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Abstract. Multi Controlled Gates, with Multi Controlled Toffoli as pri-
mary example are a building block for a lot of complex quantum al-
gorithms in the domains of discrete arithmetic, cryptography, machine
learning, and image processing. However, these gates cannot be physi-
cally implemented in quantum hardware and therefore they need to be
decomposed into many smaller elementary gates. In this work we analyse
previously proposed circuit constructions for MCT gates and describe 6
new methods for generating MCT circuits with efficient costs, less re-
strictions, and improved applicability.
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1 Introduction

Since the first ideas of quantum computing arose in the 1980s, various mathe-
maticians, physicists, and computer scientists have put huge amounts of work
in designing both quantum hardware and software. The applications they have
found so far include number theory, cryptography, quantum physics, molecular
bio-chemistry, search problems, and machine learning [13, 18]. The algorithms
proposed are, at least in theory, far more efficient than the classical ones [7,15],
but very few of them have been actually tested on real hardware [17].

For the moment, quantum computing faces some practical problems, most
of which are related to a physical phenomenon named decoherence. This effect
means that a quantum system’s state can collapse after some time because of
interactions with its surroundings [4,5]. In order to reduce decoherence and create
feasible quantum computers, we need to cool the system down to a few milli-
Kelvins, which requires very expensive equipment [20]. On the other hand, the
task of mathematicians and computer scientists is to design efficient and robust
algorithms that will need less qubits, quantum gates, and time in order to be
executed, since the effects of decoherence scale with each of these parameters.

In this work, we have focused on a specific, yet very important and repre-
sentative quantum algorithm, the Multi-Controlled Toffoli Gate (MCT). These
gates are the quantum equivalent of the logical AND operation, and are nec-
essary in many quantum arithmetic and discrete computing algorithms. [2] has
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also shown that MCT gates can be used to simulate any multi-controlled gate,
which in turn are widely used in increasingly complex applications (Quantum
Simulations [13], Machine Learning [11], Image Processing [19]). Efficient im-
plementations of MCT gates are therefore essential in real near-term quantum
computer applications.

The paper is structured as follows: In Section 2 we introduce the most impor-
tant quantum computing concepts needed for understanding the contents of this
work. In Section 3 we describe various implementation ideas previously proposed
by the scientific community. In Sections 4.1, 4.2, and 4.3 we expose and analyse
the new constructions we propose. In Section 5 we describe the implementa-
tion of these constructions using Qiskit [9] and compare the complexities of our
ideas with the ones of the existing ideas. We finish this paper by presenting our
conclusions and some ideas of future improvements and research.

Notation: Throughout this work we will use the notation CnX to represent
a n-controlled Toffoli gate. In this context, C1X = CX is the basic CNOT gate
and C2X = TOFF is the original Toffoli gate or 2-controlled NOT.

Note: All figures representing quantum circuits in this work have been re-
alised using the graphical library Quantikz [10].

2 Basic Concepts

2.1 Circuit Costs

In order to understand what an efficient circuit means, we have to describe some
cost functions that are usually used. We will refer to these cost functions when
analysing the complexity of the circuit.

1. Total Gate Count : the total number of elementary gates in circuit;
2. CX Gate Count : the number of elementary 2-qubit gates (usually CX);
3. Circuit Depth: the number of time steps necessary for executing the circuit;
4. CX Depth: circuit depth after all the one-qubit gates have been removed;
5. Circuit Volume: a measure introduced by IBM [3] to better represent circuit

performance, defined as: number of qubits × circuit depth.

For the most part of the paper, our focus will be towards the CX depth of
the circuit, because it is proportional to the full circuit depth, but it is easier to
generalise between different hardware implementations (most of them implement
the CX gate directly, or some other two-qubit gate that can be easily transformed
in CX, such as CZ: CX = H · CZ ·H).

2.2 Ancilla Qubits

It is well known that the most efficient solutions many classical and quantum
problems make use of extra memory to achieve a speed-up. However, in the
case of Quantum Computing, due to its reversible nature, this speed-up comes
with a cost: any auxiliary qubit used must return to its initial state after the
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Fig. 1. Ancilla qubits notation: (a) clean, (b) dirty

computation is done, otherwise it will remain entangled to the other qubits, and
therefore any operation applied to it may modify the overall state of the system.

