
A first attempt at cryptanalyzing
a (toy) block cipher by means of QAOA
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1 Université Paris-Saclay, France
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Abstract. The discovery of quantum algorithms that may have an impact
on cryptography is one of the main reasons of the rise of quantum computing.
Currently, all quantum cryptanalysis techniques are purely theoretical and
none of them can be executed on existing or near-term quantum devices. So,
this paper investigates the capability of already existing quantum computers
to attack a toy block cipher (namely the Heys cipher) using the Quantum Ap-
proximate Optimization Algorithm (QAOA). Starting from a known-plaintext
key recovery problem, we transform it into an instance of the MAX-SAT
problem. Then, we propose two ways to implement it in a QAOA circuit
and we try to solve it using publicly available IBM Q Experience quantum
computers. The results suggest that the limited number of qubits requires
the use of exponential algorithms to achieve the transformation of our prob-
lem into a MAX-SAT instance and, despite encouraging simulation results,
that the corresponding quantum circuit is too deep to work on nowadays
(too-)noisy gate-based quantum computers.
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1 Introduction

Quantum computing offers a new paradigm that can solve certain problems much
more efficiently than classical computing. At the same time, a large part of modern
cryptography is precisely based on the difficulties to solve specific problems that are
conjectured hard to solve with classical computing.
On one hand, Shor’s algorithm [16] can solve factorization and discrete logarithm
problems, that are of huge importance in cryptography. On the other hand, Grover’s
algorithm [8] can be utilized as a quantum brute-force algorithm that is much more
efficient than the classical brute-force (but remains exponential). Hence, quantum
computing may be a serious threat to cryptography and that is why a lot of research
is conducted on quantum cryptanalysis. For a few years, we have seen an emerging
field on quantum non-black box cryptanalysis [12,13,11,5,4,6], meaning that those
approaches are cipher specific by exploiting their internal structure. Yet all those
works assume a large scale and noise-free quantum computer that does not currently

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_19

https://dx.doi.org/10.1007/978-3-031-08760-8_19


2 Luca Phab et al.

exist.
In this context, this paper investigates (for the first time) whether Noisy Intermediate
Scale Quantum (NISQ) machines may have an impact in cryptanalysis of symmetric
ciphers. To that end, we will study an attack on a toy cipher, namely the Heys
cipher, using the Quantum Approximate Optimization Algorithm (QAOA) that is
expected to be less sensitive to decoherence due to its hybrid nature. The proposed
attack can be summarized as follows: We first need a plaintext and the corresponding
ciphertext. Then, we transform it into an instance of a combinatorial optimization
problem. Finally, we execute the quantum algorithm to solve the instance and if an
optimal solution is found then we can deduce a key that can encrypt the plaintext
into the ciphertext.
This paper is organized as follows: In Section 2, we review QAOA. Section 3 provides
some background on cryptography and describes the studied toy cipher and the attack
steps. Then, in Section 4, we show how to build the quantum circuit and indicate
its complexity according to the basis gates of the quantum hardware utilized. Finally,
Section 5 details the implementation and the experimental results before concluding.

2 Quantum Approximate Optimization Algorithm

QAOA [7] is an algorithm created in 2014 by Farhi et al. that approximates solutions
of combinatorial optimization problems. It is a quantum circuit whose parameters
are optimized through a classical optimization algorithm. Its hybrid nature allows
this algorithm to limit the depth of the quantum circuit, hence, it seems relevant as
an algorithm of choice to solve our problem on NISQ devices.
It is based on a well-known quantum mechanics theorem, called the “adiabatic
theorem”, stating that a quantum system in a ground state for a hamiltonian will
remain in a ground state for that hamiltonian if it changes slowly enough over time.
Let H be the hamiltonian such that:

H(t)=(1−s(t))·HD+s(t)·HP (1)

where s : [0,T ]→ [0,1] is a smooth function with s(0) = 0 and s(T) = 1, HD is the
“driver hamiltonian” that has an easy-to-build ground state and HP is the “problem
hamiltonian” whose ground states encode the optimal solutions of our problem. So,
according to the adiabatic theorem, a quantum system in an easy-to-build ground
state for HD will evolve into a ground state for HP , which encodes optimal solutions
of the problem, after waiting a time T .
Let C be the cost function that we want to minimize and which takes n binary
variables as input. The corresponding problem hamiltonian can be chosen as:

