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Abstract. Updating the set of Multiple Dispatch Rules (MDRs) for
scheduling of machines in a Flexible Manufacturing System (FMS) is
computationally intensive. It becomes a major bottleneck when these
rules have to be updated in real-time in response to changes in the man-
ufacturing environment. Machine Learning (ML) based solutions for this
problem are considered to be state-of-the-art. However, their accuracy
and correctness depend on the availability of high-quality training data.
To address the shortcomings of the ML-based approaches, we propose a
novel Quadratic Unconstrained Binary Optimization (QUBO) formula-
tion for the MDR scheduling problem. A novel aspect of our formulation
is that it can be efficiently solved on a quantum annealer. We solve the
proposed formulation on a production quantum annealer from D-Wave
and compare the results with single dispatch rule based baseline model.

Keywords: Quantum Annealing - Multiple Dispatch Rules - Flexible
Manufacturing System.

1 Introduction

Scheduling in manufacturing systems refers to the process of allocating a common
set of production resources such as machines to different jobs simultaneously.
The aim of a scheduling problem is to allocate the resources such that an overall
objective is optimized. Some of the common objectives are optimizing make-
span, total tardiness, mean lateness, mean flow-time and so on. The Job Shop
Scheduling Problem (JSSP) aims to calculate the start time of each operation on
machines in order to optimize the overall objective. This problem is constrained
such that each operation of a job is scheduled only once and when all preceding
operations in the job are completed. Here each machine can process only one
job at a time [11]. Flexible JSSP (F-JSSP) is an extension of JSSP where each
operation can be scheduled on any machine from a given set of machines[2]. JSSP
is proven to be an NP-hard problem [3] and F-JSSP, which is its extension, is
also NP-hard making it a very difficult combinatorial optimization problem.
Occurrences of unforeseen events in the job shop environment may void the
applicability of a scheduling decision. Mitigating the effects of such events neces-
sitates real-time corrective action. Real-time Scheduling (RTS) of operations is
a prominent approach to address this issue. The RTS in manufacturing systems
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has to take decisions in real-time based on the changes in the job shop environ-
ment. One category of such decisions is about allotting different Dispatch Rules
(DRs) to machines so that the overall scheduling objective is satisfied. In a typ-
ical manufacturing shop scenario, the time taken for an operation on a machine
is in the order of minutes. Any RTS approach which can decide the DRs within
those few minutes is generally desirable.

1.1 Motivation

The main challenge with the approaches that aim to find a (global) optimal job
schedule is that they are inefficient and often impractical for real-time scheduling.
This is because the job schedule needs to be recomputed quickly in response to
changes in the job shop environment. That is, a machine in a shop will not be able
to deploy the next job until the optimal schedule is recomputed. Since a practical
shop has to handle a large number of jobs and machines, such approaches do
not scale well for real-time scheduling in such an environment.

A DR based approach eases the requirement for immediate re-computation
of the job schedules for the machines, whenever there is a change in the environ-
ment. In the case of DR-based scheduling, each machine on the shop is assigned
a DR which the machine will use to select the next job in real-time. The machine
can continue to use a given DR for job scheduling, while a “higher-layer” com-
putes an updated DR that reflects the new reality of the shop’s environment.
Since the DRs immediately react to dynamic events in the environment, they
achieve the best time efficiency. Though the dynamic DRs may fail to guarantee
a global minimum, they are good for RTS because of zero delay in job scheduling
in the machine. This has motivated us, like many other researchers, to apply dif-
ferent techniques to find the optimal set of DRs to drive real-time job scheduling
in machine shops.

There are various approaches available today that can perform the RTS de-
cisions of dispatch rules. Predominant among them is based on machine learning
methods[11] because they provide approximate optimal answers within a quick
response time. However, the downside of such methods is the significant amount
of time and computing resources they consume to build the predictive mod-
els that they rely on. Secondly, they also require a sufficiently large volume of
relevant training data, which may not always be available.

To address these problems, we propose a quantum algorithmic approach.
Quantum algorithms are known to offer exponential speedup over their classi-
cal counterparts for specific problems. With the availability of systems such as
D-Wave’s Quantum annealer, the quantum annealing approach has become a
promising option for solving complex combinatorial optimization problems. In
order to take advantage of such quantum platforms, we have developed a novel
quantum formulation for the F-JSSP scheduling with dispatch rules.
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2 Related work

JSSP has been attempted on a quantum annealer by [8]. They show how the
problem can be split into small optimization problems such that it can be solved
on a limited quantum hardware capacity. Similarly, [2] explore how a parallel flex-
ible JSSP can be solved on a quantum annealer. They formulate the problem as
a QUBO problem along with various variable pruning techniques to solve bigger
scheduling problems on quantum annealers. These works indicate the quantum
annealer approach is indeed promising for solving the scheduling problems.

