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Abstract. Quantum optimal control problems are typically solved by
gradient-based algorithms such as GRAPE, which suffer from expo-
nential growth in storage with increasing number of qubits and linear
growth in memory requirements with increasing number of time steps.
These memory requirements are a barrier for simulating large models
or long time spans. We have created a nonstandard automatic differ-
entiation technique that can compute gradients needed by GRAPE by
exploiting the fact that the inverse of a unitary matrix is its conjugate
transpose. Our approach significantly reduces the memory requirements
for GRAPE, at the cost of a reasonable amount of recomputation. We
present benchmark results based on an implementation in JAX.

Keywords: Quantum · Autodiff · Memory.

1 Introduction

Quantum computing is computing using quantum-mechanical phenomena, such
as superposition and entanglement. It holds the promise of being able to effi-
ciently solve problems that classical computers practically cannot. In quantum
computing, quantum algorithms are often expressed by using a quantum circuit
model, in which a computation is a sequence of quantum gates. Quantum gates
are the building blocks of quantum circuits and operate on a small number of
qubits, similar to how classical logic gates operate on a small number of bits in
conventional digital circuits.
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Practitioners of quantum computing must map the logical quantum gates
onto the physical quantum devices that implement quantum gates through a
process called quantum control. The goal of quantum control is to actively manip-
ulate dynamical processes at the atomic or molecular scale, typically by means of
external electromagnetic fields. The objective of quantum optimal control (QOC)
is to devise and implement shapes of pulses of external fields or sequences of such
pulses that reach a given task in a quantum system in the best way possible.

We follow the QOC model presented in [20]. Given an intrinsic Hamiltonian
H0, an initial state |ψ0〉, and a set of control operators H1, H2, . . . Hm, one seeks
to determine, for a sequence of time steps t0, t1, . . . , tN , a set of control fields
uk,j such that

Hj = H0 +

m∑
k=1

uk,jHk (1)

Uj = e−iHj(tj−tj−1) (2)

Kj = UjUj−1Uj−2 . . . U1U0 (3)

|ψj〉 = Kj |ψ0〉. (4)

An important observation is that the dimensions of Kj and Uj are 2q × 2q,
where q is the number of qubits in the system. One possible objective is to
minimize the trace distance between KN and a target quantum gate KT :

F0 = 1− |Tr(K†TKN )/D|2, (5)

where D is the Hilbert space dimension. The complete QOC formulation includes
secondary objectives and additional constraints One way to address this formu-
lation is by adding to the objective function weighted penalty terms representing

constraint violation: minuk,j

(∑2
i=0 wiFi +

∑6
i=3 wiGi

)
, where

F1 = 1− 1

n

∑
j

|Tr(K†TKj)/D|2 (6)

F2 = 1− 1

n

∑
j

|〈ψT |ψj〉|2 (7)

G3 = 1− |〈ψT |ψn〉|2 (8)

G4 = |u|2 (9)

G5 =
∑
k,j

|uj,k − uk,j−1|2 (10)

G6 =
∑
j

|〈ψF |ψj〉|2 (11)

and ψF is a forbidden state.
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Algorithm 1 Pseudocode for the GRAPE algorithm.

Guess initial controls uk,j .
repeat

Starting from H0, calculate
ρj = UjUj−1 . . . U1H0U

†
1 . . . U

†
j−1U

†
j .

Starting from λN = KT , calculate
λj = U†j+1 . . . U

†
NKTUN . . . Uj .

Evaluate
∂ρjλj

∂uk,j

Update the m×N control amplitudes:
uj,k → uj,k + ε

∂ρjλj

∂uk,j

until Tr (K†TKN ) < threshold
return uj,k

QOC can be solved by several algorithms, including the gradient ascent pulse
engineering (GRAPE) algorithm [17]. A basic version of GRAPE is shown in

Algorithm 1. The derivatives
∂ρjλj

∂uk,j
required by GRAPE can be calculated by

hand coding or finite differences. Recently, these values have been calculated
efficiently by automatic differentiation (AD or autodiff) [20].