HP =
∑

x∈{0,1}n
C(x)|x〉〈x| (2)

QAOA simulates the approximate time evolution of a quantum system for the hamil-
tonian H starting from one of its ground states, using n qubits.
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Based on the Schrödinger equation and the Trotter-Suzuki formula [17], the time
evolution of the quantum system |ψ〉 for the hamiltonian H is approximated by:

|ψ(t)〉≈
p∏
j=1

exp

(
−i∆t

~
(1−s(j∆t))HD

)
·exp

(
−i∆t

~
s(j∆t)HP

)
|ψ(0)〉 (3)

whose precision as an approximation is improved by increasing p.
Let UHP

(γ) = exp(−iγHP ) and UHD
(β) = exp(−iβHD) be unitary operators, the

QAOA circuit computes the following state:

|~β,~γ〉=UHD
(βp−1)UHP

(γp−1)···UHD
(β0)UHP

(γ0)|ψ(0)〉 (4)

where ~β=(β0,...,βp−1)∈ [0,2π[p and ~γ=(γ0,...,γp−1)∈ [0,2π[p. We do not know the

values of p, ~β and ~γ such that |~β,~γ〉 is a ground state for HP so we try to find them
empirically, at constant p, by minimizing the function:

Fp : [0,2π[p×[0,2π[p→R (5)

(~β,~γ) 7→〈~β,~γ|HP |~β,~γ〉

using a classical optimizer. That function calculates the average of the eigenvalues
of HP weighted by the probability distribution of states of |~β,~γ〉 and its minimum
is reached exactly when the superposition is in a ground state for HP . It can be
computed with the probability distribution that we can approximate by executing
several times the quantum circuit and measuring the resulting final state:

∀x∈{0,1}n, P~β,~γ(measuring state |x〉)≈ kx
k

(6)

where k is the number of executions and kx is the number of times that the state
|x〉 was measured.

Finally, we just need to compute the quantum circuit with the parameters ~β∗ and
~γ∗, found by optimization, and then to measure the superposition to get a state that
encodes a solution z where C(z) is close to min

x
C(x).

3 Problem statement

3.1 Cryptography background

Cryptography is all around us, especially when we use our communication devices, as
smartphones or computers. It aims to ensure the security properties of an exchange,
which are confidentiality, integrity, authentication and non-repudiation. To protect
the confidentiality of a message, the sender utilizes a cipher that transforms (encrypts)
the message (plaintext) into an unintelligible one (ciphertext), sends it on a channel,
that can be public, to the recipient, who applies the inverse of the transformation
(decrypts) to obtain the original message. An extra parameter (key) is needed for
the encryption and decryption functions.
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Fig. 1: First round of the Heys cipher.

In a symmetric cipher, as studied in the present work, the encryption key and the
decryption key are computed from a secret shared between the sender and the recipient.
Among them, a large part are iterated block ciphers, that encrypt a predefined fixed-
size plaintext (block) into a ciphertext with the same size, using the repetition of several
operations. Each iteration (round) needs a key (round key) derived from a master
key. The number of rounds is a significant parameter of the cipher because increasing
it generally improves its security but reduces its efficiency, which is also an important
criterion. Doing a cryptanalysis on a reduced number of rounds is an usual way to
study that type of ciphers, which is easier and that can give insights on its security.
In this paper, the proposed cryptanalysis is a known-plaintext attack, meaning that
the attacker has access to a set of plaintext-ciphertext pairs, which is a realistic
possibility. Indeed, that kind of attack was already utilized previously, during World
War II for instance. Allies guessed the content (or partial content) of some messages
(mainly weather forecasts) and utilized that to break the German cipher Enigma [19].

