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Abstract. Compressive sensing is a signal processing technique used to
acquire and reconstruct sparse signals using significantly fewer measure-
ment samples. Compressive sensing requires finding the most sparse solu-
tion to an underdetermined linear system, which is an NP-hard problem
and as a consequence in practise is only solved approximately. In our
work we restrict ourselves to the compressive sensing problem for the
case of binary signals. For that case we have defined an equivalent for-
mulation in terms of a quadratic binary optimisation (QUBO) problem,
which we solve using classical and (hybrid--)quantum computing solv-
ing techniques based on quantum annealing. Phase transition diagrams
show that this approach significantly improves the number of problem
types that can be successfully reconstructed when compared to a more
conventional L1 optimisation method. A challenge that remain is how
to select optimal penalty parameters in the QUBO formulation as was
shown can heavily impact the quality of the solution.

Keywords: Binary compressive sensing · Quadratic unconstrained bi-
nary optimisation · Quantum annealing

1 Introduction

The Nyquist sampling theorem states that to be able to perfectly reconstruct a
signal, it has to be sampled at a rate that is at least twice the highest frequency
in the original signal, the Nyquist rate [28]. Unfortunately for many applications,
this Nyquist rate is too high for sampling to be feasible in practise. Let x ∈ RN

be a real N -dimensional signal and {Ψi}Ni=1 be a set of basis vectors. We can

write a signal as x =
∑N

i=1 siΨi. The signal is said to beK-sparse in the basis Ψ if
the N -dimensional vector s with coefficients si has at most K nonzero elements.
Compressive sensing (CS) is a signal processing technique that makes it possible
to acquire and reconstruct a signal more efficiently, given that the signal has
a sparse representation (K ≪ N) in some basis [10]. CS has a large number
of applications in several fields ranging from (medical) imaging, communication
systems and pattern recognition, to speech and sound processing [26].

The task of compressive sensing is equivalent to finding the most sparse so-
lution of an underdetermined linear system. Consider that problem, recovering
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the most sparse vector x ∈ RN from a undersampled set of M ≪ N measure-
ments y ∈ RM . These vectors are related by what is called the measurement
matrix A ∈ RM×N which in this article has its elements drawn independent and
identically distributed random from some distribution on R. The reconstruction
problem is then described as follows

min
x

∥x∥0 subject to Ax = y, (1)

where ∥·∥0 is the L0-norm, the number of non-zero elements of a vector. To
guarantee a unique solution to this problem, additional constraints on the mea-
surement matrix are required, such as the Restricted Isometry Property (RIP)
[15,16]. Given that this problem can be solved uniquely, compressive sensing then
enables a much shorter signal acquisition time together with reduced amounts
of data, because the needed number of samples M can be much smaller than
what would be required according to the Nyquist rate. Unfortunately, this prob-
lem does not have a closed form solution and furthermore, it is an NP-complete
problem and thus hard to solve having combinatorial complexity [7,10].

Summarised, compressed sensing based signal acquisition allows a significant
decrease in the sampling rate of sparse signals, but in return requires a hard
optimisation problem to be solved. Algorithms used to solve the sparse recon-
struction problem tend to be very slow and rely heavily on the speed at which
matrix-vector multiplications can be done for the measurement matrix A. An
overview of different computational techniques for solving the sparse reconstruc-
tion problem is given in [30]. One of the major algorithmic approaches relaxes
the original problem by replacing the combinatorial L0 norm on x by the L1-
norm, the sum of the magnitudes of a vector x. The obtained problem, given by
Eq. (2), becomes a convex optimisation problem which can then be solved using
standard convex optimisation routines.

min
x

∥x∥1 subject to Ax = y. (2)

Candès and Romberg proof that L1 optimisation obtains the exact solution to
Eq. (1) under the constraint that the number of samples M > Cµ2(A)K logN ,
where µ(A) =

√
N maxk,j |Ak,j |, K is the sparsity of x and C is some constant

[14]. The required computation time, even in the case when convex optimisation
routines are used, can still remain an obstacle for real-time applications and is
limited by the available computational resources. This is due to the iterative
nature of the algorithms, in which each iteration is closely related to the cor-
responding processing step in conventional processing. Therefore, when many
iterations are required this results in a significant increase in computations.