AD is a technique for transforming algorithms that compute some math-
ematical function into algorithms that compute the derivatives of that func-
tion [3, 12, 21]. AD works by differentiating the functions intrinsic to a given
programming language (sin(), cos(), +, -, etc.) and combining the partial
derivatives using the chain rule of differential calculus. The associativity of the
chain rule leads to two main methods of combining partial derivatives. The for-
ward mode combines partial derivatives starting with the independent variables
and propagating forward to the dependent variables. The reverse mode combines
partial derivatives starting with the dependent variables and propagating back to
the independent variables. It is particularly attractive in the case of scalar func-
tions, where a gradient of arbitrary length can be computed at a fixed multiple
of the operations count of the function.

Fig. 1. Reverse-mode gradient computation for QOC. Each forward time step, j, com-
putes Kj , Uj , and ψj and stores them in memory. The reverse sweep starts at time
step N . Each reverse time step j uses the previously stored Kj , Uj , and ψj .
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The reverse mode of AD is appropriate for QOC because of the large number
(m × N) of inputs and the small number of outputs (the cost function(s)). As
shown in Figure 1, standard reverse-mode AD stores the results of intermediate
time steps (Kj , Uj , ψj) in order to compute

∂ρjλj

∂uk,j
. This implies that reverse-

mode AD requires additional memory that is exponentially proportional to q.
Current QOC simulations therefore are limited in both the number of qubits that
can be simulated and the number of time steps in the simulation. In this work
we explore the suitability of checkpointing as well as unitary matrix reversibility
to overcome this additional memory requirement.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents our approach to reducing the memory requirements of QOC.
Section 4 details the QOC implementation in JAX, and the evaluation of this
approach is presented in Section 5. Section 6 concludes the paper and discusses
future work.

2 Related Work

QOC has been implemented in several packages, such as the Quantum Toolbox
in Python (QuTIP) [15,16]. In addition to GRAPE, QOC can be solved by using
the chopped random basis (CRAB) algorithm [6, 9]. The problem is formulated
as the extremization of a multivariable function, which can be numerically ap-
proached with a suitable method such as steepest descent or conjugate gradient.
If computing the gradient is expensive, CRAB can instead use a derivative-free
optimization algorithm. In [20], the AD capabilities of TensorFlow are used to
compute gradients for QOC.

Checkpointing is a well-established approach in AD to reduce the mem-
ory requirements of reverse-mode AD [10, 18]. In short, checkpointing tech-
niques trade recomputation for storing intermediate states; see Section 3.1 for
more details. For time-stepping codes, such as QOC, checkpointing strategies
can range from simple periodic schemes [12], through binomial checkpointing
schemes [11] that minimize recomputation subject to memory constraints, to
multilevel checkpointing schemes [2, 23] that store checkpoints to a multilevel
storage hierarchy. Checkpointing schemes have also been adapted to deep neural
networks [4, 7, 14,22] and combined with checkpoint compression [8, 19].

3 Reducing Memory Requirements

We explore three approaches to reduce the memory required to compute the
derivatives for QOC.

3.1 Approach 1: Checkpointing

Checkpointing schemes reduce the memory requirements of reverse-mode AD by
recomputing certain intermediate states instead of storing them. These schemes
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checkpoint the inputs of selected time steps in a plain-forward sweep. To com-
pute the gradient, a stored checkpoint is read, followed by a forward sweep and
a reverse sweep for an appropriate number of time steps. Figure 2 illustrates
periodic checkpointing for a computation of 10 time steps and 5 checkpoints. In
the case of QOC with N time steps and periodic checkpointing interval C, one
must store O(C + N

C ) matrices of size 2q × 2q.

0 1 2 3 4 5 6 7 8 9 10

= write checkpoint

= state

= read checkpoint

= forward step

= tape+reverse step

Fig. 2. Periodic checkpointing schedule for N=10 time steps and 5 checkpoints (C=2).

3.2 Approach 2: Reversibility of Unitary Matrices

The second approach is to exploit the property of unitary matrices that the
inverse of a unitary matrices is its conjugate transpose.

U†U = UU† (12)

U† = U−1 (13)

Computing the inverse by exploiting the reversibility property of unitary ma-
trices is an exact and inexpensive process. The use of the inverse allows us to
compute Kj−1 from Kj and ψj−1 from ψj .

