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Abstract. In this work we implement the parallelization of a method for
solving fluid-structure interactions: one-field monolithic fictitious domain
(MFD). In this algorithm the velocity field for solid domain is interpo-
lated into fluid velocity field through an appropriate L2 projection, then
the resulting combined equations are solved simultaneously (rather than
sequentially). We parallelize the finite element discretization of spatial
variables for fluid governing equations and linear system solver to ac-
celerate the computation. Our goal is to reduce the simulation time for
high resolution fluid-structure interaction simulation, such as collision of
multiple immersed solids in fluid.

Keywords: fluid-structure interaction · finite element · parallel process-
ing.

1 Introduction

1.1 Fluid-Structure interaction

Fluid-structure interaction (FSI) is a multiphysics problem that describes the
interaction between a moving, sometimes deformable, structure and its surround-
ing incompressible fluid flow. In general, the solid materials deform largely and
the deformations are strongly coupled to the flowing fluid. Numerical simula-
tion of FSI is a computational challenge since the governing equations for solid
and fluid regions are different and the algorithm needs to solve the locations
of solid-fluid interfaces simultaneously with the dynamics in both regions where
the kinematic (e.g., non-slipping) and dynamic (e.g., stress matched along the
normal to solid-fluid interface) boundary conditions are imposed at the interface.

1.2 Numerical scheme

In general, the numerical schemes for solving the FSI problems may be clas-
sified into two approaches: the monolithic/fully-coupled method[1,2,3] and the
partitioned/segregated method [4,5]. In addition, each method can be catego-
rized further depends on the way to handle the mesh: fitted (conforming) mesh
methods and unfitted (nonconforming) mesh methods.
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Fitted mesh methods require solid and fluid meshes match each other at the
interface, and both fluid and the solid regions share the nodes on the interface. In
this way both a fluid velocity and a solid velocity (or displacement) are defined
on each interface node. Clearly the fluid and solid velocities should agree on the
interface nodes. Partitioned/segregated approach using fitted mesh to solve the
governing equations. The solid and fluid equations are sequentially solved and
then the steps are iterated until the velocities become consistent at the interface.
This approach is easier to implement but not robust or fail to converge for
problems where the fluid and solid appear to have significant energy exchange.
On the other hand, monolithic/fully-coupled scheme solve the fluid and solid
equations simultaneously on fitted mesh and often use a Lagrange Multiplier to
weakly enforce the continuity of velocity on the interface. This method provides
accurate and stable solutions but is computational challenging since one needs
to solve the large size of nonlinear algebraic systems arising from the implicit
discretization of the fully-coupled solid and fluid equations.

For unfitted mesh methods the solid and fluid regions are represented by two
separate meshes and normally these do not agree to each other on the interface.
Since there is no clear boundary for the solid problem, one of the approach to
address the issue is to use Fictitious Domain method (FDM). In FDM the region
representing solid is treated as (fictitious) fluid whose velocity/displacement is
constrained to be the same as that of the solid. This constraint is enforced using
a distributed Lagrange multiplier (DLM). There appear to be two situations for
using unfitted meshes approach: either avoid solving the solid equations (such
as Immersed Finite Element Method), or solve them with additional variables
(two velocity fields and Lagrange multiplier) in the solid domain.

In this article, we parallelize one-field Fictitious Domain method can be cat-
egorized as a monolithic approach using an unfitted mesh. The main idea of the
one-field FDM is as follows: (1) One-field formulation: re-write the governing
equations for solid in the form of fluid equations. (2) L2 projection (isoparamet-
ric interpolation): combining the fluid and solid equations and discretize them
in an augmented domain. Then the problem is solved on a single field. The ex-
isting one-field FDM algorithm used in sequential simulation provide reasonable
running time for 2D and 3D problems with low to moderate resolution, while its
performance on highly resolved meshes (256× 256× 256 grid points and above)
is not desired. Our goal is to accelerate the simulation algorithm using parallel
computing and hope to extend its applications on FSI problems requiring high
resolution, such as the 3D models describing the collision of multiple immersed
solids in fluid.

