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Abstract. Solving general non-linear partial differential equations (PDE)
precisely and efficiently has been a long-lasting challenge in the field of
scientific computing. Based on the deep learning framework for solving
non-linear PDEs physics-informed neural networks (PINN), we intro-
duce an adaptive collocation strategy into the PINN method to improve
the effectiveness and robustness of this algorithm when selecting the
initial data to be trained. Instead of merely training the neural network
once, multi-step discrete time models are considered when predicting the
long time behaviour of solutions of the Allen-Cahn equation. Numerical
results concerning solutions of the Allen-Cahn equation are presented,
which demonstrate that this approach can improve the robustness of
original neural networks approximation.

Keywords: Deep learning · Adaptive collocation · Discrete time models
· Physics informed neural networks · Allen-Cahn equation.

1 Introduction

Non-linear partial differential equations (PDE) play an important role in numer-
ous research areas including engineering, physics and finance. However, solving
general non-linear PDEs precisely and efficiently has been a long-lasting chal-
lenge in the area of scientific computing [4,6,11,13,15]. Numerical methods such
as finite difference and finite element methods (FEM) are popular approaches in
solving PDEs, due to their capability in solving non-linear problems and great
freedom they can provide in the choice of dispersion. These methods discretise
continuous PDEs and create simple basis functions on the discretised domain
Ω. Through solving the system of basis coefficients, they approximate the true
solutions of the targeted problems. Notwithstanding significant advance of these
methods achieved in the past few decades and their capability to deal with fairly
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complicated and oscillating problems, they consume a lot of time and computing
resources, especially in the analysis and computation of complex problems.

Confronted with the shortcoming of traditional numerical methods in solving
PDEs, researchers turned to deep learning techniques to simulate true results.
Deep learning, a subset of machine learning containing powerful techniques that
enable computers to learn from data, has attracted enormous interest among
people in various fields. Deep learning is a great breakthrough of traditional ma-
chine learning algorithms on account of complicated non-linear combinations of
input and output features using multiple hidden layers. During training process,
the back-propagation algorithm increases weights of the combinations useful to
obtain final output features, while gradually deprecate useless internal relations,
making the approximation outcomes more accurate step by step. Great efforts
have been made to obtain solutions of PDEs based on deep learning approaches.
Neural networks are used to improve the precision of results obtained from finite
difference method [8]. In [14], the authors apply regression analysis technique
to develop a discretisation scheme based on neural networks in the solution of
non-linear differential equations. To handle general non-linear PDEs, physics-
informed neural networks (PINN) are trained to infer solutions, and the ob-
tained surrogate models are differentiable in regard to all parameters and input
data [11]. Deep Galerkin Method (DGM), a similar approach to PINN, is pro-
posed to solve PDEs of high dimension through training a deep neural network
to approach the differential operation, boundary conditions and initial condi-
tion [13]. Exploring the variational form of PDEs is another attrative approach
to researchers [6]. Deep Ritz method (DRM) is one typical example of this ap-
proach, which casts governing equations in an energy-minimisation framework
to solve PDEs [6].

The rest of this paper is organized as follows. In Section 2, we first briefly
introduce artificial neural networks, and then provide a detailed explanation to
PINNs. The idea of adaptive collocation is also introduced in this section. Using
the examples of Allen-Cahn equation, we discuss how to simulate the results
with the discrete time models of PINNs in Section 3, covering the structure
of neural networks employed and the working mechanism. Adaptive collocation
strategy is applied in selecting training points at initial and later stages when
training PINNs. Several approximation outcomes are demonstrated, which are
later compared to the results obtained from the algorithm without adaptive
strategy. A conclusion and remark is presented in Section 4.

2 Methodology

2.1 Artificial Neural Networks

Neural networks are composed of three kinds of layers – input layer, hidden layers
and output layer. The model with more than one hidden layer is referred to as
deep neural network (DNN). Figure 1 displays the structure of a DNN with n
hidden layers. The realisation of neural networks relies on two algorithms – feed-
forward propagation and back-propagation. The former builds the framework
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for neural networks, while the latter optimises the constructed model to achieve
desired results.