Kj = UjUj−1Uj−2 . . . U1U0 (14)

Kj−1 = U†jKj (15)

ψj−1 = ψ0Kj−1 (16)

Thus, one does not have to store any of the Kj matrices required to compute
the adjoint of a time step. This approach reduces the memory requirement by
half.

More importantly, using reversibility can unlock a further reduction in the
memory requirements by not storing Uj , but rather using only the uj,k control
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values to recompute Uj . As a result, no intermediate computations need to be
stored, and therefore the only additional requirements are to store the derivatives
of the function with respect to the controls and other variables, thus basically
doubling the memory requirements relative to the function itself.

3.3 Approach 3: Periodic Checkpointing Plus Reversibility

The reversibility property of unitary matrices is exact only in real arithmetic. A
floating-point implementation may incur roundoff errors. Therefore, Equation 15
might not hold exactly, especially for large numbers of time steps. That is,

Kj−1 ≈ U†jKj (17)

ψj−1 ≈ ψ0Kj−1 (18)

in floating-point arithmetic. Because Kj−1 is computed each time step, the error
continues to grow as the computation proceeds in the reverse sweep.

To mitigate this effect, we can combine the two approaches, checkpointing
every C time steps and, during the reverse pass, instead of computing forward
from these checkpoints, computing backward from the checkpoints by exploit-
ing reversibility. Thus, floating-point errors in Equation 15 are incurred over a
maximum of C time steps, and we reduce the number of matrices of size 2q × 2q

stored from O(C + N
C ) to O(NC ).

Table 1. Overview of the object sizes, number of object instances stored for the forward
computation, and number of additional instances that need to be stored for store-all,
checkpointing, reversibility, and checkpointing plus reversibility. The total memory size
in the last row is the product of the object size and the number of instances.

Variable Size Forward Store Checkpoint Revert Rev + Ckp

uk,j 1 Nm +0 +0 +0 +0

H 2q · 2q m +0 +0 +0 +0

Hj 2q · 2q 1 +0 +0 +0 +0

Uj 2q · 2q 1 +N +C +0 +0

Kj 2q · 2q 1 +N +N
C

+ C +0 +N
C

ψj 2q 1 +N +N
C

+ C +0 +N
C

Mem (O) 22qm+Nm +22qN +22q
(
N
C

+ C
)

+0 +22q N
C

3.4 Analysis of memory requirements

Table 1 summarizes the memory requirements for the forward pass of the func-
tion evaluation as well as the added cost of the various strategies for computing
the gradient. Conventional AD, which stores the intermediate states Uj , Kj , and
ψj at every time step, incurs an additional storage cost proportional to the num-
ber of time steps times the size of the 2q × 2q matrices. Periodic checkpointing
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reduces the number of matrices stored to N
C + C. The checkpointing interval

that minimizes this cost occurs when ∂
∂C

(
N
C + C

)
= −N

C2 + 1 = 0, or C =
√
N .

Exploiting reversibility enables one to compute Uj from uj,k and Hk and Kj−1
from Kj and Uj , resulting in essentially zero additional memory requirements,
beyond those required to store the derivatives themselves. Combining reversibil-
ity with periodic checkpointing eliminates the number of copies of Uj and Kj to
be stored from N

C + C to N
C .

4 Implementation

As an initial step we have ported to the JAX machine learning framework [5] a
version of QOC that was previously implemented in TensorFlow. JAX provides a
NumPy-style interface and supports execution on CPU systems as well as GPU
and TPU (tensor processing unit) accelerators, with built-in automatic differ-
entiation and just-in-time compilation capability. JAX supports checkpointing
through the use of the jax.checkpoint decorator and allows custom derivatives
to be created for functions using the custom jvp decorator for forward mode
and the custom vjp decorator for reverse mode. To enable our work, we have
contributed jax.scipy.linalg.expm to JAX to perform the matrix exponenti-
ation operation using Padé approximation and to compute its derivatives. This
code is now part of standard JAX releases.

Our approach requires us to perform checkpointing or use custom derivatives
only for the Python function that implements Equations 1–4 for a single time
step j or a loop over a block of time steps. Standard AD can be used as before for
the rest of the code. By implication, our approach does not change for different
objective functions.

We show here the implementation of the periodic checkpointing plus re-
versibility approach and direct the reader to our open source implementation
for further details [1]. Listing 1 shows the primal code that computes a set of
time steps. The function evolve step computes Equations 1–4.