Meanwhile, a new computing paradigm, quantum computing, is quickly ap-
proaching us. It is expected that quantum computers will be able to solve specific
problems faster than the current generation of classical computer are capable
of. In [11] thirteen applications for radar and sonar information processing have
been identified, among which compressive sensing, that can possibly be improved
using quantum computing.
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In this work, we make first steps towards a quantum computing approach for
compressive sensing. We simplify the problem by only considering binary valued
signals and formulate that problem as a quadratic unconstrained binary optimi-
sation (QUBO) problem. Binary sparse signal recovery is relevant for applica-
tions such as event detection in wireless sensor networks [29], group testing [27]
and spectrum hole detection for cognitive radios [21]. Using quantum annealing
techniques to solve binary CS has been studied before by Ayanzadeh et al. [8,9],
however, only limited number of numerical results have there been given. We
extend upon their work by solving the binary CS problem using both classical
techniques as well as annealing based (hybrid-)quantum computing techniques.
The obtained results are compared with a more conventional L1 optimisation
approach by looking at phase transition diagrams.

The structure of this paper is as follows. In Section 2, we describe the con-
sidered problem of binary compressive sensing and formulate it as a QUBO
problem. In Section 3, we describe solution methods and we describe how to
create phase transition diagrams which can be used to quantitative compare dif-
ferent solution methods. In Section 4, the numerical results are described and
we end with Section 5, where conclusions are given together with directions for
further research.

2 Problem formulation

In this paper we focus on the original problem of recovering binary signals from
a limited number of measurements, which can be formulated as follows:

min
x∈{0,1}

∥x∥0 subject to ∥Ax− y∥2 = 0. (3)

This problem is known to be NP-complete [9], however it can be tackled using
quantum annealers. This type of quantum devices require either an Ising or
Quadratic Unconstrained Binary Optimisation (QUBO) problem formulation
[5]. As shown in [9] Eq. (3) can be translated to the following QUBO:

min
x∈{0,1}N

γ∥x∥0 + ∥Ax− y∥22. (4)

After expanding the norms, this translates to:

min
x∈{0,1}N

∑
i

(
γ +

∑
l

Ali[−2yl +Ali]
)
xi +

∑
i,j;i<j

(
2
∑
k

AkiAkj

)
xixj . (5)

We note that the objective in Eq. (5) represents the same optimization problem

as in Eq. (4) but its optimal objective value is smaller by ∥y∥22, since this constant
term does not get taken into account in the QUBO. This formulation, which
applies a penalty parameter γ to the L0 norm, is the only one we encountered
in literature [9]. However, one can also opt to multiply a penalty parameter λ
with the constraint term:

min
x∈{0,1}N

∥x∥0 + λ∥Ax− y∥22. (6)
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which is then equivalent to:

min
x∈{0,1}N

∑
i

(
1 + λ

∑
l

Ali[−2yl +Ali]
)
xi +

∑
i,j;i<j

(
2λ

∑
k

AkiAkj

)
xixj . (7)

From a theoretical point of view, the two formulations in Eq. (5) and Eq. (7)
are equivalent when γ = 1

λ . When γ and λ are set to appropriate values, both
should lead to the optimal value of x. However, quantum annealing-based solvers
are sensitive to small variations in the QUBO values, due to the finite preci-
sion available [4]. This means that depending on the problem size (number of
measurements M and size of signal N), and on the entries of matrix A, one
formulation may results in better solution quality than the other. From now on
we identify the formulation in Eq. (5) as QUBO type 1 and the formulation in
Eq. (7) as QUBO type 2.

3 Solution methods and evaluation

For solving the binary CS problem we consider a classical approach for L1-
minimisation and several quantum-based and hybrid solution methods which
address L0-minimisation. When solving usual combinatorial problems, one would
look at the optimality gap or lower and upper bounds as metrics to describe the
quality of the solutions found. However, in compressive sensing, phase transition
diagrams [18] are widely used to indicate whether a certain algorithm is success-
ful in recovering the signal under certain conditions. In this section we describe
all the solution methods used and elaborate on the use of phase diagrams in CS
applications.