In literature, the auxiliary qubits are called ancilla, and they can be of two
types: clean ancillae and dirty ancillae.

Clean Ancilla: These are qubits that need to be in the state |0⟩ before the
computation is started and returned to this state afterwards. We will represent
the usage of clean ancilla by a circle with a single tilde as in Fig. 1a in order to
illustrate that only the |0⟩ state is left unchanged.

Dirty Ancilla: These qubits may be in any state before the computation
is started and must be returned to the exact same state afterwards. We will
represent the usage of dirty ancilla by a circle with a double tilde (Fig. 1b) in
order to illustrate that both fundamental states are left unchanged by the gate.

3 Existing Methods (Prior Work)

In this Section we introduce and present the evolution of quantum circuits for
simulating multi-controlled gates starting from the first ideas developed simul-
taneously with the concept of quantum computing.

3.1 First Ideas

In the theoretical model of quantum computations, the reference work which
analyses Multi Controlled Gates, with MCT as the primary example is [2]. The
authors have shown how one can achieve quantum MCT gates with or without
using auxiliary qubits. Some of the algorithms described there are implemented
by [9] and we will briefly discuss them here.

No Ancilla: Even though Tomaso Toffoli had proven in 1980 that construc-
tions of multi-controlled gates is impossible in the context of classical reversible
computing without the use of auxiliary bits because of parity constraints [16],
the ability of generating square roots of quantum gates makes this task possi-
ble in the context of quantum computing. However, the construction relies on
exploring all the possible states of the control register of qubits in a Gray-code
ordering and therefore needs an exponential number of gates. The cost of this
construction makes it impractical for a number of control qubits greater than 5.

Since then, other papers have proposed variants of this circuit pretending to
have a theoretical linear depth, while still using no ancilla [6, 14]. However, the
authors admit that the 2-qubit gates used are not easy to implement on real
quantum hardware and would need further decomposition into many basic gates
and the overall complexity increases.
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Cascading operations: The easiest and most intuitive way of implementing
MCT gates is by using classical Boolean logic concepts. These ideas are firstly
presented in [16], as classical circuits, and later in [2] in their quantum form.
Since the implementations are based on Boolean logic, they require additional
qubits to store partial calculation results. Fig. 2 presents the base construction
of these circuits by using Toffoli gates in both clean and dirty ancilla setups. It
is easy to see how the construction generalises to any number n of control qubits
at a cost of using n − 2 ancilla qubits and a linear number of total gates. The
depth of the circuit is proportional to the number of gates because parallelism
cannot be used (operations are done in a sequential order). The shape of the
resulting circuits has given this construction the name ’V-chain’.

∼ ≈

∼ ≈

∼ ≈

|c0⟩

= or

|c0⟩

=

|c1⟩ |c1⟩
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|c3⟩ |c3⟩

|0⟩ |a2⟩

|c4⟩ |c4⟩

|t⟩ |t⟩

Fig. 2. Structure of the V-chain construction for the case of 5 control qubits and 3
ancilla qubits (left: using clean ancilla, right: using dirty ancilla)

A great use for the dirty ancilla V-chain construction is also presented in
Lemma 7.3 from [2]: for creating an arbitrary large multi-controlled X circuit
one can use a single ancilla qubit and three or four V-chain constructions with
half the number of the initial controls, as illustrated in Fig. 3. The dirty ancilla
qubits needed for the V-chain gates are provided by the other half of the circuit
which does not participate in the current computation.
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Fig. 3. One Ancilla Construction using dirty ancilla V-chain sub-circuits (left: one
clean ancilla, right: one dirty ancilla)

Implemented by Qiskit: The three constructions described above are im-
plemented in [9] with the names noancilla, v-chain and recursive respec-
tively. However, the recursive implementation has a design flaw because the

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_16

https://dx.doi.org/10.1007/978-3-031-08760-8_16


Efficient constructions for simulating Multi Controlled Quantum Gates 5

sub-circuits used are also recursive and not v-chain as they should be. This
makes the overall gate-cost and depth complexities of the circuit to be quadratic
rather than linear as presented in [2]. Because of the widely use of Qiskit in
many Quantum Computing applications and as a learning environment, lots of
students or even specialists might mistakenly believe that a linear construction
for multi-controlled gates is not possible by using only one ancilla qubit. In or-
der to prove that is not the case, we have implemented, tested and measured
the complexities of these constructions using v-chain gates for the sub-circuits
(more details in Section 5).