2 Governing equations and FEM discretization

In this section we use a 2D FSI model (Figure 1) to describe the governing par-
tial differential equations (PDEs) for FSI. Denote the regions representing solid
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and fluid by Ωst ⊂ Rd and Ωft ⊂ Rd, respectively. The subscript t reveals that
both regions are time dependent. Ωst ∪ Ω

f
t is the fixed domain and the moving

interface between solid and fluid is denoted by Γt = ∂Ωst ∩ Ω
f
t . Components

of variables along spatial directions are indicated by subscripts i, j, k. In ad-
dition, the repeated indices are implicitly summed over. For instance, usj and
ufj represent the j-component (along the j direction) of the solid velocity and
fluid velocity, respectively, σsij and σ

f
ij denote the ij-component for stress tensor

of solid and fluid respectively, and (usi )n is the i-component of solid velocity at
time tn. Quantities denoted by bold letters implies that variables are vectors or
matrices.

Ωs
0

Ωs
t

Ωf
t

ΓD

Γt

ΓN

ns

n

Fig. 1: 2D FSI problem and the boundary conditions.

Let ρs and ρf be the density of solid and fluid respectively, τsij and τ
f
ij be the

deviatoric stress of the solid and fluid respectively, µf be the fluid viscosity, pf
be the fluid pressure, and gi be the acceleration of gravity. Then the governing
equations for incompressible fluid in Ωft as shown in Figure 1 are

∂ufj
∂xj

= 0, (1)

ρf
Dufi
Dt
−
∂σfij
∂xj

= ρfgi, (2)

σfij = µf

(
∂ufi
∂xj

+
∂ufj
∂xi

)
− pfδij = τfij − p

fδij , (3)
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For the evolution of variables in solid domain Ωst , we assume the solid is
neo-Hookean incompressible solid and the governing equations are:

∂usj
∂xj

= 0, (4)

ρs
Dusi
Dt
−
∂σsij
∂xj

= ρsgi, (5)

σsij = µs
(
∂xsi
∂Xk

∂xsj
∂Xk

− δij
)
− psδij = τsij − psδij . (6)

In the governing equations (4) - (6), µs and ps are the solid shear modulus
and the pressure of the solid, respectively, Xi represents the reference coordi-
nates of the solid, and xi refer to the current coordinates of the solid or fluid.
Therefore the deformation tensor of the solid is denoted by F = [∂xi/∂Xj ]. The
incompressible neo-Hookean model described in equations (4) - (6) can be used
for predicting stress-strain behavior of materials undertaking large deformation
[12]. Note that D/Dt in equations (2) and (5) is the total time derivative and
its form depends on what type of mesh (Eulerian or Lagrangian) used in the
individual domain.

On the interface boundary Γt, the following conditions are imposed:

ufi = usi , (7)

σfijn
s
j = σsijn

s
j , (8)

where nsj is the component of unit normal to the interface pointing outward,
see Figure 1. Dirichlet and Neumann boundary conditions are imposed on the
boundaries for the fluid accordingly:

ufi = usi , on ΓD (9)

σfijnj = h̄i on ΓN . (10)

The initial conditions used in this work is:

ufi |t=0= usi |t=0= 0 (11)

in which we assume the system starts from the rest.

The finite element discretization of the governing equations starts with weak
formulation of equations (1),(2),(4) and (5). Let (u,w)Ω =

∫
Ω

uv dΩ, and

ui =
{
ufi in Ωft
usi in Ωst

p =
{
pf in Ωft
ps in Ωst
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Using constitution equations (3) and (6) with boundary condition in (10), in-
tegrating the stress terms by parts for the test functions vi ∈ H1

0 (Ω) and
q ∈ L2(Ω), we get the weak formulation of the FSI system: finding ui ∈ H1(Ω)
and p ∈ L2

0(Ω) so that

ρf
(
Dui
Dt

, vi

)
Ω

+
(
τfij ,

∂vi
∂xj

)
Ω

−
(
p,
∂vj
∂xj

)
Ω

−
(
∂ui
∂xj

, q

)
Ω

(12)

+(ρs − ρf )
(
Dui
Dt

, vi

)
Ωs

+
(
τsij − τ

f
ij ,

∂vj
∂xj

)
Ωs

= (h̄, vi)ΓN + ρf (gi, vi)Ω + (ρs − ρf )(gi, vi)Ωs ,

∀vi ∈ H1
0 (Ω) and ∀q ∈ H1

0 (Ω).