3.2 Heys Cipher

The Heys cipher [9] is an iterated block cipher created by Howard M. Heys for educa-
tional purposes to teach linear and differential cryptanalysis. It is a toy substitution-
permutation network (SPN) with a block size of 16 bits and where each of its rounds
is composed of:

– a mixing operation between the round key and the current block

– a substitution

– a permutation

The first round is described in Fig. 1. The cipher finishes with a new mixing operation
which enables the decryption function to be as similar as the encryption function.
That final step can be considered as a round because it requires the utilization of
a round key. The mixing operation is commonly an exclusive or (xor). The cipher
has the advantage to be particularly simple and has the same construction as a lot
of ciphers in practical utilization currently or formerly, like e.g. DES or AES.
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3.3 Principle of the attack

After getting a plaintext and the corresponding ciphertext for which we want to
find the key utilized for the encryption, we transform them into an instance of the
SAT problem, namely a propositional formula, where the variables embody the bits
of the sought key. If we had an oracle solving the SAT problem, we could utilize
it to find an assignment satisfying the formula and thus deduce a key that can
encrypt the plaintext into the ciphertext. But, as SAT is NP-complete, all known
classical algorithms cannot solve all formula polynomially. In particular, formulas that
come from cryptanalytic attacks can be expected to be difficult to solve (otherwise,
the underlying primitive would have significant security issues). Among quantum
algorithms, QAOA is a very promising one that could run on NISQ machines, so we
convert the formula into an equivalent formula in Conjunctive Normal Form (CNF),
which is an instance of the combinatorial optimization version of the SAT problem
(MAX-SAT). As our formula is satisfiable by construction, an optimal solution is an
assignment satisfying the formula, so the algorithm will act as the required oracle. It is
important to notice that we need to find algorithms to convert a plaintext-ciphertext
pair that do not add too many auxiliary variables, given that the number of qubits
required depends on the number of binary variables of our problem and that the
number of qubits of a quantum machines (real devices or simulators) is very limited.

4 Retrieving the encryption key from a plaintext-ciphertext
pair using QAOA

4.1 Plaintext-ciphertext pair into Conjunctive Normal Form formula
(CNF) conversion

The algorithm aim is to transform a plaintext and the corresponding ciphertext
into a propositional formula where the variables embody the utilized cipher key bits
(without adding any auxiliary variables). It is based on a theorem saying that a
formula where we substitute variables with formulas remains a formula. So, we start
with a simple formula and we substitute variables with formulas, as it goes along the
cipher operations, in the current formula.
Let (pi)i∈{1,...,16} be the plaintext bits, (ci)i∈{1,...,16} the ciphertext bits and (ki)i∈{1,...,16}
the key bits. The starting formula is:

ψinit=

16∧
i=1

(pi↔xi) (7)

Then, for each operation, some variables of the current formula are replaced with
formulas according to the operation type. We denote (ai)i∈{1,...,16} the input variables
of an operation and (bi)i∈{1,...,16} the output variables.

j-th xor: For all i∈{1,...,16}, we have bi=ai⊕k16(j−1)+i, hence ai=bi⊕k16(j−1)+i.
So, variables (xi)i∈{1,...,16} in the current formula are substituted with formulas
(φ1,j,i)i∈{1,...,16} as follows:

φ1,j,i=yi⊕k16(j−1)+i≡
((
yi∨k16(j−1)+i

)
∧
(
¬yi∨¬k16(j−1)+i

))
(8)
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Table 1: (a) Table representing the inputs and outputs of a random sbox on 2 bits.
(b) Table representing the possible outputs of the sbox described in (a) where a1=1
and the corresponding formulas.

(a)
input (a2a1) 00 01 10 11

output (b2b1) 10 00 01 11
(b)

output formula

00 ψ00=(¬z1∧¬z2)
11 ψ11=(z1∧z2)

Sjk substitution: The Sjk substitution acts on bits of index from 4(k−1)+1 to
4(k−1)+4. The replacement formula φ2,j,i where i=4(k−1)+h, h∈{1,2,3,4} is a
disjunction of conjunctions created from the outputs for which the bit of index i in
input is equal to 1.
For example, suppose that we want to construct the replacement formula φ2,j,i from
the sbox3 described in Table 1(a) for i=1. The outputs where a1 =1 in input are
“00” and “11”. For each of those outputs, the corresponding formula, as shown in
Table 1(b), is the conjunction of (ls)s∈{1,2} such that:

ls=

{
zs if bs=1
¬zs otherwise

(9)

