is often used to identify vortices in 
the flow [11]. The color indicates the x component of the vorticity. In the figure, the 
airfoil is descending to the lower wall. Many vortices are generated in the spanwise 
direction of the airfoil surface, and these vortices form a large vortex at the trailing 
edge, but their shape is curved and not straight. The vortices generated by the airfoil 
are not only in the spanwise direction but also in the direction of motion. Since the 
airfoil is moving in the negative direction of x as it descends, the blue vortex on the 
left side of the airfoil has the same direction as the direction of motion, and the red 
vortex on the right side has the opposite direction. From the direction of the vortices 
on both sides of the airfoil, we can see that they also create a downward flow. We can 
also see that these vortices are colliding with the following airfoil in this visualization.  
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Fig. 4.  Isosurfaces of Q criterion where the airfoils are descending at the frequency 0.2Hz. In 
this figure, a single calculation result is displayed in a row to represent the infinite array of the 
airfoils. The figure is colored by the x component (stream-wise) of vorticity.  

4 Conclusion 

The model of Becker et al. to analyze bird and fish schools was reproduced to a lim-
ited extent in 3D unsteady simulations. It was found that the travel speeds of the mod-
el obtained from simulations using the airfoils corresponded to the experimental val-
ues. As for the flow field, it was found that the upward and downward flows generat-
ed by the airfoil affected the propulsion of the airfoil as in the experiment. In addition, 
the structure of the wake generated by the airfoil was clarified by visualizing the flow. 
Unlike the two-dimensional simulation in [3], it was found that the vortices facing the 
direction of the airfoil also contributed to the formation of the upward and downward 
flows.   

For future works, we will conduct this unsteady three-dimensional simulation in a 
wide range of the flapping frequency and clarify the characteristics of the infinite 
array of the airfoils.  
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