Fig. 1. Representation of a DNN as a graph. The number of nodes in the input layer
and the output layer depends on the problem setting, so should be unchangeable,
whereas the number of layers and nodes in each hidden layer could be modified to
optimise the structure.

Feed-forward propagation algorithm In a feed-forward neural network where
the input x contains din nodes, the output y contains dout nodes, and the ith

hidden layer ai consists of di nodes with i = 1, ..., n:

a1 = f(x; w1, b1) = x>w1 + b1,

ai = f(ai−1; wi, bi) = a>i−1wi + bi,

y = f(an; wn+1, bn+1) = a>n wn+1 + bn+1,

(1)

where i = 2, 3, ..., n, w1,w2, ...,wn+1 are the weights and b1, b2, ..., bn+1 are the
biases. Thus, combining the equations in Eq. (1) we get the the prediction for
output value y:

y = f(f(· · ·f(x)· · ·)). (2)

However, if the neural network is designed in this way, combining all these
hidden layers will work the same as merely one hidden layer. Based on this
concern, the linear function f here is transformed to a non-linear one, denoted
by h known as an activation function. Sigmoid units, tanh units and rectified
linear units (ReLU) are the three most popular ones, while ReLU as the default
activation function is conventionally used in hidden layers [9]. ReLU is defined
as follows:

h(x) = max (0, x). (3)
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Since ReLU are quite close to linear functions, they are able to preserve more
properties, facilitating the optimisation. Hence, in the renewed feed-forward neu-
ral network, the output value y can be obtained by the following:

a1 = h(f(x; w1, b1)) = h(x>w1 + b1),

ai = h(f(ai−1; wi, bi)) = h(a>i−1wi + bi),

y = h(f(an; wn+1, bn+1)) = h(a>n wn+1 + bn+1).

(4)

Back-propagation algorithm After the framework for feed-forward neural
network has been constructed, it comes to the training process to optimise the
prediction of the output value y, known as back-propagation. The most fun-
damental algorithm in back-propagation is Gradient Descent. In this part, the
weights w and the biases b are trained through minimising the cost function J :

J(w, b) =
1

dout

dout∑
j=1

L(ŷ(j), y(j)), (5)

where y is the true value whereas ŷ denotes the prediction value acquired from
Eq. (4). The choice of function L depends on the problem to be solved. For
example, cross-entropy loss function or exponential loss function is more suitable
to be applied in binary classification problem. In regression problems, it is more
appropriate to use L2 loss defined as follows:

J(w, b) =
1

dout

dout∑
j=1

(ŷ(j) − y(j))2. (6)

Now, the problem is simplified to find:

(w, b) = arg min
w,b

J(w, b). (7)

In Gradient Descent algorithm, the weights w and the biases b are trained
following the formulas:

w := w − α∂J(w, b)

∂w
, b := b− α∂J(w, b)

∂b
(8)

where α is the learning rate. It is a crucial hyperparameter deciding the rate of
convergence. Apart from gradient descent algorithm, a few advanced optimisers
can be used to optimise the training process, including Momentum, Adagrad,
RMSprop and Adam.

2.2 Physics-Informed Neural Networks

In this work, we consider parametrised non-linear PDEs of the following general
form:

ut +N [u] = 0, x ∈ Ω, t ∈ [0, T ], (9)
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where u(t;x) is the latent solution, N [·] represents a non-linear operator, and Ω
is the domain in RD. Without the requirement to consider linearisation, prior as-
sumptions, or division of local time interval, we can directly handle the non-linear
problem in this setup. Additionaly, a large variety of problems in mathemati-
cal physics are encapsulated in Eq. (9), including kinetic equations, diffusion
processes, conservation laws, and so on [11].

Generally, we use the discrete time models of PINNs, in which q-stage Runge-
Kutta methods [10] are applied to Eq. (9):

u(t0 + cj∆t, x) = u(t0, x)−∆t
q∑

j=1

aijN [u(t0 + cj∆t, x)], i = 1, · · · , q,

u(t0 +∆t, x) = u(t0, x)−∆t
q∑

j=1

bjN [u(t0 +∆t, x)].