Apart from quantum algorithms, a sizeable body of classical work is available
in the literature where different algorithms and heuristics are applied for finding
the optimal dispatch rules. The new job insertion problem in dynamic flexible
job shop scheduling problem has also been addressed in the literature [9] [14]
[7]. [9] develop a deep Q-learning method with double DQN and soft weight
update to tackle this problem and to learn the most suitable action (e.g., dispatch
rule) at each rescheduling point. [7] propose a new Karmarkar-Karp heuristic
and combine it with a genetic algorithm for solving the dynamic JSSP. They
show that their proposed methodologies generate excellent results. [14] propose a
reinforcement learning-based MDRs selection mechanism to tackle this problem.
They determine the system state by a two-level self-organizing map and use the
Q-learning algorithm as a reinforcement learning agent. [6] take a random-forest
based approach for learning the dispatch rules to minimize the total tardiness.
They compare their method with other decision-tree-based algorithms and show
their approach is effective in terms of extracting scheduling insights.

3 Solution architecture

The overall architecture for the proposed quantum formulation is shown in Fig-
ure 1. The input to the FMS is job requests and the DRs for each machine. The
FMS outputs the finished products by scheduling the machines using the as-
signed dispatch rules. When determining the scheduling decisions, our approach
considers the jobs received during fixed time intervals T' (e.g., every 60 minutes).
T is treated as a hyper-parameter in our approach, which can be estimated using
suitable heuristics (a naive one would be just to fix the value of T' to the average
job completion time).

For the jobs arriving during every T interval, the DR estimator calculates the
best possible DRs. The mathematical models for estimating DRs are developed
in the following section.

4 Problem Formulation

A job shop has a set of n jobs J = {j1,J2,...., jn} which need to be executed
on k machines M = {mq,ma,....,my}. Each job j; has a sequence of operations
O; ={0i,1,0;,2,....} which need to be executed in a specific order. The objective
is to assign a dispatch rule r € R for each machine such that overall tardiness
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is minimized. The DR assignment problem is framed as a QUBO problem such
that we may use quantum annealing to solve it.

4.1 Example scenario used for testing and describing our approach

We use a modification of the example FMS used by a well-known work by Mon-
tazeri to describe and test our approach [10]. It consists of 3 machine families
(F1, F2, F3), three load/unload stations (L1, L2, L3) and a sufficient Work in
Process (WiP) buffer. Machine family F1 and F2 consist of 2 machines each
(F11, F12 and F21, F22), and we assume zero loading time for material carriers
(e.g., conveyor belt). Each machine in the manufacturing system is connected by
a conveyor belt. The belt can carry a maximum of 3 products at any given time.
The time taken by the conveyor to transport intermediate products between the
machines is shown in the Figure 1. The conveyor belt is modelled as a machine
family C with three machines C1,C2,C3. As it has 3 machines, a maximum of 3
products can be carried at anytime. The processing time for these machines is
equal to the time needed for the product to be transported on the conveyor belt.
There are five different products that need to be manufactured by the FMS.
The routing and timing for each of them are given in Table 1. The DRs con-
sidered in this work are SIO,SPT,SRPT,SDT,SMT,SIO,LPT,LRPT,LDT,LMT.
The description of these rules can be found in Table 2. We would like to note
that our approach works in general scenarios similar to the above.

FMS
i s
5 L2 ez L F1
: Flz| !
e s N
DR data | :
L L F21
13 |es» F3 23 F2

" Transportation time

DR «—— 1 Hyper-

Parameter |«
———»| estimator : -
Quantum Estimator | FMS Attributes

Job attributes
T_, annealer

Fig. 1: Proposed solution architecture

4.2 Proposed QUBO formulation for the problem

In the following subsections, we describe the crucial elements of the proposed
QUBO formulation for the F-JSSP problem that also takes into consideration
the dispatch rules in an RTS scenario.
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Job Operations Timing (minutes)