3.2 Logarithmic Depth using Parallelism

In a more recent article [8], authors have described a construction that rearranges
the gates of the clean ancilla V-chain circuit in order to achieve a logarithmic
depth by making use of parallelism (see Fig. 10a for construction details).

3.3 Relative Phase and Partial Gate Cancelling

An important way of reducing the gate and depth cost of quantum circuits is
the usage of gate constructions that have almost the same functionality as the
gates they are trying to replicate in circumstances where the difference is either
irrelevant or can be cancelled by another conjugated gate construction. The
most common trick is to use relative phase gates: these gates are identical with
their counterparts when taken in absolute value, but differ only by a relative
phase applied over some of the states. In matrix form, this is equivalent to a
multiplication with a diagonal matrix D whose diagonal entries are of the form
eiφ. We will use the prefix R to denote a relative phase gate, therefore RC2X
will represent a relative phase Toffoli gate.

Phase correction

1 1

1 1

|x0⟩

=

T

=|x1⟩ T T †

|x2⟩ H T † T T † T H

Fig. 4. Decomposition of a Toffoli gate into a Relative Phase Toffoli and a Phase
Correction Gate. The circled 1s on the control qubits of the last circuit represent the
relative phase. The black circles represent the relative phase induced by the first part
of the circuit, and the white circles represent the corresponding phase correction.

Since the relative phase of a state is not observable, these kind of gates have
the same effect as the original ones if measurement is applied right after the
relative phase gate. However, in more complex circuits the relative phase may
interfere with other gates applied and lead to undesired effects. An example of
such a gate construction can be observed in Fig. 4.

An advantage of the diagonal matrix is that it can commute with many more
operators than an ordinary unitary operator can, and therefore the relative phase
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may be cancelled by a conjugated phase applied somewhere later in the circuit.
In particular, a relative phase applied on a qubit can be cancelled after applying
a gate that has that qubit as a control, as shown in Section III of [12]. Moreover,
depending on the circuit shape, a gate and it’s inverse can be decomposed in
pairs of gates that affect different numbers of qubits. If used in a circuit as
presented in Fig. 6, we can further reduce the number of gates by eliminating
the two corresponding sub-gates that are inverse to each other.

1

1

1

= = U1

U2

H T T † T T † H

Fig. 5. Decomposition of a relative phase 2-controlled Toffoli gate [12]. The full con-
struction represents the relative phase gate and the dashed red line marks the decom-
position of this construction into U1 and U2. The gate U1 represents the short version
of the RC2X gate and has a depth of 5 with 2 CX gates and 3 single-qubit gates.

1 1

1 1

1 1

= =

U1 U†
1

U1 U†
1

U2 U†
2

Fig. 6. Usage of conjugated short RC2X gates in order to reduce the costs of the
circuit. The first part of the figure presents the decomposition of the two conjugated
RC2X gates by using the formula (AB)† = B†A†, while the second part shows how to
apply the gate reduction.

3.4 Using 3-controlled relative phase Toffoli gates

The main contribution of [12] was the introduction of 3-controlled relative phase
Toffoli gates with the construction from Fig. 7 which is very cost-efficient, es-
pecially when the decomposition is used as in Fig. 6. In this case the cost of a
single gate is of 4 CX gates and 6 one-qubit gates. Also, the author proposes a
more efficient V-chain construction: all the Toffoli gates in the V-chain construc-
tion (Fig. 2) except for the ones at the bottom of the circuit can be replaced
by 3-controlled relative phase gates. Moreover, when using dirty ancilla, we can
actually use the short version of these gates for all but the two gates at the top.
This method doubles the number of total control qubits in the circuit without
the need to add more auxiliary qubits. The gate and depth cost of this circuit
keep their linear complexities with respect to the number of control qubits n, but
the constant factor decreases by 1/3 in the case of the dirty ancilla construction.
For the rest of this paper we will refer to these circuits as ’V-chain-2’.
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1

1

1

1

= = U1

U2

H T T † H T T † T T † H T T † H

Fig. 7. Decomposition of a relative phase 3-controlled Toffoli gate (RC3X) [12]. The
construction represents the relative phase gate and the dashed red line marks the
decomposition into U1 and U2. The gate U1 represents the short version of the RC3X
gate and has a depth of 10 with 4 CX gates and 6 single-qubit gates.

