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Abstract. Quantum computing, in particular Quantum Annealing (QA), pro-
vides a theoretically promising alternative to classical methods for solving com-
binatorially difficult optimization problems. In particular, QA is suitable for prob-
lems that can be formulated as a Quadratic Unconstrained Binary Optimization
(QUBO) problem, such as SAT, graph colouring and travelling salesman. With
commercially available QA hardware, like that offered by D-Wave Systems (D-
Wave), reaching scales capable of tackling real world problems, it is timely to
assess and benchmark the performance of this current generation of hardware.
This paper empirically investigates the performance of D-Wave’s 2000Q (2048
qubits) and Advantage (5640 qubits) quantum annealers in solving a specific in-
stance of the maximum cardinality matching problem, building on the results
of a prior paper that investigated the performance of earlier QA hardware from
D-Wave. We find that the Advantage quantum annealer is able to produce opti-
mal solutions to larger problem instances than the 2000Q. We further consider
the problem’s structure and its implications for suitability to QA by utilising the
Landau-Zener formula to explore the potential scaling of the diabatic transition
probability. We propose a method to investigate the behaviour of minimum en-
ergy gaps for scalable problems deployed to quantum annealers. We find that the
minimum energy gap for our target QA problem does not scale favourably. This
behaviour raises questions as to the suitability of this problem for benchmarking
QA hardware, as it potentially lacks the nuance required to identify meaningful
performance improvements between generations.

Keywords: D-Wave · Quantum Annealing · Maximum Matching · Landau-Zener.

1 Introduction

The promise of quantum computing has been a tantalising prospect ever since the con-
cept of utilising quantum behaviour to perform computation was first proposed, most
notably in the early 1980s with the work of Paul Benioff [2, 4, 3] and Richard Feyn-
man [10]. Since the inception of this idea there has been significant effort invested,
and subsequent advances in hardware, however, it remains a speculative area with no
clear indication if the promise of quantum computing will be realised [8] or if classical
computing will reign supreme.

There are a number of competing approaches to quantum computing including
Quantum Gate Array (QGA) [18], One-way Quantum Computers (OQC) [20], more
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exotic and theoretical Topological Quantum Computers (TQC) [14], Adiabatic Quan-
tum Computers (AQC) [1] and Quantum Annealing (QA) approaches [9] and many
others such as those covered in [19]. While the QGA model is arguably the most inves-
tigated, QA has shown recent promise with commercially available hardware reaching
scales, i.e. number of qubits, with the potential of tackling useful real world problems
[26, 13]. QA as described in [24], inhabits a regime that is intermediate between the
idealised assumptions of universal AQC and unavoidable experimental compromises.

The contribution of this work is mainly twofold. We first extend the work of [23] to
the latest QA hardware from D-Wave and contrast the performance between quantum
annealers. We then consider the structure of the specific problem we have utilised to
assess the quantum annealer performance. It is known that as the energy gap between
two energy states of a quantum system decreases, the greater the likelihood the system
will ‘jump’ from one to the other [28]. We utilise the Landau-Zener formula to calculate
the expected diabatic transition probabilities for increasing problem sizes. We estimate
the scaling of the problem’s minimum energy gap, that is the minimum energy gap
between the ground state and the first excited state, and discuss the implications for
suitability to benchmark QA. We hope that this work forms a building block in the
ongoing assessment and benchmarking of quantum annealer performance.

2 Quantum Annealing on D-Wave

The QA implementation used by D-Wave is of the form shown in Equation 1 where
σ̂
(i)
x and σ̂

(i)
z are Pauli matrices operating on a qubit, qi, and hi and Ji,j are the qubit

biases and coupling strengths.