The integrals in equation (12) are calculated in all domains as illustrated in
Figure 1. Note that the fluid region is approximated by an Eulerian mesh and
solid region is represented by an updated Lagrangian mesh in order to track
the solid deformation/motion, therefore in these two different domains the total
time derivatives are:

Dui
Dt

= ∂ui
∂t

+ uj
∂ui
∂xj

in Ω (13)

and
Dusi
Dt

= ∂usi
∂t

in Ωs. (14)

Based on equations (13) and (14), the time discretization of equation (12) be-
comes

ρf
(
ui − uni
∆t

+ uj
∂ui
∂xj

, vi

)
Ω

+
(
τfij ,

∂vi
∂xj

)
Ω

−
(
p,
∂vj
∂xj

)
Ω

−
(
∂uj
∂xj

, q

)
Ω

+(ρs − ρf )
(
ui − uni
∆t

, vi

)
Ωs

n+1

+
(
τsij ,

∂vj
∂xj

)
Ωs

n+1

(15)

= (h̄i, vi)ΓN + ρf (gi, vi)Ω + (ρs − ρf )(gi, vi)Ωs
n+1

,

where the superscript n of variable ui represents the velocity at the nth time
step. Note that we have replaced Ωstn+1 , the solid mesh at the (n + 1)th time
step, by Ωsn+1. By the spirit of splitting method introduced in [14], the above
time evolution equation (15) can be viewed as the combination of two steps:

1. Convection step

ρf
(
u?i − uni
∆t

+ u?j
∂u?i
∂xj

, vi

)
Ω

= 0 (16)
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2. Diffusion step

ρf
(
ui − u?i
∆t

, vi

)
Ω

+
(
τfij ,

∂vi
∂xj

)
Ω

−
(
p,
∂vj
∂xj

)
Ω

−
(
∂uj
∂xj

, q

)
Ω

+(ρs − ρf )
(
ui − uni
∆t

, vi

)
Ωs

n+1

+
(
τsij − τ

f
ij ,

∂vi
∂xj

)
Ωs

n+1

(17)

= (h̄i, vi)ΓN + ρf (gi, vi)Ω + (ρs − ρf )(gi, vi)Ωs
n+1

,

where the intermediate field u?i obtained from the convection step is used in
the diffusion step to solve the "correct" field ui. To obtain the system of linear
algebraic equations, it is necessary to linearize equations (16) - (17). The details
of the linearization of both equations are described in [13] and we list the final
linearized form as follows:

1. Linearized weak form convection step using Talyor-Galerkin method:

(u?i , vi)Ω =
(
uni −∆tunj

∂uni
∂xj

, vi

)
Ω

− ∆t2

2

(
unk
∂uni
∂xk

, unj
∂vi
∂xj

)
Ω

(18)

2. Linearized weak form of diffusion step

ρf
(
ui − u?i
∆t

, vi

)
Ω

+ (ρs − ρf )
(
usi − (usi )n

∆t
, vi

)
Ωs

n+1

+ µf
(
∂ui
∂xj

+ ∂uj
∂xi

,
∂vi
∂xj

)
Ω

−
(
p,
∂vj
∂xj

)
Ω

−
(
∂uj
∂xj

, q

)
Ω

+ µs∆t

(
∂ui
∂xj

+ ∂uj
∂xi

+∆t
∂ui
∂xk

∂unj
∂xk

+∆t
∂uni
∂xk

∂uj
∂xk

,
∂vi
∂xj

)
Ωs

n+1

+ ∆t2
(
∂ui
∂xk

(τskl)n
∂unj
∂xl

+ ∂uni
∂xk

(τskl)n
∂uj
∂xl

,
∂vi
∂xj

)
Ωs

n+1

(19)