4 Our Proposed Methods

4.1 One Ancilla Constructions

Starting from the V-chain-2 constructions, we have developed two constructions
for the one-ancilla MCT circuits in Fig. 3 that are more efficient than those
presented in [2] and [8].

One Clean Ancilla: In the first part of Fig. 3 we can observe that there is a
V-chain gate repeated twice. This means that reducing the size of these gates will
reduce the overall cost of the circuit. In this construction, we have to split the n
control qubits into two groups of m1 and m2 qubits each, that will take turns in
being control and dirty ancilla for the three V-chain sub-circuits (Fig. 8). Since
each of these sub-circuits needs m/2 ancilla qubits for their m control qubits,
we have two constraints for m1 and m2: (m1−3)/2 < m2 and (m2−2)/2 < m1.
Since we want to optimise such that the value of m1 is minimal, we will reach a

configuration with m1 =
⌈n
3

⌉
and m2 =

⌊2n
3

⌋
.

/m1 ≈

∼

/m2 ≈ ≈

gates O(m1) O(m2) O(m1)

|c0:m1
⟩

=

|a0⟩

|cm1:n⟩

|targ⟩

Fig. 8. One clean Ancilla construction with splitting the controls into two groups of
m1 and m2 qubits respectively. The gate acting on the first group of m1 qubits appears
twice so we need to minimise its cost.

Calculating the cost of this construction we observe a decrease by a little
more than 1/3 over the version proposed in [2] (Details in Section 5).

One Dirty Ancilla: When designing the circuit using only one dirty ancilla,
there is only one improvement to make: replace the V-chain gates with V-chain2
ones. Since both the top and bottom part of the circuit contain 2 gates each,
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splitting the controls in two groups, m1 and m2 does not have any effect on the
gate count or circuit depth. In this case we obtain again a decrease by 1/3 over
the version in [2].

4.2 Depth Optimisation with Dirty Ancilla

Since we have observed that the depth of the V-chain-2 circuit that uses n/2
dirty ancilla is two times less than the depth of the one-dirty-ancilla construction,
we started the search for a general k-dirty-ancilla construction where k varies
between 1 and n/2. In order to achieve optimal depth in our circuit, we propose
the construction in Fig. 9.

/m1 ≈ ≈

≈ 2 2 2 2

2 2 2 2

2 2 2 2

≈ 2 2 2 2

/m2 ≈ ≈

|c0:m1⟩

=

|a0⟩

k − 1 times

|c2j⟩

|c2j+1⟩

|aj⟩

|cm1+2k:n⟩

|targ⟩

Fig. 9. Construction of a circuit simulating a MCT gate with k dirty ancilla qubits.
We use k−1 of the ancilla qubits in the middle part of the circuit to store the results of
2× (k− 1) pairs of short RC3X gates. The two groups of m1 and m2 qubits at the top
and bottom of the circuit alternate between being control qubits or dirty ancillae for
the 4 V-chain-2 gates required. We have eliminated the line linking the ancilla qubits
with their corresponding gate for clarity.

We mention that the authors of [1] have also proposed a dynamic program-
ming approach to generate an optimal-depth circuit with an arbitrary number
of dirty ancilla. However, they have not used the improved version V-chain-2,
and therefore the costs of their circuits are higher (details in Section 5).

4.3 Depth Optimisation with Clean Ancilla

It should be clear by now from the discussion in Section 3 that clean ancilla
qubits are more useful for reducing the circuit’s gate count and depth. However,
as stated in Section 1, they are a resource harder to obtain than the dirty ones,
so we must always adapt our circuits to the amount of qubits available.

Logarithmic with Half Ancilla: The first idea to reduce the clean Ancilla
count is to use relative phase 3-controlled gates as we have already done in the
case of dirty ancilla. In order to maintain the logarithmic depth of the circuit, we
use the same construction presented in [8], but replace all regular Toffoli gates
with relative phase ones, except for the one acting on the target (Fig. 10).
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Fig. 10. Logarithmic depth constructions for n = 6 control qubits using (a) RC2X
gates and n − 2 clean ancilla or (b) RC3X gates and n/2 clean ancilla. The first
construction keeps the same depth even if we increase the number of control qubits to
n = 8 and add two more clean ancillae.

