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Abstract. This work presents Direct Numerical Simulation of mass transfer in a
bi-dispersed bubble swarm at high Reynolds number, by using a multiple marker
level-set method. Transport equations are discretized by the finite-volume method
on 3D collocated unstructured meshes. Interface capturing is performed by the
unstructured conservative level-set method, whereas the multiple marker approach
avoids the so-called numerical coalescence of bubbles. Pressure-velocity cou-
pling is solved by the classical fractional-step projection method. Diffusive terms
are discretized by a central difference scheme. Convective term of momentum
equation, level-set equations, and mass transfer equation, are discretized by un-
structured flux-limiters schemes. This approach improves the numerical stability
of the unstructured multiphase solver in bubbly flows with high Reynolds num-
ber and high-density ratio. Finally, this numerical model is applied to research the
effect of bubble-bubble interactions on the mass transfer in a bi-dispersed bubble
swarm.

Keywords: Mass transfer · Bubbly flow · Unstructured flux-limiters · Unstruc-
tured meshes · Level-set method · Finite volume method · High-Performance
Computing.

1 Introduction

Mas transfer in poly-dispersed bubble swarms is frequent in nature and industry. For in-
stance, bubbly flows are employed in chemical reactors to produce chemical products,
as well as to improve mass transfer rates in the so-called unit operations of chemi-
cal engineering. Although empirical correlations have been reported to estimate mass
transfer rates in bubbles [18], the interplay between fluid mechanics and mass transfer
in turbulent bi-dispersed bubble swarms is not well understood yet. Indeed, beyond the
scientific motivation, understanding this phenomenon has practical importance in the
design, optimization, and operation of industrial multiphase systems.
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The development of supercomputers has promoted High-Performance computing
(HPC) and Direct Numerical Simulation (DNS) of Navier-Stokes equations, as a prag-
matic method to perform non-invasive numerical experiments of bubbly flows. In this
sense, multiple numerical methods have been reported for DNS of two-phase flows,
for instance: volume-of-fluid (VOF) methods [27], level-set (LS) methods [34,37], con-
servative level-set (CLS) methods [33,3], front tracking (FT) methods [41], and hy-
brid VOF/LS methods [38,39,6]. Some of these methods have been extended for in-
terfacial heat transfer and mass transfer in gas-liquid multiphase flows, as reported in
[22,15,2,16,21]. On the other hand, few works have been performed on DNS of mass
transfer in bubble swarms [1,36,30,10,14,12]. Nevertheless, no previous studies of mass
transfer in bi-dispersed bubble swarms have been reported in the context of the unstruc-
tured CLS method [10]. Therefore, this work aims to fill this lack in technical literature.

As advantages of present methodology, the unstructured CLS method [3,10] has
been implemented on 3D collocated unstructured meshes, whereas the accumulation
of mass conservation error inherent to standard level-set methods is circumvented.
Furthermore, unstructured flux-limiters schemes as proposed in [3,7,10], are used to
discretize the convective term of transport equations, avoiding numerical oscillations
around discontinuities, and minimizing the so-called numerical diffusion [3,7,10]. Al-
together, this numerical methods improve the numerical stability of the unstructured
multiphase solver [3,4,5,6,7,10,14,12,13] in DNS of bubbly flows with high Reynolds
number and high density ratio.

This paper is organized as follows: The mathematical model and numerical methods
are presented in section 2. Numerical experiments are presented in section 3. Conclud-
ing remarks and future work are discussed in section 4.

2 Mathematical model and numerical methods

2.1 Incompressible two-phase flow

The one-fluid formulation [41], is employed to introduce surface tension force as a
singular terms in Navier-Stokes equations:

∂

∂t
(ρv) +∇ · (ρvv) = −∇p+∇ · µ (∇v) +∇ · µ(∇v)T + (ρ− ρ0)g + fσ, (1)

∇ · v = 0, (2)

where v is the fluid velocity, p denotes the pressure field, ρ is the fluid density, µ is
the dynamic viscosity, g is the gravitational acceleration, fσ is the surface tension force
per unit volume concentrated at the interface, subscripts d and c denote the dispersed
phase (bubbles or droplets) and continuous phase respectively. Density and viscosity
are constant at each fluid-phase, whereas a jump discontinuity is present at the interface
Γ :

ρ = ρdHd + ρcHc, µ = µdHd + µcHc. (3)