3.1 L1-minimisation

As already described in Section 1, signal recovery can also be tackled by solv-
ing a convex L1 minimisation problem, which is equivalent under certain strict
conditions on the number of measurements taken. Alternating Direction Method
of Multipliers (ADMM) is a technique that has proven itself to be suitable for
solving distributed convex optimisation problems and in particular large-scale
problems arising in compressive sensing [13]. In this paper we focus on a set of
publicly available solvers [32] implemented in Matlab that apply ADMM [31] to
solve the following problem:

min
x∈RN

∥x∥1 + (1/2ρ)∥Ax− y∥22. (8)

where ρ = 0.01
∥y∥∞

and ∥·∥∞ is the infinity norm, the element with the largest

absolute value of a vector. We have chosen this solver as a benchmark for L1-
based approaches.
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3.2 L0-minimisation

The QUBO formulations given by Eq. (5) and Eq. (7) corresponding to the L0-
minimisation binary CS problem, were solved using a classical commercial solver
and built-in algorithms of the Ocean tool suite provided by D-Wave Systems [1].
In the following paragraphs, we provide some background on each of these algo-
rithms.

Gurobi Optimiser is a commercial optimisation software library for solving
mixed-integer linear and quadratic optimisation problems1. It is widely used
for large-scale applications in different industries [6]. We have implemented this
solver using the gurobipy Python package. To ensure a reasonable computation
time, we have limited the Gurobi running time per problem to 30s.

Simulated Annealing (SA) is a stochastic meta-heuristic [17], which emerged
as a local search method that can escape from being trapped in local optima.
There are two stochastic steps in simulated annealing. First, a solution s′ is
chosen based from the set of neighbors of the current solution s according to
some given distribution (each neighbor usually has the same probability). Then,
the chosen solution is accepted with probability p(s, s′, c) = emin{c(s)−c(s′),0}/c,
where c is a positive control parameter which decreases with increasing number
of iterations and converges to 0. The performance of the algorithm relies on the
cooling schedule, i.e., which specifies the initial and final values of the control
parameter c together with a decrement function. In our numerical experiments,
we employed the the simulated annealing algorithm provided by D-Wave Sys-
tems with default parameters. Further details concerning the annealing (cooling)
schedule and parameters can be found in the official software documentation [2].
Similar to Gurobi, we have imposed a limit of 30s to the simulated annealing
process on each problem.

Quantum Annealing is a meta-heuristic which utilizes quantum fluctuations
[22] and quantum computation by adiabatic evolution [20] in solving a particular
type of optimisation problems, and is currently implemented in the quantum
devices produced by D-Wave Systems. The evolution of a quantum state on
D-Wave’s Quantum Processing Unit (QPU) is described by a time-dependent
Hamiltonian, composed of initial Hamiltonian H0, whose ground state is easy
to create, and final Hamiltonian H1, whose ground state encodes the solution of
the problem at hand:

H(t) =
(
1− t

T

)
H0 +

t

T
H1. (9)

The system in Eq. (9) is initialized in the ground state of the initial Hamiltonian,
i.e. H(0) = H0. The adiabatic theorem states that if the system evolves accord-
ing to the Schrödinger equation, and the minimum spectral gap of H(t) is not

1 https://www.gurobi.com/products/gurobi-optimizer/
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zero, then for time T large enough, H(T ) will converge to the ground state of
H1, which encodes the solution of the problem. The D-Wave quantum annealer
accepts as input H1 either as an Ising Hamiltonian, or as its equivalent formula-
tion, the QUBO. We remark that although Eq. (9) suggests that the annealing
is performed linearly, in practice D-Wave uses a non-linear annealing schedule.
Additionally, the chosen formulation needs to be embedded on the hardware.
The current architecture of D-Wave’s Advantage 4.1 quantum computing sys-
tem contains approximately 5000 qubits, with a total number of 35.000 qubit
couplers (each qubit is connected to 15 other qubits) [24]. When the problem
size is too large, such an embedding is impossible and so the quantum anneal-
ing process cannot be applied to the entire problem. In this scenario, hybrid
algorithms need to be employed, in which the problem is first decomposed into
smaller sub-problems, the each of these being solved with quantum annealing
and at the end, the complete solution vector is reconstructed from all sub-sample
solutions. In this paper, we use the term ‘quantum annealing’ only for situations
in which the entire problem can be passed on to the D-Wave QPU, without any
need for decomposition.