Hising = −A(s)

2

∑
i

σ̂(i)
x

+
B(s)

2

∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,j σ̂
(i)
z σ̂(j)

z

 (1)

Using D-Wave terminology [17] the initial Hamiltonian is called the tunnelling
Hamiltonian and is in its lowest energy state when all qubits are in a superposition
state of 0 and 1. The final Hamiltonian, also called the problem Hamiltonian, encodes
the spin problem to be optimised, Equation 2, by extending it from discrete spins to
quantum states. The ground state of the problem Hamiltonian corresponds to the so-
lution of the Ising problem. Initially the quantum annealer starts in the lowest energy
state of the tunnelling Hamiltonian and slowly introduces the problem Hamiltonian,
i.e. the annealing cycle begins at s = 0 with A(s) ≫ B(s) and ends at s = 1 with
A(s) ≪ B(s).

Eising(s) =
∑
i

hisi +
∑
i>j

Ji,jsisj (2)

Once the annealing cycle is completed, s = 1, the σ̂
(i)
z can be replaced by classical

spin variables, si = ±1. The energy of the system is then described as per Equation
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2 with the si’s corresponding to the solution for the target problem. If the system has
remained in the ground state then the corresponding values of the si’s represent the
optimal solution to the target problem.

2.1 QUBO formulation

QA requires that Hamiltonians be written as the quantum version of the Ising spin
glass [21]. Ising spin glasses often go by the name of Quadratic Unconstrained Binary
Optimisation (QUBO) problems [16, 12]. A general QUBO model is expressed as an
optimisation problem, as shown in Equation 3, where x is a vector of binary decision
variables and Q is a square matrix:

minimise/maximise y = xTQx. (3)

Quadratic penalties are added to the objective function to impose constraints on the
problem. These penalties are constructed such that their contribution is zero for feasible
solutions and some positive amount for infeasible solutions.

Consider the maximum cardinality matching problem, whose goal is, for some
graph, G, to find a matching containing as many edges as possible such that each vertex
is adjacent to at most one of the selected edges. The maximum matching problem, for
a graph, G = (V,E), can be represented as shown in Equation 4.

Maximise
∑
e∈E

xe s.t. ∀v ∈ V,
∑

e∈E(v)

xe ≤ 1 (4)

where xe ∈ {0, 1} and E(v) denotes the set of edges which have v as an endpoint.
Once the target problem has been formulated as a QUBO, it is then able to be im-

plemented and run on a quantum annealer. To implement the QUBO on the quantum
annealer it is first converted into an equivalent Ising problem, which requires the map-
ping of binary variables, xi ∈ {0, 1}, to spin variables, si ∈ {−1, 1} via the relation
si = 2xi − 1. These spin variables are then mapped to physical qubits on the QPU.
Many of these implementation details are handled by the API associated with the quan-
tum annealer as is the case with submitting problems to D-Wave’s quantum annealers.

3 Maximum Cardinality Matching

The goal of the maximum matching problem is to find, for some graph, a matching
containing as many edges as possible, that is, a maximum cardinality subset of the
edges, such that each vertex is adjacent to at most one edge of the subset. More formally
the problem can be stated as for some (undirected graph), G = (V,E), the maximum
matching problem asks for M ⊆ E such that ∀e, e′ ∈ M2, e ̸= e′ we have that e∩ e′ =
∅ and such that |M | is maximum [15].

3.1 Graph Family
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(a)

(b)

Fig. 1: Schemes representing the
G1(a) and G2(b) graphs.

As per [23] a specific family of graphs are utilised
for the application of the maximum matching
problem. This graph family, Gn, consists of alter-
nating layers of sparsely and densely connected
nodes where the number of rows are equal to
(n+1) and the number of layers equal to (2n+1).
The total number of edges for a specific Gn graph
is (n+1)3 and the number of nodes is 2(n+1)2.
As an example, the G1 and G2 graphs are shown
in Figure 1. A rigorous definition of this graph
family can be found in [22].