That way, if a1 = 1 then one of the formulas ψ00 or ψ11 must be True thus the
replacement formula is:

φ2,j,1=ψ00∨ψ11 (10)

σ permutation: For all i ∈ {1,...,16}, we have bi = aσ(i), hence ai = bσ−1(i). So,
variables (zi)i∈{1,...,16} are replaced with formulas (φ3,j,i)i∈{1,...,16} as follows:

φ3,j,i=xσ−1(i) (11)

Finally, after substituting the variables for all cipher operations, all it is required is to
replace (xi)i∈{1,...,16} according to the value of the ciphertext bits to obtain a formula
where the only variables embody the key bits.
It is a naive algorithm where the size of the output formula increases exponentially
with the number of cipher rounds. That is due to the substitution operations where
the linked replacement formulas contain many multiple copies of the same variable.
However, with a number of rounds small enough, the size of the formulas remains
acceptable.
Then, the formula must be in conjunctive normal form to be an instance of the MAX-
SAT problem. There are two main algorithms to achieve that transformation. The
first one [10] use the De Morgan laws but the output formula grows exponentially with
the size of the input formula, while the second, called Tseitin transformation [18], is
polynomial but add auxiliary variables. We chose the algorithm that does not increase
the number of variables (and thus the number of qubits needed by the quantum

3 a sbox (substitution box) is an algorithm component that compute a substitution in
a cipher.
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devices) to be able to perform experiments on real hardware on our instances.
It is worth noting that we probably could transform the plaintext-ciphertext pair
directly into a CNF by introducing auxiliary variables as in [14] where the output
formula has a polynomial number of variables and clauses.

4.2 Solving the MAX-SAT problem using QAOA

Let ϕ be a propositional formula in conjunctive normal form and Pϕ={x1,...,xn}
the set of the variables in ϕ such that:

ϕ=

m∧
j=1

Cj=

m∧
j=1

(
mj∨
k=1

lj,k

)
(12)

where lj,k = xj,k or lj,k = ¬xj,k. We denote M = maxj∈{1,...,m}mj the maxi-
mum number of literals in a clause. An assignment of n variables is embodied
by z=(z1,...,zn)∈{0,1}n such that:

∀l∈{1,...,n}, (zl=1⇔xl=True) and (zl=0⇔xl=False) (13)

The cost function associated with ϕ is defined as follows:

C(z)=−
m∑
j=1

Cj(z) where Cj(z)=

{
1 if z satisfies Cj
0 otherwise

(14)

and can be transformed into a problem hamiltonian such that:

HP =
∑

x∈{0,1}n
C(x)|x〉〈x|=−

m∑
j=1

Ĉj where Ĉj=
∑

x∈{0,1}n
Cj(x)|x〉〈x| (15)

=−
m∑
j=1

(I− 1

2mj

mj∏
k=1

(I+εj,k ·σzj,k)) where εj,k=

{
−1 if lj,k=¬xj,k
1 otherwise

(16)

Using the definition of HP in Eq. 15 and the Trotter-Suzuki formula, UHP
can be

written as the product:

UHP
(γ)=

m∏
j=1

U−Ĉj
(γ) (17)

So, the quantum circuit of UHP
(γ) is composed of the quantum circuits of U−Ĉj

(γ)

with j∈{1,...,m}, in any order since the Ĉj commute. For all j∈{1,...,m}, we can
note that:

U−Ĉj
(γ)|z〉=exp

(
iγĈj

)
|z〉=

{
exp(iγ)|z〉 if z satisfies Cj
1|z〉 else

(18)

But, the satisfiability of Cj =
∨mj

k=1lj,k only depends on variables (xj,k)k∈{1,...,mj}
so U−Ĉj

(γ)|z〉 only depends on qubits (zj,k)k∈{1,...,mj}. Moreover, there is a unique
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|zj,1〉 N1 • N1

|zj,2〉 N2 • N2
...

...
...