Listing 1 Simplified code showing a loop to simulate QOC for N time steps

def evolve_step_loop(start , stop , cost_eval_step , dt, states , K,
control_eval_times , controls ):

for step in range(start ,stop):
# Evolve the states and K to the next time step.
time = step * dt
states , K = evolve_step(dt , states , K, time ,

control_eval_times , controls)
return states , K

Listing 2 is a convenience wrapper with for the primal code. We decorate
the wrapper with jax.custom vjp to inform JAX that we will provide custom
derivatives for it. User-provided custom derivatives for a JAX function consist
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Listing 2 A wrapper to evolve step loop(), which will have derivatives pro-
vided by the user.

@jax.custom_vjp
def evolve_step_loop_custom(start , stop , cost_eval_step , dt , states ,

K, control_eval_times , controls ):
states , K = evolve_step_loop(start , stop , cost_eval_step , dt,

states ,K,control_eval_times ,
controls)

return states , K

of a forward sweep and a reverse sweep. The forward sweep must store all the
information required to compute the derivatives in the reverse sweep. Listing 3
is the provided forward sweep. Here, as indicated in Table 1, we are storing the
K matrix and the state vector. Note that this form of storage is effectively a
checkpoint, even though it does not use jax.checkpoint.

Listing 3 Forward sweep of the user-provided derivatives.

def evolve_loop_custom_fwd(start , stop ,cost_eval_step , dt, states , K,
control_eval_times , controls ):

states , K = _evaluate_schroedinger_discrete_loop_inner(
start , stop , cost_eval_step , dt, states , K,
control_eval_times , controls)

#Here we store the final state and K for use in the backward pass
return (states ,K), (start , stop , cost_eval_step , dt , states ,

K, control_eval_times ,controls)

Listing 4 is a user-provided reverse sweep. It starts by restoring the values
passed to it by the forward sweep. While looping over time steps in reverse order,
it recomputes Equations 1–2. It then computes Equations 13, 15, and 16 to
retrieve Kj−1 and ψj−1, which are then used to compute the adjoints for the
time step. The code to compute the adjoint of the time step was obtained by
the source transformation AD tool Tapenade [13].

5 Experimental Results

We compared standard AD, periodic checkpointing, and full reversibility or pe-
riodic checkpointing with reversibility, as appropriate. We conducted our exper-
iments on a cluster where each compute node was connected to 8 NVIDIA A100
40GB GPUs. Each node contained 1TB DDR4 memory and 320GB GPU mem-
ory. We validated the output of the checkpointing and reversibility approaches
against the standard approach implemented using JAX. We used the JAX mem-
ory profiling capability in conjunction with GO pprof to measure the memory
needs for each case. We conducted three sets of experiments to evaluate the
approaches, varying the number of qubits, the number of time steps, or the
checkpoint period.
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Listing 4 User-provided reverse sweep that exploits reversibility.

def evolve_loop_custom_bwd(res ,g_prod ):
#Restore all the values stored in the forward sweep
start , stop , cost_eval_step , dt, states ,

K, control_eval_times , controls = res
_M2_C1 = 0.5
controlsb = jnp.zeros(controls.shape , states.dtype)
#Go backwards in time steps
for i in range(stop -1,start -1,-1):

#Reapply controls to compute a step unitary matrix
time = i * dt
t1 = time + dt * _M2_C1
x = t1
xs = control_eval_times
ys = controls
index = jnp.argmax(x <= xs)
y = ys[index - 1] + (((ys[index] - ys[index - 1]) /

(xs[index] - xs[index - 1])) * (x - xs[index - 1]))
controls_ = y
hamiltonian_ = (SYSTEM_HAMILTONIAN