There are two main reasons for the selection
of this family of graphs. Firstly, it is trivial to see
that a maximum matching for Gn consists of all
the edges in the sparsely connected layers. It is
therefore easy to check solutions returned by a
quantum annealer. Secondly, the work presented
in [22] shows that the expected number of itera-
tions required by a class of annealing algorithms to reach a maximum matching is in
O(exp(n)). It is these two properties that make this graph family an interesting testing
ground for quantum annealers.

3.2 QUBO Formulation

To formulate the maximum matching problem as a QUBO we must incorporate the con-
straints of Equation 4 into the objective function. The optimisation problem is looking
to incentivise the inclusion of all edges, this corresponds to the diagonal terms in Q.
The constraint that selected edges are not adjacent to other selected edges corresponds
to the off-diagonal terms in Q. An example QUBO formulation for a G1 graph is shown
in Equation 5, where we have chosen -1, being a minimisation problem, to represent
the value of an included edge and a penalty term of P for adjacent edges. A vector of
[1, 1, 0, 0, 0, 0, 1, 1] minimises the value of Equation 5, pending a sufficiently large P .
Given an arbitrary graph, the QUBO formulation to find a maximum matching would
require that the ratio of off-diagonal to diagonal elements be greater than 1. Naturally
the penalty of violating a constraint must outweigh the benefit of incorporating another
edge into the solution. In our formulation we opt for a value of P = 2. This value was
chosen to avoid excessive scaling of biases and coupling values, as at implementation
time on the annealer D-Wave re-scales hi and Ji,j values between [-2,2] and [-1,1] re-
spectively. The choice of P is itself an area that warrants further investigation and an
optimal choice will likely depend on the specific problem structure.

We refer to the formulation shown in Equation 5 as the ’general’ formulation and
the formulation in [23] as the ‘prior’ formulation from here out. This distinction is
due to [23] utilising 1 + 2|E| and −2|E| for their diagonal and off-diagonal values,
respectively, in Q. We note that the prior formulation is valid for the utilised Gn graphs
but that it is not necessarily true for general graphs given 2|E|

1+2|E| < 1. We provide
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performance comparisons for both QUBO formulations, to provide continuity in the
performance benchmark dataset and also to investigate any impacts on solution quality
when a general formulation is used.

Miny =



x0

x1

x2

x3

x4

x5

x6

x7



⊤ 

−1 0 P P 0 0 0 0
0 −1 0 0 P P 0 0
0 0 −1 P P 0 P 0
0 0 0 −1 0 P 0 P
0 0 0 0 −1 P P 0
0 0 0 0 0 −1 0 P
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
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x3

x4

x5

x6

x7


(5)

4 Improved QPU Topology

One of the key changes in hardware from D-Wave has been the improvement in the
physical QPU architecture (or topology). D-Wave refers to the two most recent archi-
tectures as Chimera (present in the 2000Q and older models) and Pegasus (present in
the Advantage) [6]. The Chimera architecture consists of recurring K4,4, bipartite graph
unit cells which are coupled together and each qubit is physically coupled to 6 other
qubits. The Pegasus architecture, present in the Advantage quantum annealer, increases
the interconnection density with each qubit being connected to 15 other qubits. This
increase in qubit connectivity has positive implications with respect to chain lengths
and minor embedding.

When looking to solve an arbitrary problem on a D-Wave quantum annealer the
problem’s structure may not naturally match the annealer’s topology, as such the prob-
lem needs to be ‘embedded’. Physical qubits need to be linked, or coupled, to form
‘chains’ each representing a logical variable of original problem [5]. This introduces
the issue of chain breaks in the solutions found by the quantum annealer. Resolving
these chain breaks to find a consensus solution is typically achieved via empirical ap-
proaches, such as majority voting by the qubits in the broken chain.

