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Abstract. In enhanced oil recovery (EOR) processes, foam injection
reduces gas mobility and increases apparent viscosity, thus increasing
recovery efficiency. The quantification of uncertainty is essential in de-
veloping and evaluating mathematical models. In this work, we perform
uncertainty quantification (UQ) of two-phase flow models for foam injec-
tion using the STARS model with data from a series of foam quality-scan
experiments. We first performed the parameter estimation based on three
datasets of foam quality-scans on Indiana limestone carbonate core sam-
ples. Then distributions of the parameters are inferred via the Markov
Chain Monte Carlo method (MCMC). This approach allows propagat-
ing parametric uncertainty to the STARS apparent viscosity model. In
particular, the framework for UQ allowed us to identify how the lack of
experimental data affected the reliability of the calibrated models.

Keywords: Uncertainty Quantification · Foam Dynamics · Bayesian In-
ference

1 Introduction

Oil extraction, the process by which usable oil is extracted and removed from
underground, can be divided into three categories [5]. The first category is the
primary oil recovery, which raises the reservoir pressure so that recovery occurs
spontaneously. This process does not have a good yield since, on average, it
recovers only 30% of the original volume of oil present in the reservoir. The
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secondary oil recovery uses techniques such as injection water or gas into the
reservoir through an injection well to push the oil out of the rock pores. The third
category, also called enhanced oil recovery (EOR), uses more complex techniques
such as thermal recovery (heating the oil to decrease its viscosity) and chemical
recovery such as foam injection to reduce gas mobility and increase recovery.

EOR techniques have been increasingly used in the upstream oil industry,
and in particular, one of the methods that stand out the most is foam injection.
The alternating water and gas injection (WAG) process can be improved by
using foams to reduce gas mobility, increase apparent viscosity, and improve
recovery efficiency.

Several physical models of foam flow in porous media are available in litera-
ture [1, 10, 19]. Modeling of foam flow dynamics in porous media is very complex
due to its non-Newtonian nature, its dependence on the foam texture, and the
complex bubble generation/destruction process. In this work, the simplified ver-
sion of the CMG-STARS model [6] is studied.

The process of estimating the model parameters is not straightforward, and
several methods to this end have been proposed so far [3, 11, 12, 18]. In [3] a man-
ual process was used to adjust the foam flow parameters to apparent viscosity
data. The proposed procedure works separately with data in the low and high-
quality regimes and is based on the foam quality and apparent viscosity relation.
The work of [11] used data weighting and constraints when employing nonlinear
least-squares minimization methods for parameter estimation. The work of [12]
used a combined approach with a graphical method and least-squares minimiza-
tion techniques. In [18] the problem of fitting many parameters was replaced by
a procedure based on linear regression and single-variable optimization, which
avoids problems related to non-unique solutions and sensitivity issues of the
initial estimates. It is important to remark that these methods did not per-
form any uncertainty quantification after estimating the parameters. To reduce
the non-uniqueness and uncertainty of solutions, the work of [2] proposes an
assisted/automated method to adjust the parameters of relative permeability
measurements and provides a framework for a consistent uncertainty assessment
of relative permeability measurements.

The present work used Bayesian inference techniques for parameter estima-
tion, followed by uncertainty propagation to evaluate the uncertainties associ-
ated with the foam injection process numerically. The probability distributions
of the parameters were estimated using the Markov Chain Monte Carlo (MCMC)
method, which seeks to find the posterior distribution of the parameters given a
dataset and a prior characterization of the parameters. In particular, we assessed
the distributions of the parameters using data from a series of foam quality-scan
experiments to characterize the parameters better.

The remaining of this manuscript is organized as follows: in section 2 the
experimental setup, the recorded data, and the methods used for parameter
inference are reported; section 3 presents the results obtained in terms of least-
squares methods and Bayesian methods; and section 4 ends this work with some
conclusions and discussions.
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2 Methods

This work uses Bayesian inference techniques for parameter estimation, also
known as inverse uncertainty quantification (UQ). After this first step, uncer-
tainty propagation or forward UQ is performed to evaluate the uncertainties
associated with the numerical modeling of Enhanced Oil Recovery (EOR) based
on the process of coinjection of foam. This section explains the experimental
setup, the recorded data, and the methods used for parameter inference.

2.1 Experimental Setup

The experiments used in this work were described in [7], and part of the data was
used in [16]. For clarity, the setup is briefly described here. Brine prepared by dis-
solving adequate amounts of salt in distilled water was used in the core-flooding.
The concentrations are shown in Table 1. Before preparing the surfactant solu-
tion, the brine was degassed using a vacuum pump. The salts that were used to
prepare the brine were purchased from Sigma-Aldrich Brasil and were reagent
grade.