P1|L2, F2, L3, F1, L3, F2, L.2|2, 11, 10, 20, 3, 14, 2
P2|L2, F2, L3, F1, L3, F2, L2[2, 10, 10, 24, 3, 10, 2
P3|L2, F2, L2, F1, L3, F2, L3[2, 15, 2, 30, 10, 21, 3
P4|L2, F2, L2, F1, L3, F2, L3|2, 12, 2, 26, 10, 13, 3
P5|L2, F2, L3, F1, L3, F1, L3|8, 16, 5, 25, 5, 22, 10
Table 1: Routing and timing information of products / jobs

Table 2: Description of different dispatch rules
DR |Description
SIO [Select the job with the shortest imminent operation time
SPT |Select the job with the shortest processing time
SRPT|Select the job with the shortest remaining processing time
SDT Select the job with the smallest ratio obtained by dividing the processing
time of the imminent operation by the total processing time
Select the job with the smallest value obtained by multiplying the pro-
cessing time of the imminent operation by the total processing time
LIO |Select the job with the largest imminent operation time
LPT |Select the job with the largest processing time
LRPT|Select the job with the largest remaining processing time
LDT Select the job with the largest ratio obtained by dividing the processing
time of the imminent operation by the total processing time
Select the job with the largest value obtained by multiplying the pro-
cessing time of the imminent operation by the total processing time

SMT

LMT

Decision variables Two sets of binary decision variables are used for repre-
senting different decisions needed for solving the problem. The first set of binary
variables x o m,: represent the decision whether the ot" operation of j*" job must
be scheduled on a machine m at time ¢. The second set of binary variables x, ,
represent if the dispatch rule r is assigned for machine m.

1 if the operation o of job
j must be scheduled on (1)

machine m at time t
0 otherwise

Lj,om,t =

1 if machine m must be
T, = assigned rule r (2)
0 otherwise

The constraints and objective functions that we formulate using these de-
cisions variables will be expressed as Hamiltonians in the following subsections
[13]. Further, to understand the background of choosing the specific terms in an
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objective function or constraint, please refer to the literature on QUBO formu-
lation [4].

Operation scheduling A job comprises of a sequence of operations needed
to be performed in order to manufacture a product (see example in Table 1).
A product requires each operation to be performed (and thus scheduled) only
once. This constraint is expressed as the Hamiltonian in Equation 3

Hy, = Z Z [Z Tjom,t — 1] (3)

JjEJ 0€O Lmi,t

Preference order Every job has a predefined order in which the operations
need to be carried out. In our example from Table 1, the product P1 needs the
operations to be scheduled in this order: L2 —+ F2 — L3 — F1 —» L3 — F2 —
L2. If this order is violated, the schedule generated will not be a valid one. In
order to force the scheduler to follow the defined order, a penalty is added for
each violation.

Let 21 = %j,0,,m,,t, and T2 = T o, mo,t, represent scheduling decisions for
two consecutive operations of the same job j at time ¢; and ty. Let p represent
the processing time of operation o7. In a valid schedule, the operation 07 must
be scheduled before 0y. 0; and 0y need to be scheduled (i.e.,for them z; = 1
and xo = 1) such that ¢5 must be greater than ¢; 4+ p (i.e., 0o can be scheduled
only after o1 is completed). All combinations of z1 and x5 that do not satisfy
the condition are violations and must be penalized. The set A in Equation 4
contains all such combinations and the penalty term is shown in Equation 5.

A = [(Tj,0,mty> Tjot1,mit,) V2 <1 +p ] (4)

Hy = Z T1T2 (5)

z1,L2€A

Machine scheduling Each machine can handle only one operation at a time.
Schedules resulting in overlapping operations on a machine must be avoided. To
avoid all such conflicting (i.e., those having overlapped schedule) operations a
penalty term is added.

Let £1 = ©j,.0,,m,t, and T2 = Zj, 0,,m,t, represent scheduling decisions for
two operations on the same machine m at time ¢; and to respectively. Let p be
the processing time of operation o;. In a valid schedule, the operations o; and
09 must be scheduled such that they do not overlap each other. If both o; and
09 need to be scheduled i.e. z1 = 1 and x5 = 1, then ¢5 must not lie in the range
t1 to t; + p. All combinations of z; and x5 that do not satisfy the condition
are violations and must be penalized. The set B in Equation 6 contains all such
combinations and the penalty term is shown in Equation 7.
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B = [(‘le,ol,m,tl7$j2,02’m,t2)Vt1 <ta<ti1+p ] (6>

Hs = Z T1X2 (7)

z1,22€B

Squeezed scheduling In the case of DR based scheduling, the DRs select
the operation to be scheduled for each machine. When the current operation is
completed, the scheduler picks the next operation from the queue based on the
DR and schedules it immediately. That is, when an operation O is scheduled at
time t on machine M, then the next operation is scheduled at ¢ + p + 1 if at all
available where p is the processing time of the operation O.