...

|zj,mj 〉 eiγI Nmj R−γ Nmj

Fig. 2: Quantum circuit modelling U−Ĉj
(γ) where Nk is the X gate if lj,k=xj,k and

the identity gate if lj,k=¬xj,k, for all k∈{1,...,mj}.

assignment of (zj,k)k∈{1,...,mj} such that U−Ĉj
(γ)|z〉= |z〉, for all others, U−Ĉj

(γ)|z〉=
exp(iγ)|z〉. Using those statements, we can model the quantum circuit of U−Ĉj

(γ) as

shown in Fig. 2. To the best of our knowledge, the multi-controlled Rφ gate cannot
be decomposed into 1-qubit and 2-qubit gates in a polynomial number of gates. So,
the complexity of the circuit is:

Comp(UHP
)=O(m·M ·2M) (19)

Depth(UHP
)=O(m·2M) (20)

We can also use the definition of HP in Eq. 16 using the Pauli operator σz. In that
case, for all I⊆{1,...,n} with |I|≤M , there exists aI∈R, such that:

UHP
(γ)=exp

(
iγ
∑
I

aI
∏
k∈I

σzk

)
=
∏
I

exp

(
iγaI

∏
k∈I

σzk

)
(21)

So, the quantum circuit of UHP
(γ) is composed of quantum circuits of iγa

∏
kσ
z
k, in any

order, which can be modelling by the quantum circuit in Fig. 3(a). Its complexity is:

Comp(UHP
)=O

(
M∑
k=1

(
n

k

)
·(2k−1)

)
(22)

Depth(UHP
)=Comp(UHP

) (23)

The driver hamiltonian is often the same, namely:

HD=−
n∑
j=1

σxj (24)

It is a well-known mixing operator for which a ground state is:

|+〉⊗n=H⊗n|0〉⊗n (25)

The quantum circuit of UHD
(β) =

⊗n
j=1Rx(−2β) is modelled in Fig. 3(b) and its

complexity is:

Comp(UHD
)=O(n) (26)

Depth(UHD
)=O(1) (27)
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(a)
|zI,1〉 • •
...

... ..
.

|zI,#I−1〉 • •
|zI,#I〉 Rz(2aγ)

(b) |z1〉 Rx(−2β)

|z2〉 Rx(−2β)
...

...

|zn〉 Rx(−2β)

Fig. 3: Quantum circuits modelling (a) iγa
∏
kσ
z
k and (b) UHD

(β)

5 Experimental results

First, we generate random plaintexts and keys and we encrypt them using our im-
plementation of the Heys cipher, on two over five rounds, to obtain a set of triplets
(key, plaintext, ciphertext). Then, we transform each one into a Conjunctive Normal
Form formula (CNF) using our implementation of propositional formula that can
do some simplifications to limit the size of the output formula. To study the formulas
for different number of variables, we replace in the formula some variables with the
corresponding key bits.
Then, we utilize the SymPy library [3] to build the hamiltonian as a symbolic expres-
sion based on the formula with the Pauli operator σz in Eq. 16. The final step is to
construct the corresponding quantum circuit with the Qiskit library [2] and to give
it as input to our own implementation of QAOA. It utilizes the Qiskit Constraint
Optimization BY Linear Approximation (COBYLA) optimizer [15] (that seems to
be the best among the Qiskit optimizers for this work).
Before trying the algorithm on IBM Q Experience [1] real quantum devices, we have
studied the theoretical performance of QAOA on our problem with the Qiskit Aer
simulators. To estimate the performances, the success probability and the following
approximation ratio was used as a metric:

r∗=
Fp

(
~β∗p, ~γp

∗
)

min
x

C(x)
(28)

where ~β∗p and ~γ∗p are the optimal parameters found by the classical optimizer at step p.