Table 1: Ionic composition of injection water (IW)
Ions Na+ K+ Ca2+ Mg2+ SO2−

4 Cl−

Concentration (mg/L) 11008 393 132 152 41 17972

The surfactant chosen to perform the foam injection was sodium alpha-olefin
sulfonate (Bioterge AS-40), which Stepan Brasil donated. It was used at a con-
centration of 0.1 wt%, with a critical micellar concentration (CMC) in IW at 20º
and ambient pressure conditions 0.0017 wt%. Nitrogen (99.992% purity, Linde
Brasil) was used for the gas phase.

A series of three foam quality-scan experiments were performed on a sample
of Indiana limestone (Kocurek Industries, USA), which was the rock used in the
experiments. The dimensions and petrophysical properties of the core used in
this work are presented in Table 2.

The core was loaded onto the Hassler core support under confining pressure of
3.44 MPa (500 psi) vertically. It was aspirated for two hours and then saturated
under vacuum with IW. Confinement pressure and pore pressure were increased
simultaneously to 17.2 MPa (2500 psi) and 13.8 MPa (2000 psi), respectively.
The core sample was left at this pressure for 24 hours to saturate the core fully.
Afterward, the pore pressure was decreased to 10 MPa (1500 psi), and then
the brine permeability was measured. This procedure was done by injecting
IW at different flow rates for pore volumes. After performing the permeability
measurement, 0.1 wt%AOS surfactant solution was injected (all experiments
used the same surfactant concentrations) and then through the core for at least 5
pore volumes (PV) to displace IW. The system temperature was raised to 60◦C.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_26

https://dx.doi.org/10.1007/978-3-031-08760-8_26


4 G. B. de Miranda et al.

Table 2: Dimensions and petrophysical properties of Indiana limestone, where
L, D, PV , φ, and K are the length, diameter, pore volume, porosity, and per-
meability, respectively.

Properties Experiment 1 Experiment 2 Experiment 3

L [m] 0.150 0.150 0.150
D [m] 0.0382 0.0382 0.0382

PV [10−6m3] 26.7 26.7 27.76
φ [-] 0.155 0.155 0.161
k [m2] 2.70 ×10−13 1.57 ×10−13 2.91 ×10−13

v[m/s] 1.45 ×10−5 1.45 ×10−5 2.40 ×10−5

As the pressure and temperature were constant and there was no possibility
of leakage, the nitrogen solution and surfactant were co-injected at constant
superficial velocity (1.45 × 10−5 m/s) and injection flow rate (0.967 mL/min),
but at different gas/liquid ratios. In Figure 1 it is possible to see the schematic
drawing of core-flood apparatus used for foam injection.

Fig. 1: Schematic drawing of core-flood apparatus.

2.2 Relative Permeabilities

Relative permeabilities were described by the Corey model for the two-phase
flow of water and gas without surfactant, which are given by:

krw = k0rw

(
Sw − Swc

1− Swc − Sgr

)nw

, and krg = k0rg

(
Sg − Sgr

1− Swc − Sgr

)ng

, (1)

where nw and ng are the Corey exponents for water and gas, respectively, k0rw
and k0rg are the end-point relative permeabilities for water and gas, respectively,
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Swc is the connate water saturation, and Sgr the residual gas saturation. Relative
permeability data for high permeability Indiana Limestone found in the litera-
ture [13] were considered. The Corey parameters used in this work, which were
fitted to the relative permeability data of [13] using the techniques described in
[17], are given in Table 3.

Parameters Swc Sgr nw nw k0
rw k0

rg

Values 0.4 0.293 2.98 0.96 0.302 0.04

Table 3: Relative permeability parameters for datasets.

2.3 STARS Model

To model the two-phase flow for foam flow, the CMG-STARS mathematical
model [6] was used. In this model the foam effects are modeled considering a
reduction factor that affects the mobility of the gas phase. The mobility reduction
factor (MRF ) term can describe the effects of surfactant concentration, water
and oil saturations, shear-thinning, and other effects.

Let the mobility of gas and water phases be denoted by λg and λw, respec-
tively. The total mobility λT is defined as λT = λw + λg. Thus, the apparent
viscosity can be defined as the inverse of total relative mobility:

µapp = λ−1
T =

(
λw +

λg

MRF

)−1

, (2)

where the fact that mobility of the gas phase is influenced by the foam through
the mobility reduction factor MRF is already taken into account.