+ ∆t

(
∂ui
∂xk

(τskj)n + (τsil)n
∂uj
∂xl

,
∂vi
∂xj

)
Ωs

n+1

= (h̄i, vi)ΓN + ρf (gi, vi)Ω + (ρs − ρf )(gi, vi)Ωs
n+1

+
(
µs∆t2

∂uni
∂xk

∂unj
∂xk

+∆t2
∂uni
∂xk

(τskl)n
∂unj
∂xl
− (τsij)n,

∂vi
∂xj

)
Ωs

n+1

The spatial discretization in [13] uses a fixed Eulerian mesh for Ω and an
updated Lagrangian mesh for Ωsn+1 to discretize equation (19). The discretiza-
tion Ωh (for Ω) uses P2 (for velocities u) P1 (for pressure p) elements (the
Taylor-Hood element) with the corresponding finite element spaces

V h(Ωh) = span{ψ1, ..., ψNu} ∈ H1(Ω)
Lh(Ωh) = span{φ1, ..., φNp} ∈ L2(Ω).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_25

https://dx.doi.org/10.1007/978-3-031-08760-8_25


Parallel fluid-structure interaction simulation 7

The approximated solution uh and ph can be expressed in terms of these basis
functions as

uh(x) =
Nu∑
i=1

u(xi)ψi(x) , ph(x) =
Np∑
i=1

p(xi)φi(x) (20)

The solid domain Ωsn+1 at the n+1 time step is discretized as Ωshn+1 using linear
triangular elements with the corresponding finite element spaces as:

V sh(Ωshn+1) = span{ψs1, ..., ψsNs} ∈ H1(Ωsn+1), (21)

and approximate uh(x) |x∈Ωsh
n+1

as:

ush(x) =
Ns∑
i=1

uh(xsi )ψsi (x) =
Ns∑
i=1

Nu∑
j=1

u(xj)ψj(xsi )ψsi (x) (22)

where xsi is the nodal coordinate of the solid mesh.

Substituting (20), (22) and similar expressions for the test functions vh, qh
and vsh into equation (18), we obtain the following matrix form:[

A B
BT 0

] [
u
p

]
=
[
b
0

]
, (23)

where

A = M/∆t+ K + DT (Ms/∆t+ Ks)D (24)

and

b = f + DT f s + Mu?/∆t+ DTMsDun/∆t (25)

In equations (24) - (25), matrix D is the isoparametric interpolation matrix
derived from equation (22) which can be expressed as

D =
[
PT 0
0 PT

]
, Pij = ψi(xsj). (26)

For the other matrices in (24) - (25), M and K are global mass matrix, global
stiffness matrix from discretization of integrals in Ωh. Similarly, Ms and Ks

are mass matrix and stiffness matrix from discretization of integrals in Ωsh. u,
p, f are velocity, pressure and right hand side vectors, respectively. B and its
transpose BT represent the connections between pressure and velocities, which
arise from the weak formulation in (19).
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3 Parallelization of one-field FDM algorithm

3.1 Parallelism and related issues

The algorithm described in the previous section consists three parts: finite el-
ement discretization of the PDEs (calculation of element matrices, assembly of
the global matrix), projecting matrix arising from solid equations into matrix
arising from fluid equations (L2 isoparametric projection) and solving the result-
ing system of linear algebraic equations. The computations of the first two parts
are nearly embarrassingly parallel and require little or no communication, while
the linear system solving using iterative scheme needs global communications
(inner product) and communications from neighboring processes (matrix vector
multiplications) for updating the residual and solution vectors.

3.2 Datatype and computation setup

The code implementation for solving the model described in the previous section
is carried out in Campfire, where the structure grid generation is provided by
PARAMESH. PARAMESH generates meshes as the union of blocks (arrays) of
cells. Each block consists of internal cells and certain layer of guardcells (Figure
2). In finite element implementation each cell is treated as an (quadrilateral)
element. For the 2D FSI simulation there are three variables to be solved: u
(x-velocity), v (y-velocity) and p (pressure). For spatial variables we discretize
the velocity field by quadratic quadrilateral (P2) elements and the pressure by
linear quadrilateral (P1) elements. To accomplish storing the variable values in
a 2D model, we employ four arrays from PARAMESH.

