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Abstract. Algebraic attacks using quantum annealing are a new idea of
cryptanalysis. This paper shows how to obtain a QUBO problem equiva-
lent to the algebraic attack on the Speck cipher, using as small a number
of logical variables as possible. The main idea of minimizing the number
of variables in the algebraic attack on this ARX cipher was appropri-
ate cipher partition and insertion of additional variables. Using such an
idea, in the case of the most popular variants: Speck-128/128 and Speck-
128/256, the equivalent QUBO problem has 19,311 and 33,721 logical
variables, which is more efficient than the same attack on AES cipher,
where for AES-128 and AES-256, an equivalent QUBO problem consist
of 29,770 and 72,597 logical variables, respectively. It is an open ques-
tion if this kind of attack may overtake, in some cases, brutal or Grover’s
attack.
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1 Introduction

Quantum computing has allowed the development of new approaches to compu-
tational problems that classical computers cannot cope with. One such problem
in cryptanalysis of block ciphers is solving large systems of multivariate polyno-
mial equations during algebraic attacks. In general, the idea of algebraic attacks
is based on two steps: the first is to represent the cipher as a system of multi-
variate polynomial equations, and the second is to solve the created system.

In [3] Burek et al. showed how to transform obtained system of multivariate
equations into the QUBO problem.

QUBO (Quadratic Unconstrained Binary Optimization) is a combinatorial
optimization problem in which the cost function f (x) is defined on an
n-dimensional binary vector space Bn onto R, as follows: QUBO : min f (x) =
xtQx, where x is a vector of binary variables and Q is an upper diagonal matrix
of real weights.
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Since the variables are binary, x2i = xi holds, and the cost function can be
represented as: QUBO : min f (x) =

∑
iQi,ixi +

∑
i<j Qi,jxixj .

It is worth noting that algebraic attacks on symmetric ciphers using general-
purpose quantum computing have been studied in [4], [6], where variants of the
HHL [7] algorithm has been used.

The contribution presented in this paper is the presentation of the application
of an algebraic attack using quantum annealing on the Speck cipher. We focused
on obtaining equivalent QUBO problem using as small variables as possible. The
main idea of minimizing the number of variables in the algebraic attack on the
Speck cipher was appropriate ciphers partition and insertion of additional vari-
ables. In the case of the most popular variants: Speck128/128 and Speck128/256,
we obtained the equivalent QUBO problem consisting of 19,311 and 33,721 logi-
cal variables. According to our experiments, applying quantum annealing to the
algebraic attacks on Speck should be much more efficient than the same attack
on AES cipher, where in the case of the algebraic attack on AES-128 and AES-
256, an equivalent QUBO problem consist of 29,770 and 72,597 logical variables
respectively. It is an open question if this kind of attack may overtake, in some
cases, brutal or Grover’s attacks. However, assuming that complexity of solving

of QUBO problem consisting of N variables requires O
(
e
√
N
)

elementary oper-

ations [8], one can obtain an attack faster than the brute force on Speck-128/256
consisting of 31 of 34 rounds, which is better than the best known classical attack
on this cipher variant, which works for 25 rounds.

2 Algebraic attack on Speck using Quantum annealing

This section will present the method of representing the Speck cipher using mul-
tivariate polynomial equations to obtain a system of multivariate polynomial
equations with as few monomials as possible, which consequently allows obtain-
ing a problem in the QUBO form with as few binary variables as possible.

2.1 Speck cipher

The Speck cipher is a family of lightweight block ciphers of the ARX type,
presented in [2] as highly-optimized block ciphers intended for software and
hardware implementations.

An instance of the Speck cipher will be designated, according to [2], as
Speck2n/mn, where 2n is the length of the input block, n is the word length, and
mn is the key length. The Speck2n/mn cipher uses the n-bit word operations,
as bitwise xor, addition modulo 2n and right and left rotations.

The general structure of the Speck2n/mn cipher is shown in Figure 1, where
T denotes the number of rounds, ⊕ denotes the bitwise xor operation, � denotes
the addition modulo 2n, and� α and� β denote a right rotation by α and left
rotation by β bits, respectively.

The round function of the encryption algorithm of the Speck2n/mn cipher is
a map R : GF (2)n ×GF (2)n → GF (2)n ×GF (2)n, where GF (q) is Galois field
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with q elements, defined as follows: R(xi+1, yi+1) = (((xi � α) + yi)⊕ ki, (yi �
β)⊕ ((xi � α) + yi)⊕ ki), where xi and yi is, respectively, the left and the right
n-bit word of the input block of i round, ki is the round key and i is the number
of the round.