(10)

Here, ∆t is a predetermined value and [t0, t0+∆t] refers to the short time interval
we are supposed to study on. The above equations depend on the parameters
{aij , bj , cj} which are fully determined by Runge-Kutta methods. To simplify
the formulas, express Eq. (10) as

u0i (x) = u(t0 + cj∆t, x) +∆t

q∑
j=1

aijN [u(t0 + cj∆t, x)], i = 1, · · · , q,

u0q+1(x) = u(t0 +∆t, x) +∆t

q∑
j=1

bjN [u(t0 +∆t, x)].

(11)

Thus, u0i (x) = u0q+1(x) = u(t0, x) for i = 1, · · · , q. Taking x as the input feature
and the following

[u01(x), u02(x), · · · , u0q(x), u0q+1(x)] (12)

as output features, together with the setting of several hidden layers, we have
constructed the basic structure of PINNs. Each node of the output features u0i (x)
for i = 1, · · · , q and u0q+1(x) are all equivalent to u(t0, x), i.e., the true value of
u at the initial stage. Substituting u(t0, x) by what is obtained from the neural
network in Eq. (10), we can predict the values along the short time interval, i.e.,
u(t0 + cj∆t, x) for i = 1, · · · , q and u(t0 +∆t, x).

After determining the input and output features of the neural network, we
enable the algorithm to approach to the true solution through minimising the
cost function J defined as follows:

J(w, b) = Ju + Jb, (13)

where Ju refers to the difference between the approximation results u01(x), · · · ,
u0q(x), u0q+1(x) and the true solution u(t0, x) of the PDE at initial stage, and
Jb is the deviation of the prediction from the true value at boundary points at
t = t0 + c1∆t, · · · , t0 + cq∆t, t0 +∆t. Both Ju and Jb use mean squared error to
reflect the variation.
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2.3 Adaptive Collocation Strategy

Various methods of adaptive collocation can be employed to select training data
of the neural networks. For instance, the authors use uniformly distributed
training points at the initial stages when solving PDEs based on deep learn-
ing techniques, while add more points according to the residual values at later
stages [2, 3, 7]. In [11], when training the discrete time algorithms of PINNs,
certain number of random training points are generated from the domain Ω at
the initial stage. In the case of short-time prediction, instead of choosing train-
ing points randomly, we propose to apply one approach of adaptive collocation
strategy, and select points based on the real solution of the PDE. However, for
the prediction of long-term solution, single-step of the discrete time algorithms
may be inapplicable. In this case, we feed last estimation results of the model
into the neural network as the sample data, and select training points from it
adaptively.

Figure 2 illustrates the idea of our adaptive collocation strategy. The curve
is assumed to be the true solution of the PDE at the initial stage, and the blue
dots represent the selected training data. In the given simple example, both
point-selection strategies choose 16 points from the domain, but the left picture
sub-samples training data randomly, while the right one adaptively locates the
points according to the value of u. Points have larger possibility to be selected
around u = 0.

Fig. 2. Simple examples of sub-sampling training data. The left picture opts data
randomly, while the right one uses adaptive collocation.

3 Numerial Experiments

3.1 Allen-Cahn Equation

Aiming to understate the capability of proposed discrete time models when han-
dling non-linear PDEs, we take the time-fractional Allen-Cahn equation with
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period boundary conditions (14) as an example, which is a classical phase-field
model.

ut − 10−4uxx + 5u3 − 5u = 0, x∈[−1, 1], t∈[0, 2],

u(0, x) = x2 cos (πx),

u(t,−1) = u(t, 1),

ux(t,−1) = ux(t, 1).