The circuit depth will now be

D3(n) = 2⌊log3n⌋ × depth(RC3X) + depth(C2X) = O(logn).

In comparison, when using 2-controlled relative phase gates, the depth is

D2(n) = 2⌊log2n⌋ × depth(RC2X) + depth(C2X) = O(logn).

We can observe that the constant factor of our construction is higher, since

D3(n)

D2(n)
=

depth(RC3X)

depth(RC2X)
· log3n
log2n

=
18

9
log32 = log34 ≈ 1.26.

Depending on the physical implementation of the quantum computer, fu-
ture engineers should decide whether the n/2 additional clean auxiliary qubits
required for a 1.3× decrease in depth represent a fair price or not.

Note: The volumes of the two circuits are almost equal, but the one we
proposed is 5% smaller:

V3(n)

V2(n)
=

(n+ n/2)D3(n)

(n+ n− 1)D2(n)
≈ 3

4
log34 ≈ 0.95.

Lower cost with Logarithmic Ancilla: The next idea we present is one
that reduces the depth and gate cost of the circuit in exchange for O(logn) clean
ancilla. The main idea is to recursively add layers to the circuit while using
the already used control qubits as dirty ancilla before the restoring phase takes
place. Using these qubits as dirty ancilla allows us to use the short version of
V-chain-2 gates. The construction is detailed in Fig. 11.

This construction allows us to use j clean ancilla for building a circuit with
n = O(3j−1 ·j) control qubits, and because of the clever way of using the reduced
V-chain gates the depth and gate count of the circuit are around 30% less than
in the case of the construction with just one clean ancilla. When compared to
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U1

U2 U†
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U†
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1
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|0⟩

|ctrl⟩

|t⟩
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U2 U†
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U†
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|ctrl⟩
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|0⟩
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(c)

Fig. 11. Construction based on recursively appending layers of V-chain-2 gates. (a)
Decomposition of V-chain-2 gate to generate its short form. (b) Usage of short V-
chain-2 gates by conjugated gate cancelling: the U2 and U†

2 gates cancel each other
because the gate between them uses the qubits only as dirty ancilla, so it preserves
their state. (c) The procedure of recursively adding another layer of short V-chain-2
gates (U1 and U†

1 ): we continue this procedure with smaller gates until we have no
more ancilla left. The outer pair of V-chain-2 gates should only use the other j − 1
clean ancillae in the circuit and will therefore have m1 = 2j − 1 controls.

the logarithmic depth construction which uses a linear number of clean ancilla,
the gate count of this circuit is only higher with 25%, but the depth being linear
is definitely a downside. However, in a situation where the number of available
clean ancilla is low, this construction might still be preferred since with just 4
ancilla we could simulate circuits with n ≈ 80 controls.

Sqrt compromise: The logarithmic depth construction could be generalised
such that we can use gates with any number of control qubits as the building
block. Considering the size of the building block gate to be k controls we would
need 2 · ⌊logkn⌋+1

.
= 2L+1 layers of k-controlled V-chain-2 gates. However this

would mean that we need some more auxiliary qubits for the first layer of gates
(if we do not have these qubits we may split the first layer in two sub-layers
with half of the controls acting as dirty ancilla for the other half). The number
of auxiliary qubits needed will then be

#clean =

L−1∑
i=1

ki =
kL − 1

k − 1
≈ n

k − 1
.

The depth of the circuit can be calculated as

Dk(n) = (2L+ 1) ∗ depth(k-V-chain-2) = O(kL).
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In the case of k ≈ √
n, we have L = 2 and then #clean ≈ n

k − 1
≈ √

n. The

depth of the circuit will be D√
n(n) = O(2

√
n) = O(

√
n).

Again, the values for k and L should be chosen depending on the availability
of clean ancilla and the willingness to sacrifice the circuit’s depth and therefore
its execution time.

5 Implementation and Comparisons

We have implemented all the presented methods in Qiskit, the open-source Quan-
tum Computing environment developed by IBM. In order to calculate the real
costs of the implemented circuits, we have used Qiskit’s transpile(circuit)

function, which returns the equivalent circuit with only elementary gates (one-
qubit gates and CNOTs). The experiments were done with optimization level

=1 and we have used FakeQasmSimulator and FakeManhattan as backends.
FakeQasmSimulator has a virtually infinite number of fully connected qubits,
while FakeManhattan is the largest fake simulator available in Qiskit, with 65
qubits. FakeManhattan also needs additional SWAP gates in order to simulate
full connectivity between qubits.