QBsolv is a hybrid solver introduced by D-Wave to tackle very large optimi-
sation problems [12]. It combines a problem decomposition step with classical
search algorithms and quantum annealing to find a global optimal solution. At
first, an initial solution for the entire problem is obtained using classical Tabu
search. Based on this solution, the problem is split into sub-problems of smaller
size by ordering the problem variables according to their impact on the objective
function. Then, each of these sub-problems is solved using quantum annealing,
and the current solution is updated with the corresponding bits from the sub-
problem vector. Then, a new Tabu search is applied starting from the current
solution, and the algorithm loop is repeated until a maximum number of it-
erations is reached. QBsolv makes use of the different numerical precision in
classical algorithms and quantum annealing. Whilst solving the sub-problems
with quantum annealing on D-Wave is affected by limited precision, the clas-
sical Tabu search can solve the full problem QUBO in the standard format of
IEEE double-precision (64-bit) floating-point values [12]. In this paper we have
used the built-in implementation of the D-Wave Ocean tool suite2 with default
parameters.

Hybrid Solvers are offered by D-Wave Systems to enable solving arbitrarily
large optimisation problems [3]. There are two types of resources available: cloud-
based hybrid solvers (also known as Leap hybrid solvers) and the dwave-hybrid
Python framework, which allows the creation of custom hybrid workflows. We fo-
cused on the first category, since according to D-Wave’s software documentation
[3], these solvers implement state-of-the-art classical algorithms together with
intelligent allocation of the QPU to sections of the problem where it is most
beneficial. The classical components herein utilize quantum queries to the D-

2 https://github.com/dwavesystems/qbsolv/
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Wave QPU to guide their search of the larger solution space. Whilst the generic
structure of Leap’s hybrid solvers is described in a technical report [25], no de-
tails concerning the implemented algorithms (which classical meta-heuristics are
implemented, how they utilize the solution output from the QPU etc.) are dis-
closed. We therefore remain cautious when interpreting the results obtained with
the LeapHybridSampler, the hybrid solver that was selected for our problem.

3.3 Phase transition diagrams

Maleki and Donoho [23] have developed a framework that can be used to compare
quantitatively the properties of different reconstruction algorithms. Performance
is measured by what is called the undersampling-sparsity trade-off, and can be
visualised by a phase transition curve. The idea is to find the “breakdown point”,
the point where an algorithm can still successfully reconstruct a sparse solution
provided K is smaller than a certain definite fraction of N .

We define δ = M
N to be a measure of problem indeterminacy and define

ρ = K
M to be a measure for the sparsity of the problem. The difficulty of a

problem instance can be visualised by its point in the two-dimensional phase
space (δ, ρ) ∈ [0, 1]× [0, 1]. In Figure 1, examples are shown how a typical phase
transition diagram looks, in this case for different problem sizes, using the L1

optimisation recovery approach as described in Section 3.1. The hardest prob-
lems are in the top left of this plane, trying to reconstruct a not so sparse signal
with relatively few measurements. The different colors represent the probabil-
ity for successful reconstruction of the sparsest solution. This figure illustrates
the typically behaviour of reconstruction algorithms, below a certain threshold
the algorithms works well, while above that threshold reconstruction fails. Typ-
ically the transition zone becomes narrow and better defined for larger problem
sizes and depends on both the reconstruction algorithm but also the type of
measurement matrix [23].

In this paper we will only consider Gaussian random measurement matri-
ces. A Gaussian random measurement matrix can be generated by sampling its
elements aij independent and identically distributed from the standard normal
distribution with mean zero and standard deviation one. This type of matrix
is commonly used in CS as it is known to satisfy the RIP condition with high
probability [15] and has its phase transition shape well studied [19].

For a given reconstruction algorithm, for a fixed problem size N , the con-
struction of phase transition diagrams is as follows:

1. Create a grid by varying both parameters δ and ρ in (0, 1).
2. For each combination (δ, ρ) we calculate M = ⌈δN⌉ and K = ⌈δρN⌉.
3. At each combination (δ, ρ) we create L problem instances (A,x,y) and ob-

tain L algorithm outputs xsolve.
4. For each problem instance we declare it as a successful reconstruction if

∥x− xsolve∥2
∥x∥2

≤ tol,

for some tolerance parameter tol, where ∥·∥2 is the standard Euclidean norm.
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(a) N = 150 (b) N = 300 (c) N = 600

Fig. 1: Phase transition plots generated with Matlab-L1 solver for Gaussian ran-
dom measurement matrices and 20 problem instances per step. The color indicate
the probability that reconstruction for (δ = M

N , ρ = K
M ) instances is successful.