5 Quantum Annealing Experiments

To conduct our experiments we made use of D-Wave’s open-source SDK, Ocean, and
the quantum annealers ‘DW 2000Q 6’, ‘Advantage system1.1’ and ‘Advantage sys-
tem4.1’. Where we refer to ‘Advantage’ it is a reference to both the 1.1 and 4.1 variants,
where we refer to a specific annealer the version number is specified. For all experi-
ments we utilised, unless specified otherwise, the default annealing duration of 20µs
and 10,000 samples (annealing cycles). Similar to [23] we note that both shorter and
longer annealing durations had negligible impacts, although a more nuanced analysis
could be of future benefit. We also utilised the default chain strength, which is calcu-
lated using D-Wave’s ‘uniform torque compensation’.
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6 Results Overview

Experimental results on the newest Advantage architecture are shown in Table 1. Up to
the G3 graph, the quantum annealer is able to obtain the optimal solution. It is not guar-
anteed that the solutions returned will be valid for the original problem i.e. they may
violate the problem constraints. As noted in [23] a post processing step would be re-
quired when using QA to ensure results produce valid matchings. Checking the validity
of solutions is trivial and it is an insightful metric to assess the performance of QA hard-
ware. Table 2 provides a summary of the number of valid solutions returned out of the
10,000 annealing cycles. An insight of these results is that our general QUBO formula-
tion produces significantly more valid solutions. We postulate that the quantity of valid
solutions is directly correlated to the ratio between diagonal and off-diagonal terms in
our Q matrix. We also note that both the 2000Q and Advantage quantum annealers pro-
duce valid results for the G3 graph, whereas the 2X failed to produce a single valid
matching, demonstrating an improvement in the hardware’s capability, albeit minor.

Table 1: Results Advantage - General and Prior QUBO Formulations (All Samples)
Best Worst Mean Med. St.Dev. Best Worst Mean Med. St.Dev.

2000Q (General) 2000Q (Prior)
G1 -4 -1 -4.0 -4 0.2 -68 -36 -67.9 -68 1.1
G2 -9 -4 -7.9 -8 0.8 -495 -279 -451.5 -442 37.8
G3 -16 -5 -11.4 -12 1.3 -2064 -1046 -1563.2 -1553 108.0
G4 -21 -5 -16.1 -16 2.0 -5526 -3279 -4579.6 -4527 292.1

Advantage1.1 (General) Advantage1.1 (Prior)
G1 -4 -2 -4.0 -4 0.2 -68 -52 -68.0 -68 0.6
G2 -9 -2 -7.1 -7 1.0 -495 -227 -428.0 -441 43.3
G3 -16 -3 -11.2 -11 1.6 -2064 -1042 -1592.8 -1554 127.5
G4 -22 -1 -13.9 -14 3.0 -5527 -2528 -4281.0 -4279 387.6
G5 -29 6 -13.6 -14 4.7 -12137 -4800 -9373.3 -9545 960.2

Advantage4.1 (General) Advantage4.1 (Prior)
G1 -4 -1 -4.0 -4 0.1 -68 -53 -68.0 -68 0.2
G2 -9 -2 -7.1 -7 1.0 -495 -276 -431.0 -441 42.0
G3 -16 -2 -10.9 -11 1.7 -2064 -915 -1560.6 -1553 127.4
G4 -22 -2 -15.2 -15 2.6 -5776 -2779 -4428.6 -4525 347.4
G5 -29 3 -17.8 -18 4.0 -12568 -6093 -10258.4 -10407 845.6

We make the following observations from our empirical tests:

– The 2000Q and Advantage were able to produce the optimal solution up to G3,
where as the 2X was only able to produce the optimal solution up to G2

– There is general improvement (a better lower bound) on the worst solution returned
– There is general improvement in the mean and median solutions returned with the

newer annealers, with the exception of Advantage on G4

– The Advantage was able to return valid, but non-optimal, solutions with our general
formulation up to and including G5
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While embeddings for G6 and G7 were identified on Advantage further analysis
was not conducted given the decline in solution quality beyond the G4 and G5 graphs.