5.1 One Ancilla Constructions

In Fig. 12 we present a comparison of the circuit depth for the various imple-
mentations of one-ancilla MCT gates discussed. We also include the noancilla
method here. We can observe in the figure that the two Qiskit implemented
methods become very expensive even for small values of n. It is also clear that
the clean ancilla methods have a smaller depth and our proposed methods rep-
resent an improvement over the existing ones, both in the ideal case (12a) and in
the real-life scenario (12b). The circuits run on the Manhattan Quantum Com-
puter have a 4-5 times higher depth, and the linear trends are not stable because
of the extra SWAP gates required.
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Fig. 12. Circuit depth of one-ancilla and no-ancilla circuits for MCT gates on a theo-
retical, fully connected quantum computer (a), and on the FakeManhattan computer
with 65 qubits (b). The first two methods are implemented by Qiskit, but their costs
are not linear. Our methods (pink) have better costs than the others. Dashed lines
represent constructions which use clean ancilla.
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5.2 Dirty Ancilla Constructions

In Fig. 13a we compare the depth of our circuit with the depth obtained by [1]
and in Fig. 13b we compare the depth and total gate cost for our circuit. It
can be concluded from these comparisons that if we want to minimise the depth
of the circuit we can use roughly k ≈ n/3 dirty ancilla qubits with no great
improvement over the n/2 ancilla version, while for also minimising the total
gate count we need k ≈ n/2.
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Fig. 13. Circuit costs of the circuit with varying number of dirty ancilla qubits. (a)
Comparison between the CX depths of our method and the method proposed in [1]
for a circuit with n = 30 control qubits. (b) Comparison between the total CX count
and the CX depth of the circuit in our method. The horizontal axis shows the ratio
between the number of ancilla and number of controls. The vertical axis shows the
ratio between the cost and the number of controls. The data used was obtained for
values of n between 10 and 100 so that the linear trends can be observed to be the
same regardless of the value of n.

5.3 Clean Ancilla Constructions

In Fig. 14 we can observe a CX depth comparison between the methods that
make use of clean ancillae. The V-chain-2 method is only shown for comparison,
as it should never be used, since it can be replaced by its logarithmic depth
equivalent. It is clear from this figure that our methods one-anc-2 and log-anc

have better depths than the method one-anc-1 described in [2].
We can also conclude that the sqrt method proves its efficiency for higher

values of n, where the circuit depth and ancilla need start to grow slower. When
comparing the two logarithmic depth approaches, we can observe the theoretical
prediction that our method log-depth-2 comes at a halved ancilla cost and
slightly increased depth, while on the Manhattan Quantum Computer there is
no noticeable difference between its depth and that of the original method.

6 Conclusion and Future Work

In this work we have presented and analysed various methods for implementing
Multi-Controlled Toffoli gates in Quantum Circuits and have proposed new, more
efficient, and versatile constructions.
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Fig. 14. Comparison between the CX depth of different implementations of MCT cir-
cuits with clean ancilla. (a) Comparison between the linear-depth constructions and
the sqrt construction. (b) Detail of the logarithmic depth constructions: our method
has a slightly higher depth, but uses only half as many ancilla. (c) Comparison of the
costs on FakeManhattan. (d) Detail of logarithmic depth constructions on FakeMan-
hattan: no noticeable difference between the two methods;

Since the Multi Controlled Gates are widely used in lots of Quantum appli-
cations we expect the ideas presented here to help reducing the costs of scalable
Algorithms which will one day be run on fault-tolerant Quantum hardware.

While the constructions presented here might not be optimal in any given
circumstances, we plan on designing an algorithm that will find the best circuit
with respect to a given cost function and resource constraints.

We also plan to search for optimisations of other well-known and widely used
Quantum Algorithms such as Quantum Fourier Transform, Arbitrary Permuta-
tions, and SAT Grover Oracles.

We invite future hardware engineers to choose the solution best suited for
their physical implementation and encourage quantum software engineers to try
and improve these constructions.
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