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Abstract. In the work, we are proposing a new distributed quantum an-
nealing method of algorithm construction for solving an NP-hard schedul-
ing problem. A method of diversification of calculations has been pro-
posed by dividing the space of feasible solutions and using the fact that
the quantum annealer of the D-Wave machine is able to optimally solve
(for now) small-size subproblems only. The proposed methodology was
tested on a difficult instance of a single machine total weighted tardiness
scheduling problem proposed by Lawler.
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1 Introduction

The idea of quantum computing and computers emerged in the 1980s as a result
of work of Richard Feynman, Paul Benioff and Yuri Manin. An approach, known
as the gate model, expresses the interactions between qubits as quantum gates.
Quantum gates, because of quantum physics, operate differently than classical
electrical gates such as AND or OR. In a quantum computer with a gate model,
there is no AND gate. Instead, there are Hadamard gates and Toffoli gates.
Unlike many classical logic gates, quantum logic gates are reversible.

Instead of expressing the problem in terms of quantum gates, the user presents
it as an optimization problem and the quantum annealing computer tries to find
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the best solution. D-Wave Systems makes quantum annealing computers avail-
able to the public today, proposing an approach to quantum computing that is
admittedly limited to the use of quantum annealing, but that fits well with the
needs of the operations research discipline. This paper presents a method for
solving a one-machine problem with a sum-of-cost criterion based on quantum
annealing.

2 The specificity of quantum annealers

Quantum annealing (QA) [8] is a hardware optimization method implemented
through quantum fluctuations, instead of – as in simulated annealing – tem-
perature fluctuations. It can be treated as metaheuristics, because the solutions
achieved on a quantum computer designed to perform quantum annealing do not
have a guarantee of optimality. This process is carried out by a special type of
quantum computer searching for the minimum energy Ising Hamiltonian config-
uration, the ground states of which represent the optimal solution to the problem
under consideration. The Ising model, traditionally used in mechanics, is formu-
lated for variables denoting the directions of spins: ’up’ and ’down’ – which corre-
sponds to the values of +1 and −1. The energy function is given by the formula:
EIsing(s) =

∑N
i=1 hisi+

∑N
i=1

∑N
j=i+1 Ji,jsisj , where N is the number of qubits,

si ∈ {+1,−1}, and the vector h and the matrix J are the Ising Hamiltonian co-
efficients. In practice, it is easier to adapt the problem under consideration to the
binary quadratic model, BQM, traditionally considered in operations research,
using binary variables: EBQM (v) =

∑N
i=1 aivi+

∑N
i=1

∑N
j=i+1 bi,jvivj + c, where

vi ∈ {1,+1} or {0, 1} and ai, bi,j , c are some real numbers depending on the in-
stance of the problem being solved. Of course, the BQM model is a generalization
of the Ising model.

In practice, on D-Wave machines, a constrained model is used to solve opti-
mization problems, which can be formulated as follows: minimize an objective∑

i

aixi +
∑
i<j

bijxixj + c (1)

subject to constrains∑
i

a
(c)
i xi +

∑
i<j

b
(c)
ij xixj + c(c) ≤ 0 c = 1, . . . , Cineq, (2)

∑
i

a
(c)
i xi +

∑
i<j

b
(c)
ij xixj + c(c) = 0 c = 1, . . . , Ceq, (3)

where xi, i = 1, . . . , n can be binary or integer variables, ai, bij and c are real
values and Cineq, Ceq are the number of inequality and equality constraints
respectively.
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3 Single machine total weighted tardiness problem

In the considered problem of tasks scheduling on a single machine with mini-
mization of total delays costs (marked in the literature by 1||

∑
wiTi) we have

a set of tasks that must be performed on one machine. Each task has an associ-
ated execution time, desired completion date, and the weight of the late penalty
function. The order in which the tasks are performed should be determined,
minimizing the sum of the costs of delays. It is one of the most studied, strongly
NP-hard problems with total-cost objective functions. The first work on this
topic, Rinnooy Kan et al. [10] has been published in the mid-1970s. Optimal
algorithms, based on the dynamic programming or branch and bound methods,
were published by: Congram et al. [5], and Wodecki [11]. These are mainly meta-
heuristics that have been widely used since the 1990s: tabu search of Bożejko
et al. [3], ant colony optimization algorithm (Den Basten et al. [6]). Extensive
reviews of the literature on scheduling problems with due dates was also pre-
sented by Adamu and Adewumi [1]. The literature also deals with problems with
random execution times or completion dates (Rajba and Wodecki [9], Bożejko
et al. [2]).