5.1 Experimental results on simulators

For all instances, we utilize the “qasm simulator” that returns only one state at the end
of the circuit. So we approximate the value of Fp, as described in Eq. 6, by running then
measuring 256 times the quantum circuit. For the smallest instances, we can also use
the ”statevector simulator” that returns the entire superposition state so the value of
Fp is computed exactly. The results from “qasm simulator” are considered as “experi-
mental” while the results from “statevector simulator” are considered as “theoretical”.
After doing some experiments at p∈{1,2,3,4}, we notice similarities between different
instances or between the same instance at p and p+1. As expected, we observe that
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Fig. 4: Evolution of (a) r∗ and (b) the success probability both as a function of p,
using the first heuristic in Section 5.1, on formulas ϕ1 (5 variables and 19 clauses), ϕ2

(5 variables and 21 clauses), ϕ8 (10 variables and 41 clauses) and ϕ10 (15 variables
and 69 clauses).

the variations of Fp seem to correspond with the variations of the success probability.
Besides, for all tested p and instances, for all parameters at step p leading to a low
cost solution, there exists parameters at step p+1 with similar first 2p components
and also leading to a low cost solution. Finally, for all tested p and instances, a value
close to the minimum of Fp is obtained when the values βp,i are both small and
decreasing and γp,i are both small and increasing with i.
Hence, instead of starting the classical optimizer with several random parameters
(which needs a number of initializations growing with p and becoming quickly im-
practicable), we utilize heuristics to select the initial parameters at step p+1 given
the optimal parameters found by the optimizer at step p.
The first studied heuristic keeps all components of ~β∗p and ~γ∗p and does a grid search

to find the best last component of ~βinitp+1 and ~γinitp+1, that is:

~βinitp+1=
(
β∗p,0,...,β

∗
p,p−1,β

)
, ~γinitp+1=

(
γ∗p,0,...,γ

∗
p,p−1,γ

)
(29)

with (β,γ)∈ [0,2π[×[0,2π[.
The performances of QAOA using that strategy for formulas with a different number
of variables and clauses are shown in Fig. 4. We clearly see that r∗ and the success
probability follow a logarithmic evolution with a big increase at the beginning and
ends up stabilizing on a plateau. However, for the success probability, the height of
the plateau seems to reduce with the increase of the number of variables and clauses.
So, that strategy does not seem appropriate to solve our MAX-SAT problem when
the number of variables increases, given that we absolutely need an optimal solution
to deduce the key. In addition, it is important to notice that we have to execute
QAOA using optimization as many times as the number of grid points, for each p.
The second heuristic, called INTERP [20], is based on the regularity in the evolu-
tion of the components of certain optimal parameters, as mentioned previously. It
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Fig. 5: Evolution of (a) r∗ and (b) the success probability both as a function of p,
using the INTERP heuristic, on formulas ϕ1 (5 variables and 19 clauses), ϕ2 (5
variables and 21 clauses), ϕ8 (10 variables and 41 clauses), ϕ10 (15 variables and
69 clauses) and ϕ15 (29 variables and 164 clauses).

consists of doing a linear interpolation on the components of ~β∗p and ~γ∗p to get the
initial parameters on p+1 components. That strategy seems to be efficient for the
MAX-CUT problem where the optimal parameters have a similar shape with those
of MAX-SAT. The components of the initial parameters are:

βinitp+1,i=
i

p
β∗p,i−1+

p−i
p
β∗p,i (30)

γinitp+1,i=
i

p
γ∗p,i−1+

p−i
p
γ∗p,i (31)

with β∗p,−1=β∗p,p=0=γ∗p,−1=γ∗p,p and starting with ~βinit1 =(0.5) and ~γinit1 =(0.5).
By using that heuristic, we observe in Fig. 5(a) that the evolution of r∗ runs through
three steps. Indeed, we see first a large increase, that becomes moderate before
reaching a stabilization near to 1. The height of the plateau does not seem to be
affected by the number of variables, contrary to the previous strategy. The general
shape of the curves for the success probability is different, as shown in Fig. 5(b). All
curves seem to increase in a more or less linear way before reaching a plateau, which
is always high, no matter what the number of variables and clauses of the instance
are. That strategy seems to be particularly interesting for our MAX-SAT problem,
especially as we need to perform QAOA with optimization only once for each p.
Its main drawback is that we need to ensure an adequate shape of ~β∗p and ~γ∗p at each p.
If one of the β∗p,i or γ∗p,i is not in the continuity of the others then it could impair the
efficiency of the strategy, as shown in Fig. 6. Indeed, during one of the two executions,
at p=10, β9 is too high and thus r∗ and the success probability collapse from that p.
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Fig. 6: Comparison of (a) r∗ and (b) the success probability both as a function of p
between two executions of QAOA using the INTERP heuristic on the same formula
ϕ1 (5 variables and 19 clauses).
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Fig. 7: Comparison of (a) r∗ and (b) the success probability both as a function of
p between executions of QAOA using INTERP (solid line) or INTERPth (dashed
line) heuristics for the same formula on real quantum computers “ibmq bogota” and
“ibmq manila” (5 qubits and quantum volume of 32) and on a statevector simulator.