Here Hc is the Heaviside step function that is one at fluid c (Ωc) and zero elsewhere,
whereas Hd = 1−Hc. At discretized level physical properties are regularized in order
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to avoid numerical instabilities around the interface. On the other hand, bi-dispersed
bubble swarms are simulated in a full-periodic cubic domain (y − axis aligned to g),
therefore a force −ρ0g is included in momentum transport equation, Eq. (1), with ρ0 =
V −1Ω

∫
Ω

(ρdHd + ρcHc) dV , to avoid the acceleration of the entire flow field in the
downward vertical direction [23,4,8,10],

2.2 Multiple marker unstructured CLS method and surface tension

The unstructured conservative level-set method (UCLS) [3,10] developed for interface
capturing on unstructured meshes is employed in this research. Furthermore, to avoid
the numerical coalescence of bubbles, each fluid particle (bubble or droplet) is repre-
sented by a level-set function, as proposed in [4,7,8,10]. Therefore, the interface of the
ith fluid particle is defined as the 0.5 iso-surface of the level-set function φi, where
i = 1, 2, ..., nd and nd is the total number of fluid particles in Ωd. Since incompressible
flow is assumed (Eq. 2), the ith interface transport equation can be written in conserva-
tive form as follows:

∂φi
∂t

+∇ · φiv = 0, i = 1, .., nd. (4)

Furthermore, a re-initialization equation is introduced to keep a sharp and constant
level-set profile on the interface:

∂φi
∂τ

+∇ · φi(1− φi)n0
i = ∇ · ε∇φi, i = 1, .., nd. (5)

where n0
i denotes ni evaluated at τ = 0. Eq.(5) is advanced in pseudo-time τ up to

achieve the steady state. The compressive term of Eq.(5), φi(1 − φi)n0
i , forces the

level-set function to be compressed onto the diffuse interface, along ni. The diffusive
term, ∇ · ε∇φi, keeps the level-set profiles with characteristic thickness ε = 0.5h0.9,
where h is the local grid size [3,7,10]. Geometrical properties of the interface, such as
normal vectors ni and curvatures κi, are computed as follows:

ni(φi) =
∇φi
‖∇φi‖

, κi(φi) = −∇ · ni, i = 1, .., nd. (6)

Surface tension forces are approximated by the Continuous Surface Force model [17],
which has been extended to the multiple marker level-set method in [4,7,8,10]:

fσ =

nd∑
i=1

σκi(φi)niδsi =

nd∑
i=1

σκi(φi)∇φi. (7)

where the regularized Dirac delta function is defined as δi = ||∇φ|| [3,4,7,8,10]. Fi-
nally, in order to avoid numerical instabilities at the interface, fluid properties in Eq. (3)
are regularized by using a global level-set function φ [4,7], defined as follows:

φ = min{φ1, ..., φnd
}. (8)

Thus, Heaviside functions presented in Eq.(3) are regularized as Hd = 1 − φ and
Hc = φ. In this work 0 < φ ≤ 0.5 for Ωd, and 0.5 < φ ≤ 1 for Ωc. Alternatively, if
0 < φ ≤ 0.5 for Ωc, and 0.5 < φ ≤ 1 for Ωd, then Hd = φ and Hc = 1− φ, whereas
φ = max{φ1, ..., φnd

} [10].
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4 Néstor Balcázar-Arciniega et al.

2.3 Mass transfer

This work is focused in external mass transfer in bi-dispersed bubble swarms. There-
fore, the concentration of chemical species in the continuous phase is computed by a
convection-diffusion-reaction equation, as follows [10]:

∂C

∂t
+∇ · (vC) = ∇ · (D∇C) + ṙ(C), (9)

whereC denotes the chemical species concentration field,D denotes the diffusion coef-
ficient or diffusivity which is equal toDc inΩc andDd elsewhere, ṙ(C) = −k1C is the
overall chemical reaction rate, k1 is the first-order reaction rate constant. Furthermore,
the concentration inside the bubbles is kept constant [21,36,1,10], whereas convection,
diffusion and reaction of the mass dissolved from Ωd exists only in Ωc.

As proposed in [10], linear interpolation is applied to compute the concentration
(CP ) at the interface cells, taking information from Ωc (excluding interface cells), and
imposing a Dirichlet boundary condition for the concentration at the interface (φ =
0.5). Further details are reported in [10].