The single-machine problem of minimizing the sum of costs delays (To-
tal Weighted Tardiness Problem, abbreviated AS TWT), marked in the liter-
ature by 1||

∑
wiTi, can be formulated as follows: the set of tasks is given

J = {1, 2, . . . , n}. For the i ∈ J task, let us define: pi – processing time, di
– due date, and wi – weight of the cost function for the task’s tardiness. Each
task must be performed on the machine, the following restrictions must be met:
(a) the machine can perform at most one task at any given time, (b) task exe-
cution cannot be interrupted, (c) the task execution may begin at time zero.

Any solution to the TWT problem can be represented by the sequence
S1, S2, . . . , Sn of times when tasks meet the constraints:

Si + pi ≤ Sj ∨ Sj + pj ≤ Si, i ̸= j, i, j = 1, 2, . . . , n, (4)

Si ≥ 0, i = 1, 2, . . . , n (5)

Solution S1, S2, . . . , Sn can be represented by the order of execution of tasks
expressed by a permutation π ∈ Π of elements of the set J , where Π is the set
of all such permutations.

Let Cπ(i) = Sπ(i) + pπ(i) be completion time and dπ(i) the due date of a task
π(i) ∈ J . Then Tπ(i) = max {0, Cπ(i) − dπ(i) } is a tardiness, and fπ(i)(Cπ(i)) =
wπ(i)Tπ(i) tardiness weight. For any permutation of π ∈ Π, penalty for tasks
tardiness (solution cost) is

F(π) =

n∑
i=1

fπ(i)(Cπ(i)) =

n∑
i=1

wπ(i)Tπ(i). (6)

In the considered problem, the optimal order π∗ ∈ Π in which tasks should be
performed should be determined minimizing the total penalty. In the further
part of the work, we present a new method for solving the TWT problem and
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an algorithm in which a quantum computer performing quantum annealing was
used for calculations.

4 Solution method

The idea of solving the problem is based on the divide and conquer method. It
can be summarized as follows.

From n element set of tasks J find all k (0 < k < n) element subsets. Next:

1. Choose one of the subsets. We denote it as K. Let CK =
∑

z∈K pz be the
due date for K.

2. Using the QA quantum annealing algorithm, determine the order of exe-
cution, starting from CK for the remaining tasks, i.e. tasks from the set
K = J \ K. Let F (K) be the cost of executing them.

3. Find a set of all element permutations from K.
4. For the δ permutation, calculate the Fδ penalty for performing tasks in the

order δ.
5. Calculate Fmin(K), minimum after all permutations, from Fδ + F (K).
6. Perform 1–5 consecutively for all k elementary subsets of the task set J .

The minimum, after subsets, of the Fmin(K) values determined in 5th point is a
solution to the problem considered in the study.

In the further part of the work, we assume that the optimization algorithms
run on a quantum computer determine optimal solutions. If not, then the solution
to the problem discussed in this paper is suboptimal.

Let TWT (A,α) be a sub-problem of the TWT problem under consideration,
in which A ⊆ J and α is the starting point for the tasks from the A set. With
these markings, TWT (J , 0) is the problem under consideration in this paper.

For a natural number k (0 < k < n), L =
(
n
k

)
is the number of k elementary

subsets (combinations) of the elements of the set J . Let

A = {A1, A2, . . . , AL}, (7)

will be a set of such k elementary subsets. Come on, through

Ai = J \Ai, Ai ∈ A

we denote the completion of Ai in the task set J .
We consider a subset of Ai ∈ A. We assumed that |Ai| = k, 0 < k < n. From

the set Ai we can generate a τ = k! permutation. Let

Φi = {πi
1, π

i
2, . . . , π

i
τ} (8)

will be a set of these permutations. Cost of executing tasks in the order πi
j

(i = 1, 2, . . . , L, j = 1, 2, . . . , τ)

F(πi
j) =

k∑
l=1

max{0, Cπi
j
(l) − dπi

j
(l)} · wπi

j
(l), (9)
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where the completion time of the task πi
j(l) is Cπi

j
(l) =

∑l
s=1 pπi

j
(s), for l =

1, 2, . . . , k.

For the Ai set, C(Ai) =
∑

l∈Ai
pl is the end of all tasks from Ai. Let πi be the

solution to the problem TWT (Ai, C(Ai)) with the value of F(Ai) determined
by the algorithm QA (Ai, C(Ai)) (i = 1, 2, . . . , L). Then the set

Πi = {(πi
j , π

i) : πi
j ∈ Φi, j = 1.2, . . . , τ},

contains permutations of J tasks resulting from concatenation of πi
j elements of

Ai set with πi elements of Ai, which is a solution to the TWT problem deter-
mined by the Quantum Annealing QA(Ai, C(Ai)). The cost of the permutation
(πi

j , π
i) ∈ Πi is F(πi

j , π
i) = F(πi

j) + F(Ai). Then F∗
i = min{F(πi

j , π
i) : j =

1, 2, . . . , τ} is the value of the optimal1 solutions for permutations from the set
Πi, i.e. permutations in which the first k positions include tasks from the set Ai

and on the following k + 1, k + 2 . . . , n tasks from the set Ai.
Remark 1. For the set of J tasks and a natural number (k, 0 < k < n), if
the QA algorithm (Ai) determines optimal solutions, then F∗ = min{F∗

i : i =
1, 2, . . . , L}, is the optimal value of the solution of the TWT problem.