Fig. 2: A 2× 2 block with one layer of guardcells
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3.3 Linear system solver

As known, the solution of a linear system of equations constitutes an impor-
tant part of the algorithm for solving PDEs numerically. Thus the properties of
the linear system solver is crucial to the performance of PDE simulations. Gen-
erally, iterative methods consist of three core computational steps, which are
vector update, matrix-vector multiplications and inner product computation.
Vector updates is inherently parallel and there is no communication required.
Parallel algorithm for matrix-vector multiplication relies on the data structure
of matrix (sparsity, organization etc.) and typically local data communications
between neighboring processes are sufficient for correct computation. Inner prod-
uct calculation requires global data communications but the complexity could
be moderate (O(log2 P ), where P is the number of processes). The parallel im-
plementation of these three computation kernels will provide significant perfor-
mance enhancement on iterative methods. To accelerate the MINRES iteration
we use incomplete LU as the preconditioner. The computations for applying
preconditioners involve backward/forward substitutions, which is inherently se-
quential. In the parallel implementation the preconditioner becomes block Jacobi
type and the matrix entries connecting the neighboring processes are ignored.
This causes the convergence properties of parallel preconditioning deteriorate
significantly from sequential preconditioning.

4 Numerical experiments

In this work, we exam our parallel code on two 2D problems and compare the
performance of parallel computation with the serial version in each case to access
the parallel efficiencies. MINRES iterations stop when the 2-norm of the relative
residual is less than 10−8 or the maximum number of iterations is reached (7500).
For parallel simulations we use various number of processes up to 256 cores. All
simulations were carried out on Taiwania, a supercomputer having a memory
of 3.4 petabytes and delivering over 1.33 quadrillion flop/s of theoretical peak
performance. The system has 630 compute nodes based on 40 core Intel Xeon
Gold 6148 processors running at 2.4 GHz. Overall the system has a total of 25200
processor cores and 157 TB of aggregate memory. All the timing results are the
average values from the running time of multiple simulations.

4.1 The motion of a disc in 2D Lid-driven cavity flow

In the first case we consider the motion of a deformable disc in a lid-driven cavity
flow in 2D domain. Zhao et al. [15] studied the simulation for validating their
methods. The experiment parameters are shown in Table 1 and Fig. 3 is the
graphic demonstration of the problem setup. Initially, a round stress-free disc
of radius 0.2 is centered at (0.6, 0.5), then at t = 0 the top cavity wall starts
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u = 1,
v = 0

u = 0,
v = 0

u = 0,
v = 0

u = 0,
v = 0

p = 0

Fig. 3: A disc in lid-driven cavity flow with the boundary conditions.

moving horizontally at u = 1. For the material parameters, the density of the
disc (ρs) and fluid (ρf ) are both set to be 1. The elastic constant (µs) of the disc
is 0.1 and the viscosity of the fluid (µf ) is 0.01.

parameters ρf ρs µf µs

values 1 1 0.01 0.1

Table 1: Parameters for 2D solid (disc) in a lid-driven cavity flow

The fluid mesh resolution of the numerical simulation is 128×128, solid mesh
contains 31163 elements and 15794 nodes. ∆t = 0.01, 800 time steps. The run-
ning time for the last 100 time steps and speedup are shown in Table 1. As seen
from the table, our method gains a roughly 47 speedup for 256 cores parallel sim-
ulations. Comparing with serial simulation, we reduce the overall running time
(need 800 time steps) from roughly 65 hours to 1.5 hours. In the table we also list
the average number of preconditioned MINRES iterations for the first 100 time
steps in each simulation to show the impact of the parallelized preconditioning
on the convergence of MINRES iterations. Notice that the number of MINRES
iterations reach the maximum threshold (10000) after t = 0.3, corresponding to
the scenario when the disc is near the wall.