2.4 Numerical methods

Transport equations are discretized by the finite-volume method on 3D collocated un-
structured meshes, as introduced in [3,7,10]. For the sake of completeness, some points
are remarked in what follows.

The convective term of momentum equation (Eq. (1)), level-set advection equa-
tion (Eq. (4)), and transport equation for concentration of chemical species (Eq. (9)), is
explicitly computed, by approximating the fluxes at cell faces with unstructured flux-
limiter schemes, as first proposed in [3,10]. As a consequence, approximation of con-
vective term is written in the current cellΩP as follows: (∇h · βψv)P = 1

VP

∑
f βfψfvf ·

Af , where VP is the volume of the current cell ΩP , subindex f denotes the cell-
faces, Af = ||Af ||ef is the area vector, ef is a unit-vector perpendicular to the face
f pointing outside the cell ΩP [3,10]. Here, βf = {ρf , 1, 1}, consistently with Eqs.(1,
4, 9), is approximated by linear interpolation. An especial interpolation is applied to
(vf · Af ) [6], to avoid the pressure-velocity decoupling on collocated meshes. Finally,
ψf = {vf , Cf , φf} is computed as the sum of a diffusive upwind part (ψCp ) plus an
anti-diffusive term [3,7,10]:

ψf = ψCp
+

1

2
L(θf )(ψDp

− ψCp
). (10)

where L(θf ) is the flux limiter, θf = (ψCp
− ψUp

)/(ψDp
− ψCp

), Cp is the upwind
point, Up is the far-upwind point, and Dp is the downwind point [10]. Some of the flux-
limiters (L(θ))) implemented in the unstructured multiphase solver [3,4,5,6,7,8,10],
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have the form [40,24]:

L(θf ) ≡



max{0,min{2θf , 1},min{2, θf}} superbee,
(θf+|θf |)/(1+|θf |) van Leer,
max{0,min{4θf , 0.75 + 0.25θf , 2}} smart,
1 CD,
0 Upwind.

(11)

An assessment of flux-limiters to discretize the convective term of transport equations
on unstructured meshes is presented in [10]. In this research, Superbee flux-limiter is
employed unless otherwise stated. From the flux-limiters remarked in Eq.(11), SUPER-
BEE, VAN-LEER, SMART and UPWIND preserve the numerical stability of the multi-
phase solver, as these schemes avoid numerical oscillations around discontinuities. Con-
cerning the called numerical diffusion, the SUPERBEE flux-limiter is the less diffusive
scheme, whereas the UPWIND scheme maximizes the numerical diffusion. Thus, the
selection of the SUPERBEE flux-limiter scheme is crucial for bubbly flows with high
Reynolds number and high-density ratio, preserving numerical stability and minimizing
the numerical diffusion.

Compressive term of the re-initialization equation (Eq. (5)), is discretized at the cell
ΩP as follows [10]: (∇ · φi(1− φi)n0

i )P = 1
VP

∑
f (φi(1− φi))fn0

i,f ·Af , where n0
i,f

and (φi(1 − φi))f are linearly interpolated. The diffusive term of transport equations
are centrally differenced [10]. Linear interpolation is used to find the cell-face values of
physical properties and interface normals unless otherwise stated. Gradients are com-
puted at cell centroids through the least-squares method using the information of the
neighbor cells around the vertexes of the current cell (see Fig. 2 of [3]). For instance at
the cell ΩP , the gradient of the variable ψ = {vj , C, φ, ...} is calculated as follows:

(∇ψ)P = (MT
PWPMP )−1MT

PWPYP , (12)

MP and YP are defined as introduced in [3], WP = diag(wP→1, .., wP→n) is the
weighting matrix [29,32], defined as the diagonal matrix with elementswP→k = {1, ||xP−
xk||−1}, k = {1, .., n}, and subindex n is the number of neighbor cells. The impact of
the selected weighting coefficient (wP→k) on the simulations is reported in our previous
work [14].