5.2 Experimental results on real quantum hardware

We try to solve our problem on the smallest studied instance ϕ1 (5 variables with
19 clauses), using the INTERP heuristic until p=10, with real quantum computers
(5 qubits and quantum volume of 32) from IBM Q Experience. As with simulators,
we run the quantum circuit then measure 256 times the final quantum state every
time we need to approximate Fp.
Given that the noise from errors and decoherence of the quantum computer can be po-
tentially significant, there is a high probability that the optimal parameters ~β∗p and ~γ∗p,
found by the optimizer at each p, have not an adequate shape for the INTERP heuristic.
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So, we also conduct another experiment where we try to reduce the impact of this IN-
TERP drawback by starting the optimization with the optimal parameters found with
the statevector simulator as initial parameters for each p (that we call “INTERPth”).
The results of all these experiments are shown in Fig. 7. We observe, at p=1 and
for all tested quantum computers, that the success probability reaches between 13%
and 16% instead of the theoretical 20% of the statevector simulator, with optimal
parameters close to the expected ones. But when p≥2, the success probability remains
more or less constant and does not exceed 10%. The approximation ratio r∗ also
remains constant and low (around 0.88) for all p. It can be explained by the fact that
the quantum computers utilized to execute QAOA have a small quantum volume (32
at most) and the quantum circuit has a depth of 1+27p gates which is already high
considering the precision of each individual gate. Notice that the optimal parameters
found at each p do not have the expected shape, except for p=1.

6 Discussion and perspectives

This paper was a first attempt to estimate the capability of already existing quantum
computers on solving a straightforward cryptanalytic problem. First of all, as the
number of qubits of NISQ devices that we had access to was very low, we were
constrained to utilize algorithms that do not add any auxiliary variables to transform
a plaintext-ciphertext pair into a Conjunctive Normal Form formula (CNF). But,
currently and as far as we know, such polynomial algorithms do not exist. Moreover,
our modelling of the MAX-SAT problem into a quantum circuit is not polynomial as
long as we do not know how to decompose the multi-controlled Rφ gate polynomially
into 1-qubit and 2-qubit basic gates of the quantum hardware.
We have studied the performances of QAOA using the INTERP heuristic and our
simulation results show that it seems to be efficient to solve our instances with a
success probability that increases linearly until it reaches a high plateau, at least
at low p. However, we were not able to confirm that on real quantum hardware
given that the resulting quantum circuits were too deep from p≥ 2, leading to a
hardware-induced noise which is too significant to have reliable results.
Those encouraging results on simulators of QAOA using INTERP are promising but
should be treated cautiously. Indeed, all the experiments were realized on few specific
small instances of the MAX-SAT problem so we of course cannot affirm that it will
work as well on larger instances or on all instances of that problem. Furthermore,
the probable link between the number of optimal solutions and r∗ or the success
probability was not taken into account in the present work.
To summarize, the proposed attack appears not to be feasible, at short and medium
term, because of the complexity of the transformation of the plaintext-ciphertext
pair into the quantum circuit utilized in QAOA and because of the fact that publicly
available quantum computers are not allowing deep enough quantum circuits.
More exploration of QAOA capabilities to solve efficiently some instances of the MAX-
SAT problem on a simulator in an attempt at determining which specific instances
are “QAOA-friendly” is a relevant perspective. Furthermore, we can conjecture that
the INTERP heuristic is sensitive to the noise given that the optimal parameters
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found by the optimizer need to have a specific shape, so it would be interesting to
design other heuristics more resistant to such noise.
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