The solid deformation are visualized in Fig. 4. The motion and the defor-
mation of the solid are nearly identical to the result from [13] and [15]. We see
that the disc deformation is asymmetric about the disc’s vertical center line, and
lubrication forces prevent the disk from touching the lid. The solid body ends up
in a fixed position near the center of the cavity, and the velocity field becomes
steady.
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For the parallel simulation we gained speed up factor of 44 for 256 processes,
corresponding to parallel efficiency of 17%. The increased number of MINRES
iteration explains the reduction of the parallel efficiency from 82% (4 processes)
to 17% (256 processes).

last 100 time steps serial 4 16 64 256
time (minutes) 490 148 48 23 11
speed up 1 3.3 10.2 21.3 44.5
iterations (first 100 time steps) 2030 2420 2750 2980 3110

Table 2: Parallel simulation results

(a) t = 1 (b) t = 4 (c) t = 5

(d) t = 6 (e) t = 7 (f) t = 8

Fig. 4: The simulation results for a deformable solid motion in a lid-driven cavity
flow.

4.2 Oscillation of a flexible leaflet oriented across the flow direction

The second example comes from [10,11,12], in which the problem was used for
validation their methods. In this work we parallelize the one field monolithic FSI
algorithm of this benchmark problem in [13]. The problem setup is described as
follows. A leaflet is located at the center of the bottom horizontal side of a
rectangular computational domain. The horizontal length and vertical length
are 4 m and 1 m, respectively. The inflow velocity is in the x-direction and
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Fig. 5: Oscillation of a flexible leaflet across the flow direction.
Source: [13]

governed by ux = 15.0y(2−y) sin(2πt). The computational domain and boundary
conditions are illustrated in Fig.5.

The material parameters for the solid and fluid are listed in Table 3. The
leaflet (solid region) is represented with 154 linear triangular elements with 116
nodes, and the corresponding fluid mesh is consist of 320× 80 rectangular cells.
The time step size for the evolution is ∆t = 5×10−5s. All leaflet simulations run

parameters ρf ρs µf µs

values 100 kg/m3 100 kg/m3 10 N s/m2 107 N/m2

Table 3: Material parameters for oscillation of a flexible leaflet oriented across
the flow direction.

from t = 0 to t = 0.8, which is 16000 time steps. Similar to the above example,
we record simulation time for the middle 2000 time steps and the speedups of the
parallel run are listed in Table 4. In this case the ratio of the number of solid mesh
nodes to the number of fluid mesh nodes is much smaller than the example 1. For
256 processes simulation we gained a speed up factor of 28 corresponding to 11%
parallel efficiency. Obviously the convergence of the preconditioned MINRES in
this case is much worse than that in the example 1. This may attribute to the
high elastic modulus (107 vs. 1) of the solid and the convergence of MINRES is
more difficult.

Middle 2000 time steps serial 16 64 256
time (minutes) 592 85 40 21
speed up 1 11.2 14.8 28.2
iterations (middle time steps) 2030 5010 > 7500 > 7500

Table 4: Parallel simulation results: leaflet in 2D channel flow
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(a) t = 0.01 (b) t = 0.2

(c) t = 0.5 (d) t = 0.6

(e) t = 0.7 (f) t = 0.8

Fig. 6: The simulation results for oscillation of a flexible leaflet oriented across
the flow direction.

5 Conclusion

In this research we have implemented the parallel computation on FSI 2D prob-
lem simulations. The convergence of preconditioned MINRES iteration is cru-
cial to the parallel efficiency of the algorithm. For the first benchmark problem
(2D disc in cavity-driven flow) the parallel simulation gain significant speed up
although the parallel efficiency is not impressive. However, high elastic modu-
lus of solid appeared in the second example (oscillating leaflet in channel flow)
reduces the convergence performance of MINRES and hence the computation
performance and parallel efficiency. One of the most important future work is
to find preconditioners whose properties are minimally impacted by paralleliza-
tion. With the modified preconditioner and algorithm we wish to extend our
experiment to 3D FSI benchmark problems to verify our method.
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