To encourage the solutions that have operations scheduled one after the other
whenever possible, a reward of -1 is given when the time gap between two oper-
ations scheduled on the same machine is zero. Let C,, v represent the set of all
operations which can be scheduled on machine m at time ¢, then the Equation
9 assigns the above-mentioned reward.

Cm,t’ = [:Ej,o,m,t/ Wherea t/ =t+ p+ 1] (8)

H4 - Z Z —Tj,0,m,t Xy (9)

J,o,m,t | yeC

m,t!

Tardiness minimization The objective we have considered in our problem
formulation is to minimize the total tardiness. In order to accomplish this, the
penalty function we have considered is given in Equation 10. It is formulated as
a sum of the product of decision variables denoting the last operation of each
job and the delay incurred for that particular job. The delay is calculated as the
difference between the job completion time (i.e., scheduled time + processing
time p) and the deadline d.

Hs = Z Tjo.m,¢ X max(0, (t +p—d)) (10)
gt

Rule assignment The objective is to assign each machine a DR such that
the overall cost function is optimized. This implies that each machine must be
assigned a single DR. This constraint is expressed as :

Hg = Z [Z Tm,r — 1‘| (11)

meM LreR
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Rule selection Each rule selects a unique next operation from a queue of
operations waiting to be scheduled on the machine based on its definition. For a
sequence of operations that are scheduled on a machine immediately one after the
other, the dispatch rule which imitates the same must be assigned to the machine.
At each instance of time when an operation is scheduled on the machine, we
assign a weight to all the rules based on the operation it chooses to be scheduled.
The rule which would have picked the same operation that was scheduled is given
assigned a reward of -1.

If an operation with processing time p is scheduled on machine m at time ¢,
then let Cy,, +4p+1 represent all operations that can be scheduled once the current
operation is completed. In other words, Cy, +1p+1 contains all the operations
waiting to be scheduled on the machine from which the DRs have to select the
next operation from. We define function d, 14p+1(7, ,y) to assign the penalty
to decision variables. For each operation in Cy, ¢1p+1 if a rule r can select the
operation o once the current operation is completed, then a reward of -1 is
assigned is assigned to the operation. The function d,, (r, z,y) is defined as
in Equation 12. The Hamiltonian that assigns the weights based on the above
conditions is given in Equation 13. It can be noted that 13 is not in the QUBO
formulation and cannot be solved directly.

—1 if y is the next operation
selected from the list of
operations in C,,: by
rule r after operation x
is completed

0 otherwise

A (1, 2, y) = (12)

H7 = E Ljo,m,t X

J,0,mt

Z xm,r Z ydm,t+p+1 (7“, xj,o,m,h y) (13)

reR YECm t4p+1

We solve the energy functions in two sequential phases. In the first phase, we
calculate the best-squeezed schedule using the energy function H,., described
in Equation 14. This gives us the optimal schedule that can be simulated using
dispatch rules.

Hgyep, = Hy + Hy + H3 + Hy + Hs (14)

The schedule calculated is used to find the best set of dispatch rules using
the Hamiltonian described in Section 4.2. With the schedule known, it becomes
possible to accurately find the waiting set of operations in each machine at any
given time i.e. the ), ; can be accurately calculated. It represents the operations
whose preceding operation was completed and are yet to be scheduled at time ¢
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on machine m. The schedule returned from the first phase is used to replace the
variables ; , .+ and y in the Equation 13. The term H7, thus becomes:

Hy= Y Slwjomi] x

J,0,m;t

Z xrn,r Z S[y]dm,t+p+1 (T.v Q:j,o,m,tv y) (15)

reR YECm, t4p+1

As the equation now is in the quadratic form, the best set of DRs that
produce a schedule similar to S is evaluated by solving the energy function in
Equation 16.