Table 2: Comparison of Valid Solutions returned by Quantum Annealers

(a) Valid Solutions Returned
by 2000Q

Graph Num. of Valid Sols.
Prior General

G1 9959 9992
G2 4418 9561
G3 21 5575
G4 0 1516

(b) Valid Solutions Returned
by Advantage1.1

Graph Num. of Valid Sols.
Prior General

G1 9987 10000
G2 2864 8509
G3 50 3511
G4 0 123
G5 0 2

(c) Valid Solutions Returned
by Advantage4.1

Graph Num. of Valid Sols.
Prior General

G1 9998 9997
G2 3062 8821
G3 59 3255
G4 1 456
G5 0 7

The general formulation produced a greater number of valid solutions, as shown in
Table 2. The newer Advantage architecture produced a reduced number of valid solu-
tions compared to 2000Q. For example we obtained 1516 valid solutions on the 2000Q
versus 123 on Advantage1.1 and 456 on Advantage4.1 using our general formulation
for the G4 graph. Even though Advantage returned fewer valid solutions, it still pro-
duced a better overall result, achieving a solution of −22 versus the −21 obtained on
the 2000Q. The driver of this unexpected result is not clear, although Advantage4.1
closes this gap slightly. Potentially the more complex QPU architecture of Advantage
compromises with an increased variability in results (noise), noting generally higher
standard deviation values. A key benefit of Advantage is an increased connection den-
sity over the previous Chimera architecture, leading to easier identification of minor
embeddings and both reduced total number and overall length of chains required.

Table 3: Number of Chain Breaks for Each
Graph Size on different formulations and
architectures. G5 does not fit on 2000Q.

Graph
# of Chain Breaks

2000Q Advantage1.1
Prior General Prior General

G1 13 4 0 0
G2 208 21 93 31
G3 440 594 739 431
G4 3648 3603 1583 1503
G5 - - 5859 5862

Table 3 shows the number of returned
samples, for each graph size, that con-
tain at least one chain break, keeping
in mind that chain breaks were resolved
by majority voting. It was noted during
testing that the number of samples that
contained chain breaks, from a batch of
10,000, was rather variable. In particu-
lar, for G3 the number of samples con-
taining chain breaks would sometimes be
higher for sample batches on the 2000Q
and other times be higher for Advantage.
This overlap in chain break occurrence is
not entirely unexpected given that both
the 2000Q and Advantage require a sim-
ilar number of chains for the embedding, 60 and 50 respectively. However, at the scale
of G4 the benefits are clear, with Advantage typically suffering from only half as many
chain breaks as the 2000Q.
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7 Energy Gaps

As noted in Section 1 QA generalises AQC and inhabits a regime that is intermedi-
ate between the idealised assumptions of universal AQC and unavoidable experimental
compromises. As such we are unable to rely on the adiabatic theorem to ensure that an
evolving quantum system will remain in its ground state. For non-adiabatic systems, as
the energy gap between two states of a quantum system decreases, the likelihood that
the system will ‘jump’, or more precisely undergo a diabatic transition, from one to
state to another [28] increases. This possibility of diabatic transition is directly related
to the likelihood that the system obtains the global solution.

Being able to determine if a problem suffers, or will suffer at larger scales, from a
reducing gap between the first and second eigenvalues would be informative as to its
suitability to QA. However, determining the minimum gap is not easy, in fact being able
to calculate this gap would generally imply that the problem could be solved directly.

Given the limitations of calculating eigenstates, and corresponding eigenvalues, for
the G2 and beyond, we produce a number of interim graphs between the G1 and G2.
These graphs attempt to replicate the inherent structure of this family of graphs, while
providing a number of interim data points to assess the relationship between the mini-
mum energy gap and number of variables.