+ controls_ [0] * CONTROL_0
+ jnp.conjugate(controls_ [0]) * CONTROL_0_DAGGER
+ controls_ [1] * CONTROL_1
+ jnp.conjugate(controls_ [1]) * CONTROL_1_DAGGER)

a1 = -1j * hamiltonian_
magnus = dt * a1
step_unitary , f_expm_grad = jax.vjp(jax.scipy.linalg.expm , (magnus),
has_aux=False)
#Exploit reversibility of unitary matrix
#and calculate previous state and K
step_unitary_inv=jnp.conj(jnp.transpose(step_unitary ))
states =(jnp.matmul(step_unitary_inv ,states ))
K=(jnp.matmul(step_unitary_inv ,K))
_, f_matmul = jax.vjp(jnp.matmul ,step_unitary , states)
_, f_matmul_K = jax.vjp(jnp.matmul ,step_unitary , K)
#Go backwards for the timestep
step_unitaryb ,Kb=f_matmul_K(g_prod [1])
step_unitaryb ,statesb=f_matmul(g_prod [0])
magnusb = f_expm_grad(step_unitaryb)
a1b=dt*magnusb [0]
hamiltonian_b = jnp.conjugate(-1j)*a1b
controls1b=jnp.array ((jnp. sum(jnp.conjugate(CONTROL_0 )* hamiltonian_b) +

jnp.conjugate(jnp. sum(jnp.conjugate(CONTROL_0_DAGGER )* hamiltonian_b )),
jnp. sum(jnp.conjugate(CONTROL_1 )* hamiltonian_b) +
jnp.conjugate(jnp. sum(jnp.conjugate(CONTROL_1_DAGGER )* hamiltonian_b ))),
dtype=hamiltonian_b.dtype)

tempb = (x-control_eval_times[index -1])* controls1b/
(control_eval_times[index]-control_eval_times[index -1])

controlsb=jax.ops.index_update(controlsb ,
jax.ops.index[index -1], controlsb[index -1]+ controls1b - tempb)

controlsb=jax.ops.index_update(controlsb ,
jax.ops.index[index],controlsb[index]+tempb)

g_prod=statesb ,Kb
return (0.0 ,0.0 ,0.0 ,0.0 , statesb ,Kb ,0.0,-1* controlsb)

evolve_loop_custom.defvjp(evolve_loop_custom_fwd , evolve_loop_custom_bwd)
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Fig. 3. Comparison of execution time and device memory requirements for standard
AD, periodic checkpointing, and full reversibility with increasing number of qubits.
The QOC simulation consisted of 100 time steps with a checkpoint period of 10.

5.1 Vary Qubits

We first varied the number of qubits q, keeping the number of time steps fixed
at 100 and the checkpoint period fixed at C =

√
N = 10. Figure 3 shows the

memory consumed by standard AD, periodic checkpointing, and full reversibility.
One can see that the device memory requirements for the standard approach
are highest whereas the requirements for reversibility are lowest, although all
three grow exponentially as a function of q, as predicted by the analysis in
Section 3. Furthermore, we note that the standard approach can be executed for
a maximum of 9 qubits and runs out of available device memory on the 10th
qubit. The periodic checkpointing approach can be run for 11 qubits and runs
out of available device memory on the 12th. The full reversibility approach can
be run for 12 qubits and exceeds available device memory on the 13th. Figure 3
(left) also shows the execution time for the various approaches. The times are
similar for the cases that can be executed before running out of memory. As
expected, the time grows exponentially as a function of q.

5.2 Vary Time Steps

Next we fixed the number of qubits at q = 8 or q = 9 and varied the number
of time steps, N . For periodic checkpointing we used the optimal checkpoint
period, C =

√
N . We expect the time to be roughly linear in N and indepen-

dent of C because every Uj and Kj must be computed once during the forward
pass and one more time on the reverse pass. We expect periodic checkpointing
and full reversibility to be slower than standard AD because they both trade
some amount of recomputation for reduced storage requirements. We expect full
reversibility to be somewhat faster than periodic checkpointing alone because
periodic checkpointing must compute forward from the checkpoint, storing in-
termediate Kj along the way, while full reversibility skips the second forward
pass and is able to restore Kj during the reverse pass directly from the controls
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Fig. 4. Comparison of the execution time for standard AD, periodic checkpointing,
and periodic reversibility approaches with increasing number of time steps. The QOC
simulation consisted of 8 (left) or 9 (right) qubits. The checkpoint period was chosen
to be the square root of the number of time steps.
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Fig. 5. Comparison of the device memory requirements for standard AD, periodic
checkpointing, and periodic reversibility approaches with increasing number of time
steps. The QOC simulation consisted of 8 (left) or 9 (right) qubits. The checkpoint
period was chosen to be the square root of the number of time steps. Top row shows
all three approaches; bottom row omits standard AD.
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Fig. 6. Comparison of the execution time and device memory requirements for periodic
checkpointing and checkpointing plus reversibility approaches with increasing number
of time steps. The QOC simulation consisted of 1, 000 time steps and 9 qubits.

and Kj+1. Figure 4 is consistent with these expectations, although standard AD
quickly runs out of memory for the case q = 9.