H, = Hg + H (16)

4.3 Variable pruning

The complexity of solving the problem increases with the number of variables.
Reducing the number of variables reduces the time needed to solve the problem
and helps the model find a solution near the global minimum. The maximum
number of variables needed are |J| x |O| x | M| x |T'|+ |M]| x |R|. We apply three
heuristics for reducing the number of variables, as described next:

Ignoring operation-incompatible machines An operation can be scheduled
only on machines that can process them. For example, the operation F'1 of job
J1 can only be scheduled on machines that belong to the machine family F'1:
F11 and F12. Removing all incompatible machine-operation decision variables
significantly reduces the number of redundant variables.

Suitable value for operation time-span Timespan T is a major factor that
hugely varies the total number of decision variables. Choosing a large T increases
the complexity of the problem as the model will have a large number of deci-
sion variables to choose from for each operation. On the other hand, reducing
T’s value can make the problem unsolvable because performing all scheduled
operations requires a certain minimum duration. Thus, a balanced value of T is
chosen heuristically.

Time-span bounds for an operation The time when an operation can be
scheduled has certain lower and upper bounds depending on its position in the
job’s operation sequence. The decision variables that lead to those schedules that
violate the operation’s time span bounds can be safely removed. For example, the
time span during which an operation can be scheduled depends on the processing
time needed by the operations preceding and following it. Thus, the earliest time
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at which an operation can be scheduled is the sum of processing times of all its
preceding operations. Similarly, the latest time before which the operation must
be scheduled is the sum of its processing time and that of the operations following
it.

5 Experiments and results

We performed several experiments to validate the correctness and efficacy of our
approach. The important ones, along with their results, are described below.

Table 3: Makespan of different MDRs
Jobs Products DL Tardiness
P1-P2-P3-P4-P5 QUANT |SIO|SPT|SRPT|SDT|SMT|LIO|LPT|LRPT|LDT|LMT
J1]2-2-2-2-21200 42 61| 75 90 94 | 90 124|256 | 170 | 137 | 199
J2 {10-0-0-0-0|200 40 45| 40 | 45 45 | 45 |126| 40 | 126 | 126 | 126

J310-10-0-0-0(200[ 22 37123 | 37 | 37| 37 |41 | 23 38 41 | 41
J410-0-10-0-01250 9 151 9 15 15 15 [ 13| 9 13 13 | 13
J5(0-0-0-10-0]220{ 13 3313 33 | 33| 33 |13]13 | 19 13 | 13
J6 [ 5-5-0-0-01200[{ 35 35|37 | 37 | 39| 42 |76 | 35| 90 76 | 99
J715-0-0-5-0 (200 6 11126 | 26 | 45| 26 | 15 |130| 98 19 | 183

Table 4: Energy vs Tardiness of various dispatch Rules

Rule |Min. Tardiness|Min. Energy
QUANT 42 -658.16
SIO 61 -656.56
SPT 75 -655.32
SRPT 90 -654.13
SDT 94 -652.7
SMT 90 -654.12
LIO 124 -650.61
LPT 256 -636.35
LRPT 170 -647
LDT 137 -649.87
LMT 199 -643.52

5.1 Tardiness comparison of the proposed approach with Single
Dispatch Rules (SDR)

For validating the proposed approach, we compared the tardiness of different job
groups on the FMS mentioned in the case study (see Table 1). Each job group
consists of 10 random jobs and a deadline for completion. All jobs are submitted
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to the FMS at time ¢ = 0, and the tardiness is calculated for the schedules
generated by the proposed approach and those generated by SDR approach.
The results are shown in the Table 3.

The solution to the proposed approach was solved on a real quantum annealer
provided by D-Wave. Please note that the performance of these devices is affected
by ambient noise. The answers calculated by these devices are only near-optimal
solutions. Thus, the solution obtained for our problem formulation is not the
best schedule but a sample near it. The numbers in Table 3 indicates that just
within 2-3 minutes, the annealer is able to calculate the set of dispatch rules.

5.2 Validating the correctness of overall energy function

The solution to the scheduling problem is the combination of decision variables
having minimum value to the energy function in Equation 14. We‘ calculate the
energy value of the solution produced by different SDRs and compare it with
the value obtained by using the proposed method. Our results in Table 4 show
that the overall energy values are positively correlated with the tardiness. That
is, the schedule with the least tardiness has the least energy value.

In order to verify the correctness of the Hamiltonian H, (Equation 16) used
for finding the best dispatch rules, we initialized all the machines with pre-
determined dispatch rules. We first calculated the schedule generated by these
rules by simulating the machines in the job shop environment. Later, we calcu-
lated back the best set of dispatch rules for this schedule using the Hamiltonian
H,. As expected, the pre-determined set of rules from which the schedule was
generated had the minimum energy value. This validates the correctness of our
hypothesis and approach.