(14)

Originally, the Allen-Cahn equation was introduced to demonstrate the motion
of a curved anti-phase boundary on multi-component alloy systems [1]. Through
a phase-field approach, the Allen-Cahn equation has found its application in
various research areas including fluid dynamics and complex moving interface
problems [12]. For the Allen-Cahn equation (14), the non-linear operator in Eq.
(9) is given by:

N [u] = −10−4uxx + 5u3 − 5u, (15)

and N [u] is expressed as follows in the discrete form:

N [u(t0 + cj∆t, x)] = −10−4uxx(t0 + cj∆t, x) + 5[u(t0 + cj∆t, x)]3

− 5u(t0 + cj∆t, x), j = 1, · · · , q,
N [u(t0 +∆t, x)] = −10−4uxx(t0 +∆t, x) + 5[u(t0 +∆t, x)]3

− 5u(t0 +∆t, x).

(16)

In the neural network that calculate solutions for the Allen-Cahn equation (14),
the cost function J is defined as:

J(w, b) = Ju + Jb,

where

Ju =

q+1∑
i=1

|u0i (x)− u(t0, x)|2, (17)

and

Jb =

q∑
j=1

|u(t0 + cj∆t,−1)− |u(t0 + cj∆t, 1)|2

+ |u(t0 +∆t,−1)− |u(t0 +∆t, 1)|2

+

q∑
j=1

|ux(t0 + cj∆t,−1)− |ux(t0 + cj∆t, 1)|2

+ |ux(t0 +∆t,−1)− |ux(t0 +∆t, 1)|2.

(18)

Sample data are generated through simulating the Allen-Cahn equation (14)
using the Chebfun package [5], which employs conventional spectral methods.
An explicit Runge-Kutta integrator with step ∆t = 10−5 is used. Along the
phase we study on, solutions of 2048 evenly distributed points in the domain
Ω = [−1, 1] are computed, forming the training and test data set.
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3.2 Short-time Prediction

In this subsection, we merely look on the prediction of solutions of the Allen-
Cahn equation (14) from t0 = 0.1 to t1 = 0.9, i.e., ∆t = 0.8. Figure 3 shows
the simulation outcomes using the Chebfun package. Firstly, 200 training data

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

−1.0

−0.5

0.0

0.5

x

u(t, x)

−1.0

−0.5

0.0

0.5

Fig. 3. Simulation results using conventional spectral models for t∈[0, 2].

are sub-sampled randomly from the 2048 points at the initial stage of t0 = 0.1.
To predict the solution of the equation at t1 = 0.9, the discrete time models of
PINNs are used with 4 hidden layers consisting of 200 nodes each. The output
layer contains 101 neurons of u(t0 + cj∆t, x) for j = 1, . . . , 100 and u(t0 +∆t, x)
corresponding to 100 stages of Runge-Kutta method. In Figure 4, the location
of sub-sampled initial training data and the prediction results at the final stage
are displayed. The small relative error reflects effectiveness of current model.
However, we wonder whether selecting points adaptively corresponding to the
value of u at t = 0.1 could further improve the accuracy. To this end, among
the sample input data {x1, · · · , x2048}, xk has bigger possibility to be selected
when u(t0, xk) is closer to 0 for k = 1, · · · , 2048. The following formula shows
the method we use to calculate the possibility of xk to be selected. Denote this
possibility by P(xk).

f(xk) = g(1− |u(t0, xk)|) + ε, k = 1, · · · , 2048,

where g(z) =

{
z, z ≥ 0

0, z < 0
,

P(xk) =
f(xk)∑2048
m=1 xm

.

(19)

Similarly, the location of selected initial training data and the prediction results
at the final stage are shown in Figure 5. Indeed, accuracy of the estimated solu-
tion at t = 0.9 greatly improves compared to random data-selection approach.
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Fig. 4. The left picture depicts the 200 initial training points randomly sub-sampled
from the data set of 2048 points, while the right one shows final prediction at t1 = 0.9.
The mean relative error on the whole data set is 1.013·10−2.
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Fig. 5. The left picture depicts the 200 initial training points adaptively selected from
the data set of 2048 points based on the value of u(t0, xk) for k = 1, · · · , 2048, while
the right one shows final prediction at t1 = 0.9. The mean relative error on the whole
data set is 1.415·10−3.
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3.3 Long-time Prediction