Based on the analysis in Section 3, we expect the memory requirements of
standard AD to be linear in the number of time steps and the memory require-
ments of full reversibility to be independent of the number of time steps. We
expect the memory requirements of periodic checkpointing to vary as a func-
tion of N

C + C; since C is chosen to be C =
√
N , the memory should vary as a

function of
√
N . Figure 5 clearly shows the linear dependence of standard AD

and independence of full reversibility on the number of time steps. The memory
requirements for periodic checkpointing are also consistent with expectations.

5.3 Vary Checkpointing Period

We examined the dependence of execution time and memory requirements on
the checkpointing period, C, keeping the number of qubits fixed at q = 9 and
the number of time steps fixed at N = 1, 000. We expect the time to be roughly
independent of C because every Uj and Kj must be computed once during the
forward pass and one more time on the reverse pass. We expect periodic check-
pointing with reversibility to be somewhat faster than periodic checkpointing
alone because periodic checkpointing must compute forward from the check-
point, storing intermediate Kj along the way, while periodic checkpointing with
reversibility skips the second forward pass and is able to restore Kj during the
reverse pass directly from the controls and Kj+1. The timing results in Figure 6
(left) are consistent with these expectations.

We expect the memory requirements of periodic checkpointing with reversibil-
ity to vary as a function of N

C or, since N is constant, as a function of 1
C . We

expect the memory requirements of periodic checkpointing alone to vary as a
function of N

C + C, with a minimum at C =
√
N ≈ 32. Again, the memory

utilization results in Figure 6 (right) are consistent with these expectations.
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6 Conclusion and Future Work

We have implemented a version of quantum optimal control (QOC) using the
JAX framework. We have compared standard automatic differentiation (AD),
periodic checkpointing, and reversibility—a nonstandard AD approach that rec-
ognizes that the inverse of a unitary matrix is its conjugate transpose. Check-
pointing and reversibility are both superior to standard AD. The reversibility
approach, however, allows more qubits to be simulated when the number of
time steps is large. Recognizing that reversibility (Equation 15) is precise in real
arithmetic but is not precise in floating-point arithmetic, we demonstrated that
reversibility can be combined with periodic checkpointing, reducing memory re-
quirements relative to periodic checkpointing alone while ensuring that roundoff
errors are not accumulated over a period of more than C time steps.

In the future, we will study methods to estimate the amount of roundoff error
as a function of C in order to choose a period that minimizes memory require-
ments while incurring acceptable roundoff errors. We will investigate applying
lossy compression to the checkpoints and compare the trade-offs in storage and
accuracy between periodic checkpointing with lossy compression and periodic
checkpointing with reversibility. Moreover, we will combine periodic checkpoint-
ing, lossy compression, and reversibility to enable QOC to be applied to even
larger numbers of qubits and time steps.

References

1. https://github.com/sriharikrishna/qoc (2022)

2. Aupy, G., Herrmann, J., Hovland, P., Robert, Y.: Optimal multistage algorithm
for adjoint computation. SIAM Journal on Scientific Computing 38(3), C232–C255
(2016)

3. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differ-
entiation in machine learning: A survey. Journal of Machine Learning Research
18(153), 1–43 (2018), http://jmlr.org/papers/v18/17-468.html

4. Beaumont, O., Herrmann, J., Pallez, G., Shilova, A.: Optimal memory-aware back-
propagation of deep join networks. Philosophical Transactions of the Royal Society
A 378(2166), 20190049 (2020)

5. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q.: JAX:
composable transformations of Python+NumPy programs (2018), http://github.
com/google/jax

6. Caneva, T., Calarco, T., Montangero, S.: Chopped random-basis quantum op-
timization. Phys. Rev. A 84, 022326 (Aug 2011). https://doi.org/10.1103/