4 Results

In this section we present an overview of the various numerical experiments that
we performed. We studied different aspects of binary compressing sensing prob-
lems focusing on two aspects: the QUBO penalty parameter (γ or λ) and the
QUBO formulation. Once suitable choices have been identified for these parame-
ters, we also performed a comparison of different classical and (hybrid-)quantum
solvers. All phase transition plots in this chapter are generated with an error tol-
erance value tol = 0.1 and a grid step size of 33 for both δ and ρ.

4.1 Impact of penalty parameter

When using a QUBO-based approach to solve the binary compressive sensing,
we need to find suitable values for the penalty parameter γ (or λ). To this end,
we created phase diagrams for signal size N = 300, using simulated annealing
for γ ∈ {1, 5, 10, 15, 20, 25, 30, 35, 40}. We have chosen simulated annealing due
to limited computation time available on the D-Wave QPU. Figure 2 shows
all the resulting diagrams. From this figure we observe that the optimal choice
of γ ranges between 15 and 25, as these values result in the largest success
regions. It is also worthwhile to notice that in the case of γ ∈ {1, 5, 10} the
Simulated Annealing algorithm achieves successful signal recovery for δ > 0.7,
independent of the sparsity of the signal. The phase transition diagrams obtained
for γ = 5, or γ = 10 look counter-intuitive. In these examples, if the algorithm
is successful in the δ, ρ ∈ [0, 0.1] × [0, 0.1] where the signal is sparse and the
measurements are very few, it should theoretically also be capable of recovering
signals with the same sparsity when more measurements are done, i.e. in regions
δ, ρ ∈ [0, 0.1] × [0.1, 0.4]. This phenomenon could be explained by the time-
out limit of 30s set on the simulated annealing solver, which may struggle to
distinguish between many ‘good’ solutions in the search space. The variation in
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obtained phase transition suggests that γ is dependent not only on δ and ρ (or
equivalently,M ,N ,K) but also on the entries of the matrix A. The optimal value
of γ obtained using simulated annealing seems to be a suitable choice for QBsolv
as well. Figure 3a shows the phase transition diagram obtained with QBsolv and
γ = 20. The region of successful signal recovery is quite large, especially when
compared to any of the simulated annealing phase transition diagrams.

(a) γ = 1 (b) γ = 5 (c) γ = 10

(d) γ = 15 (e) γ = 20 (f) γ = 25

(g) γ = 30 (h) γ = 35 (i) γ = 40

Fig. 2: Phase transition diagrams generated for N = 300 using QUBO type 1,
Simulated Annealing and 20 problem instances per step. The color indicate the
probability that reconstruction for (δ = M

N , ρ = K
M ) instances is successful.
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4.2 Evaluation of different QUBO formulations

In this subsection we investigate whether the second QUBO formulation (QUBO
type 2) presented in Section 3 exhibits a different and eventually improved per-
formance in comparison to the QUBO type 1 employed so far. Recall that the
two QUBO formulations presented are theoretically equivalent, when γ = 1

λ .
Figure 3b and Figure 3c show phase transition diagrams obtained with QBsolv
and QUBO type 2 for two different λ values. The QUBO type 2 formulation
with λ = 0.1 delivers a phase transition which is very similar to the QUBO type
1 formulation with γ = 20. The size of the successful recovey region is essentially
identical, with slight trade-off in a few points. On the other hand, the QUBO
type 2 formulation with λ = 10 results in a very different phase transition, which
suggests that under this parameter setting, the QBsolv performance is mostly
dependent on the number of measurements taken and not the sparsity rate. The
same experiment was performed using simulated annealing. We see that equiva-
lent formulations give the same results. QUBO type 2 with λ = 0.1 in Figure 3e
yields similar phase transition as QUBO type 1 with γ = 10 in Figure 2c; the
same holds for Figure 3f and Figure 2a). Based on experiments, the simulated
annealing sampler does not seem to benefit from the second QUBO formulation.