In Section 3.2, single-step discrete time model of PINNs is employed to predict
solutions of the Allen-Cahn equation (14) from t0 = 0.1 to t1 = 0.9. In this part,
we consider to expand the interval to [0.1, 1.5]. Figure 6 displays the location
of randomly selected initial training data and the prediction of u at t2 = 1.5
using the same model as in Section 3.2. Applying adaptive collocation strategy
described in Eq. (19), approximated solution at t2 is shown in Figure 7. Easy
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Fig. 6. The left picture depicts the 200 initial training points randomly sub-sampled
from the data set of 2048 points, while the right one shows final prediction at t2 = 1.5.
The mean relative error on the whole data set is 0.1123.
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Fig. 7. The left picture depicts the 200 initial training points adaptively selected from
the data set of 2048 points based on the value of u(t0, xk) for k = 1, · · · , 2048, while
the right one shows final prediction at t2 = 1.5. The mean relative error on the whole
data set is 0.2447.

to find from the figures that one-step discrete time models fed with randomly
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or adaptively generated training data does not work satisfactorily. In the case of
long-time prediction, adaptive collocation strategy loses its effectiveness.

Given the undesirable approximation results, we employ multi-step discrete
time models of PINNs to see whether they can be improved. Since the prediction
results from t0 = 0.1 to t1 = 0.9 have been attained as shown in Figure 4, we
take the approximated solution ū(t1, xk) for k = 1, · · · , 2048 as the real value.
Then we feed it into another neural network with the same structure as before
in order to predict the solutions at t2 = 1.5. In this trial, all training data are
still sub-sampled randomly from the discretised domain. Figure 8 illustrates the
results at the final stage. Then, based on the estimated solution at t1 displayed
in Figure 5 using adaptive collocation, 200 training points at t1 are selected
adaptively according to the value of ūa(t1, xk) for k = 1, · · · , 2048. Prediction of
u at the final stage is shown in Figure 9. Though the multi-step discrete time
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Exact Prediction

Fig. 8. The left picture depicts the 200 initial training points randomly sub-sampled
from the data set of 2048 points at t1 = 0.9, while the right one shows final prediction
at t2 = 1.5. The mean relative error on the whole data set is 0.1305.

model still performs badly if sub-sample training data randomly at each step,
the model yields desirable outcomes when selecting training points adaptively
each time. Hence, adaptive collocation strategy plays a role in improving the
accuracy of estimated solutions of the Allen-Cahn equation in longer term.

4 Conclusion

In this study, adaptive collocation strategy is applied in the discrete time models
of physics-informed neural networks to estimate solutions of the Allen-Cahn
equation. A sample data set of 2048 evenly distributed points in the discretised
domain Ω = [−1, 1] at certain time in discretised time domain t ∈ [0, 2] is
generated using Chebfun package which applies explicit Runge-Kutta integrator.
The accuracy of prediction results from t0 = 0.1 to t1 = 0.9 obtained via single-
step discrete time model of PINNs shows the capability of the model to find
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Fig. 9. The left picture depicts the 200 initial training points adaptively selected from
the data set of 2048 points based on the value of ū(t1, xk) for k = 1, · · · , 2048, while
the right one shows final prediction at t2 = 1.5. The mean relative error on the whole
data set is 1.940·10−3.

solutions in short time period. Moreover, the model taking advantage of adaptive
collocation approach even generates better simulation outcomes. In long-time
prediction, estimation results demonstrate that single-step discrete time models
cannot perform well. Through training the model twice with adaptive collocation
strategy used to select training points, we provide quite precise approximation
results at t = 1.5, reflecting the robustness of multi-step discrete time models of
PINNs with adaptive collocation in long-time prediction.

When training the models, neural networks with varied hyper-parameters
could be employed to see further improvement in the accuracy of prediction, and
study of convergence properties of the neural networks remains open as possible
research topics. Furthermore, the applicability of multi-step discrete time models
of PINNs in other PDEs with larger time domain can be investigated in future
work.
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