PhysRevA.84.022326

7. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with sublinear mem-
ory cost. arXiv preprint arXiv:1604.06174 (2016)

8. Cyr, E.C., Shadid, J., Wildey, T.: Towards efficient backward-in-time adjoint com-
putations using data compression techniques. Computer Methods in Applied Me-
chanics and Engineering 288, 24–44 (2015)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_11

https://github.com/sriharikrishna/qoc
http://jmlr.org/papers/v18/17-468.html
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevA.84.022326
https://dx.doi.org/10.1007/978-3-031-08760-8_11


14 S.H.K. Narayanan et al.

9. Doria, P., Calarco, T., Montangero, S.: Optimal control technique for many-body
quantum dynamics. Phys. Rev. Lett. 106, 190501 (May 2011). https://doi.org/
10.1103/PhysRevLett.106.190501

10. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity in
reverse automatic differentiation. Optimization Methods and software 1(1), 35–54
(1992)

11. Griewank, A., Walther, A.: Algorithm 799: Revolve: An implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM
Trans. Math. Softw. 26(1), 19–45 (mar 2000). https://doi.org/10.1145/347837.
347846

12. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. No. 105 in Other Titles in Applied Mathematics,
SIAM, Philadelphia, PA, 2nd edn. (2008), http://bookstore.siam.org/ot105/

13. Hascoet, L., Pascual, V.: The Tapenade automatic differentiation tool: principles,
model, and specification. ACM Transactions on Mathematical Software (TOMS)
39(3), 1–43 (2013)

14. Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P., Gonzalez, J., Keutzer,
K., Stoica, I.: Checkmate: Breaking the memory wall with optimal tensor remate-
rialization. Proceedings of Machine Learning and Systems 2, 497–511 (2020)

15. Johansson, J., Nation, P., Nori, F.: QuTiP: An open-source python framework
for the dynamics of open quantum systems. Computer Physics Communications
183(8), 1760–1772 (2012). https://doi.org/10.1016/j.cpc.2012.02.021

16. Johansson, J., Nation, P., Nori, F.: QuTiP 2: A Python framework for the dynamics
of open quantum systems. Computer Physics Communications 184(4), 1234–1240
(2013). https://doi.org/10.1016/j.cpc.2012.11.019

17. Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys.
Rev. A 63, 032308 (Feb 2001), 10.1103/PhysRevA.63.032308

18. Kubota, K.: A Fortran77 preprocessor for reverse mode automatic differentiation
with recursive checkpointing. Optimization Methods and Software 10(2), 319–335
(1998). https://doi.org/10.1080/10556789808805717

19. Kukreja, N., Hückelheim, J., Louboutin, M., Washbourne, J., Kelly, P.H., Gorman,
G.J.: Lossy checkpoint compression in full waveform inversion. Geoscientific Model
Development Discussions pp. 1–26 (2020)

20. Leung, N., Abdelhafez, M., Koch, J., Schuster, D.: Speedup for quantum optimal
control from automatic differentiation based on graphics processing units. Phys.
Rev. A 95, 042318 (Apr 2017), 10.1103/PhysRevA.95.042318

21. Naumann, U.: The Art of Differentiating Computer Programs. Society for
Industrial and Applied Mathematics (2011). https://doi.org/10.1137/1.

9781611972078

22. Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., He, Y.: ZeRO-Infinity: Breaking
the GPU memory wall for extreme scale deep learning. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’21, Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3458817.3476205

23. Schanen, M., Marin, O., Zhang, H., Anitescu, M.: Asynchronous two-level check-
pointing scheme for large-scale adjoints in the spectral-element solver Nek5000.
Procedia Comput. Sci. 80(C), 1147––1158 (jun 2016). https://doi.org/10.1016/
j.procs.2016.05.444

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_11

https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
http://bookstore.siam.org/ot105/
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
10.1103/PhysRevA.63.032308
https://doi.org/10.1080/10556789808805717
https://doi.org/10.1080/10556789808805717
10.1103/PhysRevA.95.042318
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1016/j.procs.2016.05.444
https://doi.org/10.1016/j.procs.2016.05.444
https://doi.org/10.1016/j.procs.2016.05.444
https://doi.org/10.1016/j.procs.2016.05.444
https://dx.doi.org/10.1007/978-3-031-08760-8_11