7.1 Landau-Zener Formula

To investigate the scaling of the minimum energy gap we utilise the Landau-Zener
(LZ) formula, which gives the probability of a diabatic transition between two energy
states [28]. The LZ formula is intended for two-state quantum systems and employs
several approximations. Even with these limitations the formula provides a useful tool
to gain insight into how diabatic transitions may behave for varying graph sizes. The
LZ formula along with supporting calculations are shown in Equations 6, 7 and 8 [25].

PD = e−2πΓ (6)

Γ =
a2/ℏ∣∣∣ ∂

∂t (E2 − E1)
∣∣∣ = a2/ℏ∣∣∣dqdt ∂

∂q (E2 − E1)
∣∣∣ = a2

ℏ|α|
(7)

∆E = E2(t)− E1(t) ≡ αt (8)

The quantity a is half the minimum energy gap, in our case the minimum energy
gap between the first and second eigenstate. For the calculation of α in Equation 8 we
assume a linear change in the gap between eigenvalues as defined in Equation 9.

α =
Initial Gap - Minimum Gap

Time to Minimum Gap
(9)

A decreasing minimum energy gap a drives the exponent in Equation 6 to zero and
hence the probability of a diabatic transition, PD, to 1.
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7.2 Modified Graph Family

The calculation of eigenvalues quickly becomes infeasible as the size of the system
increases. Given that the graph family we have been utilising, Gn, scales in accordance
with (n+1)3 we subsequently require a matrix of size 2(n+1)3×2(n+1)3 to represent the
quantum system. As a result, even calculating eigenstates for the G2 (27 variables) was
beyond the capability of our consumer hardware. Given this limitation we constructed a
number of ‘interim’ graphs, between G1 and G2, that increase in size while preserving
key structural elements such as sparse outer layers and a denser connecting layer.

(a) (b)

(c) (d)

(e)

Fig. 2: (a), (b), (c), (d) and (e) show the
interim graphs utilised to investigate

the minimum energy gap

The graphs we utilise to investigate en-
ergy gaps are shown in Figure 2 and range
in size from 8 to 22 variables (edges). For
each of these graphs the optimal solution to
the maximum matching problem is still to se-
lect all the edges in the sparse outer layers.

7.3 Eigenvalue Calculation

To determine the minimum energy gap be-
tween the ground state and first excited state
we calculate the eigenvalues using the follow-
ing process.

Construct Initial Hamiltonian: As per
Equation 1 we form the initial Hamiltonian
which is the sum of Pauli x matrices, σ̂x, see
Equations 10 and 11.

Hi =
∑
i

σ̂(i)
x (10)

σ̂(i)
x ≡ I1 ⊗ · · · ⊗ Ii−1 ⊗ σ̂(i)

x ⊗ Ii+1 ⊗ · · · ⊗ In
(11)

Obtain Biases and Couplers and Scale:
To obtain the relevant biases and couplers for
the particular graph we first form the corre-
sponding Q matrix using the form shown in
Equation 5, noting we again use a value of
P = 2 for off-diagonal values. Using D-
Wave’s Ocean libraries the matrix is then con-
verted into a binary quadratic model and sub-
sequently an Ising model. The linear biases,
hi, and quadratic couplers, Ji, are then extracted from this Ising model.

Construct Final Hamiltonian: As per Equation 1 we form the final Hamiltonian
which is the sum of Pauli z matrices, σ̂z , over both the biases, hi, and couplers, Ji,j ,
see Equations 12 and 13.
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10 C. McLeod and M. Sasdelli

Hf =
∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,j σ̂
(i)
z σ̂(j)

z (12)

σ̂(i)
z σ̂(j)

z ≡ I1⊗ · · · ⊗ Ii−1 ⊗ σ̂(i)
z ⊗ Ii+1⊗

· · · ⊗ Ij−1 ⊗ σ̂(j)
z ⊗ Ij+1 ⊗ · · · ⊗ In (13)

Define the System Evolution: The evolution of the system occurs as per Equation
14, where tf is the annealing duration, nominally being 20µs and t ∈ [0, tf ]. The value
of s is then used to determine the corresponding A(s) and B(s) (units of GHz) as per
the annealing schedule [7].