The round key generation algorithm uses the round function. The key is
divided into m n-bit words, where the least significant n bits are the round
key of the first round, and the next n-bit words are successive li words: K =
[lm−2, . . . , l0, k0], where li, k0 ∈ GF (2)n. The words li and the round keys ki are
determined as: li+m−1 = ((li � α) + ki)⊕ i and ki+1 = (ki � β)⊕ li+m−1.

(a) Split of Speck2n/mn cipher ac-
cording to cipher documentation.

(b) Split of Speck2n/mn cipher by using
additional variables.

Fig. 1: Structure of the Speck2n/mn cipher for the presented approaches.

2.2 Efficient approach to generating multivariate polynomial
equations

In the approach to generating multivariate polynomial equations, where the
range of the round was held by the Speck algorithm documentation, the ad-
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ditional binary variables have been introduced for intermediate states between
rounds and round keys. The number of additional binary variables for intermedi-
ate states is (T −1)2n, and for round keys (T −1)n, as presented in red in Figure
1a. The multivariate polynomials were generated over GF (2)n, separately for the
left and right words, each state between rounds, and each round key. Finally, the
degree of the left word polynomial equations is 2n+ 1, so the number of binary
variables in the QUBO problem will be very large.

In our approach to generating multivariate polynomial equations, the range of
the round was changed. Figure 1b shows in red how the additional intermediate
variables were introduced. Additional binary variables were introduced for round
keys and intermediate states, which were introduced after the addition modulo
2n in the encryption algorithm and the round key generation algorithm. Since
there is no key addition in the first round in Figure 1b, the bits of the words x1
and y1 are also known: x1 = (x0 � α) + y0 and y1 = y0.

The number of additional binary variables for the round keys is (T − 1)n,
for intermediate states in the encryption algorithm, it is (T − 1)2n, and for
intermediate states lxi, in the round key generation algorithm, it is 2n.

The xor operation of aj and bj bits may be written as aj⊕bj = aj+bj−2ajbj ,

therefore for the n-bit a and b words is executed as: a⊕ b =
∑n−1
j=0 2j(aj + bj −

2ajbj). Since in this approach addition modulo 2n is executed after the xor

operation, then: (a + b) mod 2n =
∑n−1
j=0 2j(aj + bj) − c · 2n, where the bit c is

the carry bit of sum.

In this approach, the equation representing the left-word of one round of the
encryption algorithm, except the last round, takes the following form: xi+1 =
(((xi ⊕ ki) � α) + yi+1) mod 2n, and after performing all operations it is form
as:

n−1∑
j=0

2j((xi)(j+α)mod n + (ki)(j+α)mod n − 2(xi)(j+α)mod n(ki)(j+α)mod n+

+ (yi+1)j − (xi+1)j)− c · 2n = 0.

(1)

The equation representing the right-word of one round of the encryption algo-
rithm, except the last round, takes the following form: yi+1 = ((yi � β)⊕xi⊕ki),
which can be finally converted to:

n−1∑
j=0

2j((yi)(j−β)mod n + (xi)j − 2(yi)(j−β)mod n(xi)j + (ki)j+

− 2(ki)j(yi)(j−β)mod n − 2(ki)j(xi)j + 4(ki)j(yi)(j−β)mod n(xi)j − (yi+1)j) = 0.

(2)

Similarly, the last round of the encryption algorithm can be represented by the
following equations: xT+1 = (xT ⊕ kT−1), for the left word, which is equivalent
to:

n−1∑
j=0

2j((xT )j + (kT−1)j − 2(xT )j(kT−1)j − (xT+1)j) = 0, (3)
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and for the right word: yT+1 = (yT � β)⊕ xT+1, which is equivalent to:

n−1∑
j=0

2j((yT )(j−β)mod n + (xT+1)j − 2(yT )(j−β)mod n(xT+1)j − (yT+1)j) = 0. (4)

Two multivariate polynomial equations also represent each round of the
round key generation algorithm. The first equation associates the binary vari-
ables of the word li with the binary variables of the word lxi, and the second
equation relates the binary variables of the word lxi with the binary variables
of the ki and ki+1 round keys.