The fractional gas flow is then redefined as follows including the MRF func-
tion:

fg =
λg

MRF
(
λw +

λg

MRF

) =
λg

MRF
µapp. (3)

The gas mobility is given by:

λg =
krg

MRFµg
, MRF = 1 + fmmobF2, (4)

where the F2 term describes the effects of water saturation, and is given by:

F2 =
1

2
+

1

π
arctan(sfbet(Sw − SF )), (5)

where fmmob, sfbet, and SF are model parameters.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_26

https://dx.doi.org/10.1007/978-3-031-08760-8_26


6 G. B. de Miranda et al.

2.4 Procedures for Parameter Estimation

Two approaches were used in this work for parameter estimation: nonlinear
least-squares minimization and Bayesian inference. To estimate parameters with
nonlinear least-squares we used the Differential Evolution (DE) method imple-
mented in the lmfit library [14] available in the Python programming language.

For Bayesian inference of the distributions of the parameters, the Markov
Chain Monte Carlo (MCMC) [4] method was used. The prior distributions of
the parameters of the model required for the MCMC were chosen considering the
physical ranges of the parameters and knowledge available in the literature [8].
The PyMC3 library [15] for Bayesian modeling was used for executing the MCMC
method. For the inference process, four chains are built independently. The uni-
variate slice sampler was adopted as the step function, 104 samples were drawn
for each randomized parameter, and 103 samples were discarded from each of
the final chains. The joint of these four chains describes a sample of the posterior
distribution for each parameter.

Assuming θ as parameters of the STARS model and D as the data set, the
MCMC attempts to estimate:

P(D|θ) = P(D|θ)P(θ)
P(D)

(6)

where P(θ) represents the prior knowledge of the input parameters θ, as a joint
probability distribution; P(D|θ) is the likelihood function; and P(D) is the evi-
dence, a normalization factor for the posterior distribution.

To carry out the MCMC estimation, our prior knowledge about the param-
eters’ distributions must be provided. Table 4 summarizes the priors adopted in
this work, which was based on the choice used in previous works [16].

Table 4: Chosen prior distributions for the parameters of the CMG-STARS foam
model used in the MCMC method.

fmmob SF sfbet

U(10, 1000) U(Swc, 1− Sgr) U(10, 1000)

2.5 Sensitivity Analysis

A variance based sensitivity analysis was used to assess how the input parameters
xi ∈ θ and their interactions contribute to the variations of any quantity of
interest Y. The main and total Sobol indices were used to this end. The first-
order Sobol index, presented in the equation 7, expresses how any uncertain
input xi directly contributes to the variance of the output Y.

Si =
V[E[Y|xi]]

V[Y]
(7)
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To estimate the changes in V[Y] considering the first and high order interactions
of the i-th uncertain entry, the total Sobol index is evaluated. It is given by:

STi = 1− V[E[Y|x−i]]

V[Y]
(8)

where x−1 denotes the set of all input parameters except xi. The sensitivity
indices were computed with the SAlib library using the Saltelli method [9].
Bounds for parameters in the SA were defined as the bounds from the 90%
confidence interval of the marginal posterior distributions.

3 Results

3.1 Least-Squares estimates

First, we present some parameter estimates obtained with the nonlinear least-
squares method to first characterize the foam flow in the core-flooding experi-
ments. Figure 2 shows the results of the foam quality scan experiment in terms
of the pressure drop versus time.

Fig. 2: Foam quality-scan experiment results

Figure 3 shows the steady-state experimental data for apparent viscosity
as a function of foam quality for the three experiments previously described in
Table 2. Fittings of the STARS model to the corresponding data for each dataset
are also shown in Figure 3. Model fittings and data for experiments #01, #02,
and #03 are represented by blue, orange, and green, respectively, where dots
represent the data and solid lines model evaluations.
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Fig. 3: Experimental data and STARS model evaluations for all the datasets.

Table 5 summarizes the parameter estimates obtained after applying the
least-squares method in the three datasets. The parameters fmmob, SF , and
sfbet represent the reference mobility reduction factor, the water saturations
around which weak foam collapses, and the sharpness from the transition be-
tween low- and high-quality foam regimes. The lower the sfbet value, the smoother
the transition from high to low quality, whereas larger values for sfbet represent
a sharp transition. The estimated values for sfbet are in good agreement with
the transition observed in the experimental data, where datasets #02 and #03
have a more sharp transition than dataset #01. The estimated values for SF for
all datasets agree with two decimals places. The estimated values of fmmob for
all datasets are again in good agreement with the corresponding data, where for
instance, the dataset #01 presents the highest apparent viscosity value among
the datasets.