4.3 Comparison of classical and quantum solvers

To compare the performance of different algorithms we decided to solve the
binary compressive sensing problem with all the solvers described in Section 3.
Since we had limited computation time on the D-Wave QPU, we chose smaller
signal sizes, with N = 20 with N = 40, and performed only one trial at each
step of the phase diagram. We also opted for Qubo formulation 2 with λ = 10 as
parameter, since it seemed to yield a phase transition which was not dependent
on the sparsity rate. The results of thse experiments can be visualized in Figure 4.
For N = 20 we clearly see that Gurobi, together with the hybrid-quantum
solvers, QBsolv and D-Wave hybrid, achieve the best performance having the
largest region of successful signal recovery. The Matlab-L1 solver displays the
expected behaviour, for both values of N which were considerd. Both simulated
annealing and the quantum annealing on the D-Wave QPU, with some exception,
can recover signals successfully if enough measurements, i.e., M > 0.6N are
performed. For N = 40, we notice a decrease in the performance of all methods.
In particular, quantum annealing suffers from the lack of custom parameter
tuning. In this case, it is Gurobi that achieves the largest success region, followed
by QBsolv and DWave-hybrid which perform worse in the upper-left corner of
the diagram, where there are very few measurements taken.

Finally, we note that all results presented so far may heavily be influenced
by the lack of custom parameter optimization. It is likely that each QUBO-
based solver has a different optimum QUBO formulation and penalty value that
can depend on the specific measurement matrix. However, due to the lack of
computation resources, we have not been able to perform such parameter tuning.
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(a) QUBO type 1, γ = 20 (b) QUBO type 2, λ = 0.1 (c) QUBO type 2, λ = 10

(d) QUBO type 1, γ = 20 (e) QUBO type 2, λ = 0.1 (f) QUBO type 2, λ = 10

Fig. 3: Phase diagrams with QBsolv (a, b and c) and simulated annealing (d, e
and f), N = 300, and 20 problems per step. The color indicate the probability
that reconstruction for (δ = M

N , ρ = K
M ) instances is successful.

5 Conclusions

In this paper we tackled the binary compressive sensing problem and provide
the first numerical results using a real quantum device. Different classical and
(hybrid--)quantum QUBO solvers have been compared quantitatively to a clas-
sical L1-based approach by calculating phase-transition diagrams.

Based on the results presented in Section 4, we conclude that using a QUBO
approach for solving the binary compressive sensing problem, the resulting phase-
transition diagrams are significantly improved from the classical L1-based ap-
proach. For the Gaussian measurement matrices considered, a clear phase tran-
sition could be identified for all classical and (hybrid)-quantum solvers. In par-
ticular, for hybrid approaches such as QBsolv and D-Wave hybrid the phase
transition was found to only depend on the undersampling rate, and not the
sparsity of the signal. This is a positive result as the number of measurement
taken is in principle a controllable quantity in signal recovery experiments.

For the small problem instances considered we see that the Gurobi solver
slightly outperforms the hybrid-quantum annealing approaches. The hope is,
once hardware grows and larger problems can be embedded on the quantum
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(a) Matlab - L1, N = 20 (b) Gurobi, N = 20 (c) SA, N = 20

(d) Qbsolv, N = 20 (e) D-Wave hybrid, N = 20 (f) D-Wave QPU, N = 20

(g) Matlab - L1, N = 40 (h) Gurobi, N = 40 (i) SA, N = 40

(j) Qbsolv, N = 40 (k) D-Wave hybrid, N = 40 (l) D-Wave QPU, N = 40

Fig. 4: Phase transition diagrams generated N = 20 and N = 40 using 1 problem
instance per step. QUBO problems have been solved with QUBO type 2 with
λ = 10. The color indicate the probability that reconstruction for (δ = M

N , ρ =
K
M ) instances is successful.
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chip, that quantum annealing becomes a option when problem sizes become so
large that they are unfeasible to solve using classical approaches such as Gurobi.
Nevertheless our work shows the high potential of QUBO-based formulations
compared to L1 minimization. The QUBOs presented in this paper can also be
adapted to handle real or complex-valued through the appropriate usage of slack
variables.

Currently, we do not have a full understanding yet on how to optimally
select the different parameters (QUBO type, penalty value) for each solver. We
expect that the choice of value for the penalty parameters γ or λ when using
the QUBO formulation depends on ρ, δ and also the entries of the measurement
matrix A. Hence, the only way to eventually infer an expression of γ or λ is
to design a structured grid search, and evaluate a large set of values for each
problem instance considered at each point in the phase diagram. This is one of
the aspects we consider worthwhile for further investigation.
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