The fractional-step projection method [19] is used to compute the pressure-velocity
coupling. First, a predictor velocity (v∗P ) is calculated at cell-centroids:

ρP v∗P − ρ0P v0P
∆t

= C0
v,P + D0

v,P + (ρP − ρ0)g + fσ,P , (13)

where the super-index 0 denotes the previous time-step, subindex P denotes the control
volume ΩP , Dv = ∇ · µ∇v + ∇ · µ(∇v)T , and Cv = −∇ · (ρvv). Imposing the
incompressibility constraint, (∇ · v)P = 0, to the corrector step, Eq. (15), leads to a
Poisson equation for the pressure at cell-centroids:(

∇ ·
(
∆t

ρ
∇p
))

P

= (∇ · v∗)P , e∂Ω · ∇p|∂Ω = 0. (14)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_24

https://dx.doi.org/10.1007/978-3-031-08760-8_24
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which is solved by means of a preconditioned conjugate gradient method. A Jacobi
pre-conditioner is used in this research. Here ∂Ω denotes the boundary of Ω, exclud-
ing regions with periodic boundary condition, where information of the corresponding
periodic nodes is used [10,4]. In a further step the updated velocity (vP ) is computed at
cell-centroids:

ρP vP − ρP v∗P
∆t

= −(∇p)P . (15)

Furthermore, face-cell velocity vf is interpolated [7,10] to fulfill the incompressibility
constraint and to avoid pressure-velocity decoupling on collocated meshes [35]. Then,
vf or some equivalent variable (e.g., vf ·Af ) is employed to advect βfψf on the convec-
tive term of transport equations [7,10]. This approach benefits the numerical stability
of the multiphase solver [3,4,5,6,7,8,10], specially for bubbly flows with high density
ratio and high Reynolds numbers, as demonstrated in our previous works [4,8].

Temporal discretization of advection equation (Eq. (4)) and re-initialization equa-
tion (Eq. (5)) is performed by a TVD Runge-Kutta method [25]. Reinitialization equa-
tion (Eq. (5)), is solved for the steady state, using two iterations per physical time step
to maintain the profile of the CLS functions [3,6,10].

The reader is referred to [3,4,5,7,8,10,14,13] for further technical details on the
finite-volume discretization of transport equations on collocated unstructured grids. Nu-
merical methods are implemented in the framework of the parallel C++/MPI code Ter-
moFluids [10]. The parallel scalability of the multiple marker level-set solver is reported
in [8,10].

3 Numerical experiments

Bubbles regimes can be characterized by the following dimensionless numbers [18]:

Mo =
gµ4

c∆ρ

ρ2cσ
3
, Eo =

gd2∆ρ

σ
, Rei =

ρcUT id

µc
,

ηρ =
ρc
ρd
, ηµ =

µc
µd
, α =

Vd
VΩ

, ηd =
db
db∗

, (16)

whereMo is the Morton number,Eo is the Eötvös number,Re is the Reynolds number,
ηρ is the density ratio, ηµ is the viscosity ratio, ∆ρ = |ρc − ρd| is the density differ-
ence between the fluid phases, subscript d denotes the dispersed fluid phase, subscript
c denotes the continuous fluid phase, Since a bi-dispersed bubble swarm will be sim-
ulated, ηd denotes the ratio of bubble diameters, db is the diameter of bigger bubbles,
db∗ is the diameter of smaller bubbles, d = db will be taken as the characteristic bubble
diameter employed to define {Mo,Eo,Re,Da, Pe, t∗}, α is the bubble volume frac-
tion, Vd is the volume of bubbles (Ωd), VΩ is the volume of Ω, and t∗ = t

√
g/d is the

dimensionless time.
Numerical results will be reported in terms of the so-called drift velocity [23,10],

UT i(t) = (vi(t) − vΩ(t)) · êy , which can be interpreted as the bubble velocity with
respect to a stationary container, vi(t) is the velocity of the ith bubble, vΩ(t) is the
spatial averaged velocity in Ω.
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Mass transfer with chemical reaction, ṙ(C) = −k1C, is characterized by the Sher-
wood number (Sh), the Damköler (Da) number, and Schmidt number (Sc) or Peclet
number (Pe), defined in Ωc as follows:

Sh =
kcd

Dc
, Sc =

µc
ρcDc

, P e =
UT d

Dc
= ReSc, Da =

k1d
2

Dc
. (17)

where kc is the mass transfer coefficient in Ωc.