Table 5: STARS parameters estimated with nonlinear least-squares method.
Dataset / Parameter fmmob SF sfbet

Dataset #01 292.71 0.44 367.88
Dataset #02 180.92 0.44 541.86
Dataset #03 173.10 0.44 419.77
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3.2 Foam Model Parameters’ Distributions

Next, to better characterize the parameters for each dataset, we performed a
Bayesian inference using the MCMC method with the priors given in Table 4.
After the execution of the method, the posterior distribution was obtained for
each parameter of the model. Figure 4 shows the densities of the parameters of
the STARS models, where one can observe that the distributions of fmmob and
SF are more concentrated around the mean value, whereas the distribution for
sfbet is more spread out and less symmetrical.
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Fig. 4: Posterior distributions for fmmob, SF , and sfbet parameters of the
STARS foam model obtained by the MCMC method.

3.3 Forward Uncertainty Quantification Results

Figure 5 shows the propagation of uncertainty for the apparent viscosity for the
STARS model. The shaded region represents the prediction interval, the solid
lines represent the expected values, and the dots represent the experimental
data. Experiment data from datasets #01, #02, and #03 are represented in
blue, green, and red, respectively.

Analyzing the result of dataset #01 it is possible to observe that the expected
value curves are close to the experimental data. For dataset #02 it is also possible
to observe that the expected value curves are close to the experimental data,
except when fg = 0.5. The same is true for dataset #03, except for lower values
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Fig. 5: Uncertainty quantification results of apparent viscosity

of fg. It is also possible to observe that the prediction interval observed in the
low-quality regime is smaller than in the high-quality regime.

For dataset #02, the uncertainty range is large, jeopardizing the model’s
predictions. One hypothesis is that this dataset has a smaller number of data,
i.e., the lack of data may have caused it. To confirm this hypothesis, we added
two synthetic points generated with a significant random noise: thus, we define
a normal distribution with a mean given by the point value obtained by the
parameters estimated by the maximum a posteriori (MAP) estimator and a
standard deviation of 25% of the MAP estimator around the mean found:

µapp ∼ N
(
µmap
app (SFmap, fmmobmap, sfbetmap) , 0.25× µmap

app

)
.

With this approach the dataset was augmented with the following data:

(fg, µapp) ≈ (0.402, 0.058), (0.970, 0.049).

With the modified dataset (experimental and synthetic), we performed inverse
UQ using the MCMCmethod and then forward UQ using the STARS model. The
results showed a significant reduction in the range of uncertainties, as presented
in Figure 6. Therefore, the hypothesis that the cause of significant uncertainty
was due to the lack of data is probably correct.

3.4 Sensitivity Analysis

Observing the main and total Sobol indices with respect to apparent viscosity
(µapp) for the different datasets, as shown in Figure 7, it is possible to notice that
high order interactions between the parameters are negligible. It is also possible
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Fig. 6: Forward uncertainty quantification results of apparent viscosity for the
augmented dataset.

to observe that fmmob dominates the output variance in the model for high
water saturation values. Also, close to the expected value found for SF there is
a significant change in its influence and the more uncertainty appears in its PDF
(see Figure 4), the larger is the range of Sw that the SF parameter dominates the
sensitivity. For values of Sw below this region, the sfbet parameter dominates
the sensitivities.

4 Conclusions

This work presented a framework for uncertainty quantification and sensitivity
analysis of experimental data of core flooding and Bayesian model calibration in
foam flow in porous media, referring to a series of three foam quality scans. The
mathematical models of foam injection involve many parameters that control the
complex physics of this process. The quantification of uncertainties is essential
for the development of robust simulators. After performing the model calibra-
tion for the experimental data using an inverse Bayesian estimation, the direct
UQ analysis for the apparent viscosity showed more significant uncertainties in
dataset #02.

The addition of synthetic data made it possible to reduce model uncertainties
significantly. In summary, it was possible to conclude through this work that the
use of uncertainty quantification and sensitivity analysis contributes to under-
standing the phenomenon of foam flow in porous media. The use of these tools
together can help to confront experiments and models to assess their quality and
uncertainties and suggest new experiments to improve the model’s reliability.
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Fig. 7: Sensitivity analysis using main (Si) and total (STi
) Sobol indices for the

apparent viscosity.

In the near future, the framework presented in this work will be used on
other datasets to perform a more robust validation of the proposed methods
and pipeline, which seeks to reduce model uncertainties. In addition, whereas
the current work focuses on two-phase experiments, we expect it to be scalable
in the sense that the presented pipeline can also be applied to databases of
three-phase experiments.
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