H(s) = A(s)Hi +B(s)Hf (14)

Calculate Eigenvalues: The first (ground state) and second (first excited state)
eigenvalues of H , from Equation 14, are calculated as a function of s. With these eigen-
values the initial gap, when s = 0, can be calculated and also the value of s that cor-
responds to the smallest gap. With these values the value of α can be calculated using
Equation 9 and the fact that the time to the minimum energy gap can be calculated by
t = stf .

7.4 Energy Gap Results and Expected Diabatic Transition Probability

Fig. 3: Minimum Energy Gaps for Varying Graph
Sizes (with Exponential Trendline)

In Figure 3 we plot the mini-
mum energy gap between the first
and second eigenvalue with a fitted
exponential trendline. While the
range of graph sizes utilised is nar-
row, the data suggest that it is plau-
sible that the minimum energy gap
decreases exponentially with graph
size. If these results are indica-
tive of the scaling of the minimum
energy gap for larger Gn graphs
we would expect that the proba-
bility of diabatic transitions during
annealing would increase dramati-
cally.

The other factor that impacts the diabatic transition probability is the time until
the minimum energy gap, with this value showing up in the denominator of Equation
9. This time varies slowly as a function of graph size on our interim graphs, but it is
insufficient to offset an exponentially decreasing minimum energy gap. We also assume
a constant initial energy gap of 19.6 GHz, which is based on the average initial energy
gap for the interim graphs, with the initial gap ranging from 19.5 GHz to 19.7 GHz.
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We now extrapolate the quantities obtained from the eigenvalues of the Hamilto-
nian for larger graphs. Using the LZ formula on the extrapolated quantities we calcu-
late the expected diabatic transition probability for an annealing cycle. This procedure
spares us from the need of simulating the quantum annealing process by integrating the
Schrödinger equation.

Fig. 4: Theoretical Expected No. of Successful
Annealing Cycles (out of 10,000) versus Number

of Optimal Solutions Returned from
Advantage1.1

The increase in diabatic tran-
sition probability corresponds to a
decreasing likelihood that an an-
nealing cycle won’t be affected
by a diabatic transition. Figure 4
plots the expected number of an-
nealing cycles, out of 10,000 cy-
cles (the default value), where a
diabatic transition does not occur,
based on our energy gap modelling
(grey squares), versus the number
of optimal solutions we actually
obtained from our empirical tests
on Advantage1.1 (black squares).
We specifically compare to the re-
sults obtained from Advantage us-
ing our general formulation and an annealing duration of 20µs.

The results of the Advantage architecture are compatible with the theoretical result,
once noise is taken into account. Between G1 (8 edges) and G2 (27 edges) there is a
significant drop in the number of optimal solutions obtained and by G3 only a single
optimal solution is returned out of 10,000 annealing cycles and none for G4. Our the-
oretical model indicates that obtaining optimal solutions, even for future hardware, is
highly unlikely for G5 (216 edges) and beyond.

7.5 Energy Gap Analysis Limitations

We acknowledge that in our probing of the behaviour of the minimum energy gap we
have made a number of assumptions, namely that our fabricated graphs are representa-
tive of the original graph family, that the minimum energy gap and time to minimum
energy gap follow an exponential and logarithmic relationship respectively and that
the results we obtain can be extrapolated. Further to this, the LZ formula is based on
a two-state quantum system with additional assumptions that ignore external impacts.
Our systems are clearly multi-state, with degenerate energy levels occurring from the
first excited state, and as such diabatic transitions may occur between any states of the
system. As such, our analysis is not intended to be a precise calculation of theoretical
behaviour, but it is meant to capture the possible scaling of the problem, to provide ini-
tial insights into how the diabatic transition probability scales for large graphs and to
give an indication of the quantum complexity of our problem, and thus the suitability
of such a problem as a benchmark for QA hardware.