Fig. 1. Mass transfer in a bi-dispersed bubble swarm, Nb = 16 (total number of bubbles), in a
full-periodic cube, Eo = 4.0, db/db∗ = 1.26, Mo = 5 × 10−11, ηρ = ηµ = 100, Sc = 1,
Da = 170.7, α = 19.6%, αb = 13.1%, αb∗ = 6.54%. Vorticity (ωz = ez · ∇ × v) and
concentration (C) on the plane x− y at (a) t∗ = tg1/2d−1/2 = 7, (b) t∗ = 14, (c) t∗ = 21.
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3.1 Validations and verifications

Multiple validations, verifications and extensions of the unstructured multiphase solver
[3,10] are reported in our previous works, for instance: buoyancy-driven motion of sin-
gle bubbles on unconfined domains [3,5,6], binary droplet collision with bouncing out-
come [4], drop collision against a fluid interface without coalescence [4], bubbly flows
in vertical channels [8,11], falling droplets [9], Taylor bubbles [26], thermocapillary-
driven motion of deformable droplets [6], and liquid-vapor phase change [13]. A com-
parison of the unstructured CLS method [3] and coupled volume-of-fluid/level-set method
[6] is reported in [9].

Concerning the mass transfer in single bubbles and mono-dispersed bubble swarms,
on unconfined and confined domains, the reader is referred to our previous works
[10,14,12], for validations and verifications of the multiple marker level-set solver em-
ployed in this research. Indeed, this work can be considered as a further step to perform
Direct Numerical Simulation of mass transfer in bi-dispersed bubble swarms.

3.2 Mass transfer in a bi-dispersed bubble swarm

As a further step and with the confidence that the multiple marker level set solver has
been validated [10,14,12,13], the DNS of mass transfer in a bi-dispersed bubble swarm
is computed. The saturation of concentration of chemical species inΩc is avoided by the
chemical reaction term in Eq.(9) [36,10]. Furthermore, a mass balance of the chemical
species at steady state (dCc/dt = 0) is employed to obtain the mass transfer coefficient
(kc) in Ωc, as follows [10,12,14]:

kc =
Vck1Cc

(CΓ,c − Cc)
∑nd

i=1Ai
. (18)

Here Ai =
∫
Ω
δsi dV is the surface of the ith bubble, Cc = V −1c

∫
Ωc
CdV , and δsi =

||∇φi||. Ω is a full-periodic cubic domain, with side length LΩ = 3.18d. Ω is dis-
cretized by 2003 hexahedral control volumes, with grid size h = LΩ/200, distributed
on 528 CPU-cores. As a consequence, bubbles are resolved with a grid size h =
db/63 = db∗/50. In our previous works [10,14,12], it has been demonstrated that
h = d/35 is enough to capture the hydrodynamics and mass transfer in gravity-driven
bubbly flows [10]. Periodic boundary conditions are used on the x− z, x− y and y− z
boundary planes. Bubbles are initially distributed in Ω following a random pattern,
whereas fluids are quiescent. Since fluids are incompressible and bubble coalescence
is not allowed, the void fraction (α = Vd/VΩ) and number of bubbles are constant
throughout the simulation.

Dimensionless parameters are Eo = 4.0, db/db∗ = 1.26, Mo = 5 × 10−11,
ηρ = ηµ = 100, Sc = 1, Da = 170.7, α = 19.6%, αb = 13.1%, αb∗ = 6.54%,
which corresponds to a bubbly flow with 16 bubbles distributed in Ω, 8 bubbles of
diameter db and 8 bubbles of diameter d∗b . Here αb denotes the volume fraction of
bigger bubbles, and αb∗ is the volume fraction of smaller bubbles. Fig. 1 illustrates
the mass transfer from a bi-dispersed swarm of 16 bubbles at t∗ = {7, 14, 21}. Fur-
thermore, concentration contours (C), and vorticity contours (ωz = êz · ∇ × v) are
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Fig. 2. Mass transfer from a bubble swarm, Nb = 16, in a full-periodic cube, Eo = 4.0,
db/db∗ = 1.26, Mo = 5 × 10−11, ηρ = ηµ = 100, Sc = 1, Da = 170.7, α = 19.6%,
αb = 13.1%, αb∗ = 6.54%. Time evolution of Reynolds number (Re) for each bubble (black
lines), averaged Reynolds number for each bubble (continuous lines), time-averaged Reynolds
number (red discontinuous line), normalized bubble surface A∗

i (t), total interfacial surface of
bubbles A∗(t) =

∑nd
i=1A

∗
i (t), spatial averaged concentration Cc = V −1

c

∫
Ωc
CdV , and Sher-

wood number Sh(t).