Algorithm 1 shows the Distributed Quantum Annealing (DQA) scheme for
determining, on a quantum computer, a solution to the single machine total
weighted tardiness problem.

Algorithm 1: Distributed Quantum Annealing DQA
Input : J – a set of tasks, pi, di, wi – task parameters,

k – number of elements of generated subsets;
Output: F∗ – penalty function value (solution of TWT problem);

1 Generate A containing all k - elementary subsets of n - element set;
2 for all Ai ∈ A do
3 Ai = J \Ai; C(Ai) =

∑
l∈Ai

pl;

4 Find the solution value F(Ai) of TWT problem (Ai, C(Ai)) using the QA;
5 According to (8) determine the set of permutations Φi elements from Ai;
6 for all πi

j ∈ Φi do
7 calculate F(πi

j) basis on (9);

8 F∗
i = min{F(πi

j) + F(Ai) : πi
j ∈ Φi};

9 F∗ = min{F∗
i : i = 1, 2, . . . , |A|};

Example 1. for n = 8 tasks (J = {1, 2, 3, 4, 5, 6, 7, 8}) and k = 3, a set of
3-element subsets of A has

(
n
k

)
=

(
8
5

)
= 56 items. Using the quantum annealing

algorithm, 56 sub-problems have to be solved. Each 3-element subset has 3! = 6
strings. The total of such strings is 56 · 6 = 336.

1 Assuming that quantum annealing will generate an optimal solution.
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5 Implementation on DWave quantum annealer

The implementation of the algorithm uses a constrained quadratic model with a
constraints available under Ocean Developer Tools for D-Wave Systems. Ocean
software is a suite of tools D-Wave Systems provides on the D-Wave GitHub
repository for solving hard problems with quantum computers.

For solving TWT problem we introduce integer variables Si, Ti and binary
variables xi,j , i ̸= j, i, j ∈ {1, . . . , n} which equals to 1 if job i precedes job j.

Our aim is to minimize: ∑
i

wiTi (10)

Subject to constrains:

Sj − Tj + pj − dj ≤ 0 j = 1, . . . , n, (11)

−Tj ≤ 0 j = 1, . . . , n, (12)

Sk − Sj + (pj − pk)xjk + 2(Sj − Sk)xjk + pk ≤ 0 j < k, j, k = 1, . . . , n, (13)

−Sj ≤ −S0 j = 1, 2, . . . , n. (14)

6 Results

Computer experiments have been conducted in D-Wave Leap environment on
hybrid_constrained_quadratic_model_version1p solver executed on a North
America quantum annealer. Exact QPU (Quantum Processing Unit) processing
time has been measured.

Case Study. An instance taken from the work of Lawler [7] has been used for
an experiment for checking usefulness of the proposed methodology, due to the
limited quantum machine time available per month. Data of the used instance
is shown in the Table 1.

i 1 2 3 4 5 6 7 8

pi 121 79 147 83 130 102 96 88
di 260 266 269 336 337 400 683 719
wi 1 1 1 1 1 1 1 1

Table 1. Lawler test instance

The weight for all tasks have been set as wi = 1, i = 1, 2, . . . , n (original
instance is dedicated for the single machine problem with total tardiness cost
function (without weights), however its difficulty’s is significant (it is hard to
solve). The optimal value is 755 (see Lawler [7]).

It is important to note, that it was impossible to achieve optimal solu-
tion by execution QA algorithm on the whole Lawler instance on D-Wave ma-
chine – percentage relative errors of the obtained solutions were very big, not
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less than 20.17% (regardless of the number of repetitions of the QA algorithm
calls). However, as we can see above, it was possible to obtain optimal solution
(1, 2, 4, 6, 5, 7, 8, 3) in i = 2 iteration by the DQA method proposed in this work.

7 Conclusions

The study considers the single machine tasks scheduling problem with the crite-
rion of minimizing the weighted sum of tardiness. A distributed quantum anneal-
ing DQA algorithm has been proposed. Currently, the possibilities of quantum
annealers (they are only produced by D-Wave company) allow us for the optimal
solution of very small instances, specifically for the problem under consideration,
up to n = 5. The application of the proposed DQA approach made it possible
to determine the optimal solution for a very difficult Lawler example for the
number of tasks n = 8 . The proposed methodology allows for optimal solving
of similar problems (eg. TSP) and larger sizes.
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