There are likely a number of additional factors, as discussed in [11], that further
contribute to imperfect annealing, such as thermal excitation, unintended qubit cou-
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plings, errors in couplings and biases within the implemented Hamiltonian and deco-
herence in energy eigenstates. It is not unexpected that our empirical results fall short
of our theoretical model. However, we do believe that even given the limitations and
assumptions of our approach that our analysis lends credence to the possibility that
larger instances of our target problem may become intractable for future generations
of QA hardware. At the very least, the minimum energy gap of benchmarking prob-
lems should be considered when assessing performance of quantum annealers to ensure
performance improvements can be adequately discerned.

8 Discussion of Future Work

The empirical tests we have conducted on the latest QA hardware from D-Wave are an
extension of prior work from [23]. It is likely that performance could be improved by
further considering other annealing variables. For instance, custom annealing schedules,
chain strengths, chain break resolution methods and annealing offsets [27] (adjustment
of annealing path per qubit) could be optimised for improved results. We leave these
optimisations for future work where the impacts of such optimisations can be contrasted
to our implementation to assess the benefits of parameter tuning.

Secondly, our investigation into energy gap scaling utilised fabricated graphs up to
a size of 22 variables (edges). It would be insightful to extend the analysis up to the G2

graph, as it would provide a direct point of comparison to the original graph family and
assist with validating the scaling behaviour of the maximum matching problem on the
Gn graph family.

9 Conclusion

We have extended the prior work of [23] and the optimisation problem of maximum car-
dinality matching to the latest QA hardware from D-Wave, the 2000Q and Advantage
quantum annealers. In doing so we propose an improved version of the QUBO for-
mulation of this problem, specifically we modify the ratio of diagonal to off-diagonal
terms of the Q matrix so that the formulation is applicable to arbitrary graph struc-
tures. We find that this formulation produces significantly more valid solutions. With
the increased number of qubits and improved topology we also obtain empirical results
for larger problem instances, although solution quality at these scales remains notably
poor. We do note that the minor embeddings produced for these problems are far more
compact on the newer Pegasus topology.

Our testing shows improvements in the capability of QA hardware to solve combi-
natorially difficult optimisation problems. Our results demonstrate a general improve-
ment in the lower bound of solution quality and importantly we observe that the 2000Q
and Advantage are capable of producing the optimal solution for G3, whereas [23] were
unable to do so using the 2X quantum annealer.

Following from our empirical tests we probe the behaviour of the minimum energy
gap of our target problem by formulating a number of ‘interim’ graphs, that main-
tain key structural elements. We numerically calculate the first and second eigenvalues
over an evolutionary path that replicates the behaviour of the Advantage1.1 quantum
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annealer. These eigenvalues are then used to calculate the minimum energy gaps that
occur during annealing. To further investigate the minimum energy gap behaviour for
larger graphs we assume that the minimum energy gap decreases exponentially, which
our data support. We combine this with the LZ formula to calculate the probability of
a diabatic transition during an annealing cycle. We observe that even with this theoret-
ical approach, the increasing likelihood of diabatic transitions as graph sizes increase
suggests that optimal solutions for this problem on graph sizes of G5 and above are
unlikely to be achieved in the near term.

Ultimately our empirical results show improvement in the capability of QA hard-
ware with the 2000Q and Advantage being able to solve the maximum cardinality
matching problem for a G3, which escaped previous generations. However, our fur-
ther investigations into energy gaps and diabatic transitions raises questions about the
suitability of maximum cardinality matching problem on this graph family as a bench-
marking tool for QA hardware, as it potentially lacks the nuance required to identify
meaningful performance improvements between generations of QA hardware. We hope
that the methods developed in our work can be used to guide the design of better bench-
marking problems for QA hardware.
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