shown on the plane x − y. Fig. 2 shows the time evolution of Reynolds number for
each bubble and the time-averaged Reynolds number (discontinuous red line), normal-
ized surface of each bubbleA∗i (t) = Ai(t)/(4πd

2
b), total normalized surface of bubbles
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Fig. 3. Mass transfer from a bubble swarm, Nb = 16, in a full-periodic cube, Eo = 4.0,
db/db∗ = 1.26, Mo = 5 × 10−11, ηρ = ηµ = 100, Sc = 1, Da = 170.7, α = 19.6%,
αb = 13.1%, αb∗ = 6.54%. (a) 3D bubble trajectories. (b) Projection of bubble trajectories on
the plane x − z. (c) Projection of bubble trajectories on the plane x − y and z − y. Here LΩ is
the side-length of the periodic cubic domain.

A∗(t) =
∑nd

i=1A
∗
i (t), space-averaged concentration of chemical species (Cc) in Ωc,

and Sherwood number Sh(t) at steady state (dCc/dt = 0). Strong deformation of bub-
ble shapes (A∗i (t)), bubble-bubble interactions, and path instabilities of bubbles at high
Reynolds numbers, lead to fluctuations in Rei(t) as illustrated in Fig. 2. On the other
hand, the Reynold number of the bi-dispersed bubble swarm, R̄e = n−1d

∑nd

i=1Rei(t),
tends to the steady-state. The spatial averaged concentration (Cc) achieves an steady-
state value after initial transient effects, which demonstrates an equilibrium between
mass transfer from the bubbles to Ωc and the chemical reaction in Ωc. As a consistency
test, numerical results of the space-averaged concentration of chemical species in Ωc
compares very well with results obtained by the called film theory [10], as illustrated
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in Fig. 2. Furthermore, the mass transfer coefficient (Sh ≈ 50) achieves the steady-
state, once dCc/dt = 0. Finally, Fig. 3 illustrates bubble trajectories, which indicate a
repulsion effect between the bubbles.

4 Conclusions

DNS of mass transfer in a bi-dispersed bubble swarm has been performed using a par-
allel multiple-marker level-set method [4,8,10]. Numerical experiments demonstrate
the reliability of this approach as an accurate tool for simulating bi-dispersed bubbly
flows with mass transfer and chemical reaction in a full-periodic domain. The solver
can reproduce the physics of bubble-bubble interactions in a long-time simulation of
bubbly flows. This numerical approach avoids the numerical merging of bubbles, an ar-
tifact inherent to interface capturing methods, e.g., level-set, volume-of-fluid. Bubble-
bubble interactions lead to a repulsion effect in horizontal alignment. On the other
hand, when two bubbles are vertically aligned, their interactions follow the so-called
drafting-kissing-tumbling mechanism observed in solid particles. This set of interac-
tions induces a fluctuating velocity field known in the literature as bubble-induced tur-
bulence. The time-averaged Reynolds number (Re) and Sherwood number (Sh) tend
to the steady-state. Turbulence induced by the agitation of bubbles promotes the mix-
ing of chemical species in the continuous phase. Furthermore, the spatially averaged
concentration of chemical species tends to the steady-state, indicating a balance be-
tween chemical reaction in Ωc and mass transfer from bubbles. Present results demon-
strate that the multiple marker level-set method [10] is a predictive model to compute
Sh = Sh(Eo,Re,Da, αbαb∗ , db/db∗) in bi-dispersed bubbly flows. In future work, the
model will be extended to simulate complex chemical reaction kinetics, as well as em-
ployed in parametric studies of Sh = Sh(Eo,Re,Da, ...) to develop closure relations
for models based on the averaged flow, e.g., two-fluid models [28].

References

1. Aboulhasanzadeh, B., Thomas, S., Taeibi-Rahni, M., Tryggvason, G. (2012). Multiscale com-
putations of mass transfer from buoyant bubbles. Chemical Engineering Science 75, 456-467.

2. Alke, A., Bothe, D., Kroeger, M., Warnecke, H.J. (2009). VOF-based simulation of conjugate
mass transfer from freely moving fluid particles. In Mammoli, AA and Brebbia, CA (Ed):
Computational methods in multiphase flow V, WIT Transactions on Engineering Sciences,
157-168.
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