The equation defining the lxi word is as follows: lxi = ((li � α)+ki) mod 2n,
which can be converted to the form:

n−1∑
j=0

2j((li)(j+α)mod n + (ki)j − (lxi)j)− c · 2n = 0. (5)

The equation defining the ki+1 round key has the following form: ki+1 = ((lxi⊕
i)⊕ (ki � β)), which is equivalent to:

n−1∑
j=0

2j((lxi)j + (i)j − 2(lxi)j(i)j + (ki)(j−β)mod n − 2(lxi)j(ki)(j−β)mod n+

− 2(i)j(ki)(j−β)mod n + 4(lxi)j(i)j(ki)(j−β)mod n) = 0,

(6)

where (i)j is the j-th bit of known constant i. The degree of the polynomial
in Equation (6) is 3. However, such a degree occurs only in the monomial with
the i constant bit, so the monomial will have the degree 2 if the constant bit is
1, otherwise, the monomial will vanish.

In the proposed approach to generating multivariate polynomial equations
representing the Speck2n/mn cipher, the degree of polynomials is constant and
does not depend on the length of the input block. T -round Speck2n/mn cipher
can be represented by the system of: T − 1 polynomials of degree 2, of the form
as in Equation (1), T −1 polynomials of degree 3, of the form as in Equation (2),
one polynomial of degree 2, of the form as in Equation (3) and one polynomial of
degree 2, of the form as in Equation (4) for the encryption algorithm. Additional,
for the round key generation algorithm: T − 1 polynomials of degree 1, of the
form as in Equation (5) and T − 1 polynomials of degree 2, of the form as in
Equation (6).

3 Transformation of algebraic attacks on Speck using
quantum annealing

Cryptanalysis of Speck algorithm has been widely described, see [1], [10], [5].
This section will describe the results of the transformation of algebraic attacks
using quantum annealing on Speck.
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We used the transformation method of algebraic attacks to the QUBO prob-
lem presented in [3].

It is worth presenting the following observation, which can be found in [9].
First, let us note that there are many different variants of the Speck cipher. Each
variant has a different block size (2n) and key length (mn). If 2n ≥ mn, there is
approximately one proper key for each pair of plaintext - ciphertext. Things are
getting different if 2n < mn. In such a case, having only one pair of plaintext
- ciphertext, for each pair, approximately 2mn−2n keys will be proper for this
pair, but only one will be proper for all other pairs. If one wants to find the key
used for encryption with high probability, in such a case, there are required dm2 e
plaintext - ciphertext pairs.

For each variant of the Speck cipher, we computed the number of variables
of the equivalent QUBO problem. Let us note that for variants in which block
length is smaller than key length, we used 2 pairs of plaintext - ciphertext, and
therefore, in such cases, such QUBO problem is constructed from two smaller
QUBO problems - each problem for each pair. Unfortunately, our final QUBO
problem must consist of two smaller. We most frequently obtain some proper
solution using quantum annealing, but not all solutions. It means that we cannot
solve such systems independently for each pair.

Table 1: Results of transformation of the system of multivariate quadratic equa-
tions describing the AES and Speck ciphers to the QUBO problem.

Cipher Number of Number of Cipher Number of Number of
variant rounds variables variant rounds variables

AES-128 10 29,770 Speck96/96 28 12,418

AES-192 12 62,153 Speck64/128 27 13,711

AES-256 14 72597 Speck128/128 32 19,311

Speck32/64 22 5,789 Speck96/144 29 21,716

Speck48/72 22 8,470 Speck128/192 33 32,659

Speck48/96 23 8,884 Speck128/256 34 33,721

Speck64/96 26 13,167

Because QUBO problem, equivalent to the algebraic attack on Speck cipher,
in general, consists of less number of variables than analogic QUBO problem
in the case of AES cipher with the same block size and key size (see Table
1), we conclude, that Speck cipher is easier to break using quantum annealing.
However, it is hard to speculate if this attack can outperform brute force or
Grover’s attack. The computational complexity of solving the QUBO problem
using quantum annealing still requires much research. However, it is claimed that
such complexity depends mostly on the number of variables. The precise time
complexity of solving the QUBO problem using quantum annealing has not been
computed yet. Using heuristics, it is possible to estimate the expected time of

solving QUBO problem consisting of N variables as O
(
e
√
N
)

[8]. Unfortunately,

using current quantum annealers, it is impossible to break any variant of Speck
cipher in practice.
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4 Conclusion

This paper presents the transformation of the algebraic attack on the Speck
cipher to the QUBO problem. We showed how to obtain the smallest possible
number of variables for a QUBO problem. To obtain such a small number of
variables, we proposed a novel way of describing the algebraic structure of each
of the algorithms.

The computational complexity of solving the QUBO problem using quantum
annealing has not been fully studied yet, and much more research in this area is
required.

Further works should be more research on the computational complexity of
solving algebraic attacks on cryptographic algorithms using quantum annealing
and applying the presented method to other symmetric algorithms.
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