6 Discussion

The number of binary variables in the formulation increase with the number of
machines, jobs, operations and the time-span parameters. As an example for a
15x15x15 (Jobs x Operations x Machines) instance with time span of 250, the
number of binary variables is around thirty five thousand. On the contrary the
largest quantum annealer today has only 5000 qubits with 15 way connectivity.
Ultimately, the linear coefficients in QUBO are mapped to qubit biases and
quadratic coefficients to coupler strengths. With limited connectivity of qubits,
QUBO formulations having large number of quadratic terms need much larger
number of qubits to embed the problem on the annealer. Hence large problems
such as ours cannot be directly solved on these devices without classical heuristics
directly on annealers.

In this work we tested our QUBO formulation using the Leap’s hybrid solvers
for finding the best set of dispatch rules. These solvers implement state-of-the-
art classical algorithms such as Tabu search together with intelligent allocation
of the quantum computer to parts of the problem where it benefits most. While
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this enables them to accommodate very large problems, it also reduces their
ability to find near optimal solutions.

We solved the above QUBO problem on public datasets [12] [15] available
for 6x6x6, 8x8x8, 10x10x10 and 15x15x15 scenarios using Leap’s hybrid solver
and compared it with the baseline models as described above. The deadline for
each job was set to 1.2 times the optimal makespan mentioned in the dataset
for each job. The time_limit parameter of the hybrid solver was kept at a large
value such that no further improvement in the solution quality was observed on
further increment. The results obtained showed that the Leap’s hybrid solver
was not able to sample solutions with minimum energy even with multiple at-
tempts. The baseline models and the Leap hybrid solver found better solutions
in equal number of cases. But in all cases the the QUBO formulation was able
to determine the best solution accurately based on the energy value.

We observed that the energy value of the annealer solution (non optimal)
was in some case around 5-10 percent higher than the energy value of the best
answer known to us (through baseline models). This showed us two things 1)
Leap’s hybrid solver cannot sample solutions nearer to the true optimal for our
problem formulation. This is also consistent with their claim on the website [1]
2) The QUBO formulation is able to detect the best answer in each case.

As the constraints in the problem are encoded as penalties, the coefficients of
each term determine the energy characteristics of the total Hamiltonian. In or-
der to ensure the constraints are always satisfied, the coeflicients for the penalty
terms are kept high. As the solutions returned by leap is sub optimal, the gap
(ratio or difference) between the coefficient values of penalties and objective
function plays a significant role. When it is small, the solutions has many con-
straint violations and in case the gap is high, the objective function value is not
satisfactorily optimized.

Instead of formulating such complex Hamiltonians with many constraints an-
other approach is to use more sophisticated heuristic algorithms such as Quan-
tum Alternating Operator Ansatz (QAOA). QAOA is a quantum classical hybrid
meta-heuristic framework proposed by [5] for performing approximate optimiza-
tion on gate-based quantum computers. It is well suited for scenarios such as
JSSP where the feasible solution space is much smaller, such as optimization
where solutions have to satisfy multiple hard constraints. But a state-of-art gate-
based quantum computer currently available can support less than 100 qubits.

7 Conclusion and future work

Finding the best set of Multiple Dispatch Rules (MDRs) needed for real-time
scheduling in a flexible manufacturing system scenario is an important schedul-
ing problem. We have formulated it as a Quantum Unconstrained Binary Op-
timization (QUBO) problem and solved it on a quantum annealer. The results
obtained from quantum annealer have the least tardiness compared with the
schedules produced by Single Dispatch Rules (SDRs). The strong correlation
between energy values of different schedules with the tardiness validates that
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the proposed method can find MDRs that produce schedules with minimum
tardiness.

The annealers provided by D-Wave currently cannot obtain the global min-
imum to the energy functions. This puts a limit on the quality of solutions
obtained for our formulations. The quality and the time needed to calculate
solutions will improve with advancements in quantum technology.

Future research should focus on how the FMS attributes can be used to find
good hyperparameter settings such as length of time span. To further check the
robustness of the approach, the following types of experiments can be conducted:
1) Finding the overall tardiness value when large job groups are split into small
subgroups and solved sequentially. 2) Checking performance of the approach
when the length of time span is varied and 3) Comparison of the quantum method
with other classical methods. 4) Performance when run directly on quantum
hardware.
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