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Abstract. Tightly coupled task-based multiscale models do not scale
when implemented using a traditional workflow management system.
This is because the fine-grained task parallelism of such applications
cannot be exploited efficiently due to scheduling and communication
overheads. Existing tools and frameworks allow implementing efficient
task-level parallelism, however with high programming effort. On the
other hand, Dask and Parsl are Python libraries for low-effort up-scaling
of task-parallel applications but still require considerable programming
effort and do not equally provide functions for optimal task scheduling.
By extending the wfGenes tool with new generators and a static task
graph scheduler, we enhance Dask and Parsl to tackle these deficiencies
and to generate optimized input for these systems from a simple applica-
tion description and enable rapid design of scalable task-parallel multi-
scale applications relying on thorough graph analysis and automatic code
generation. The performance of the generated code has been analyzed by
using random task graphs with up to 10,000 nodes and executed on thou-
sands of CPU cores. The approach implemented in wfGenes is beneficial
for improving the usability and increasing the exploitation of existing
tools, and for increasing productivity of multiscale modeling scientists.

Keywords: scientific workflow · tightly coupled model · task-based par-
allelism · code generation · scalability · productivity

1 Introduction

Exascale computing has a high potential for multiscale simulation in computa-
tional nanoscience. Due to the limited physical scalability and the large number
of instances of sub-models, as well as the complexity of the couplings between
sub-models of different scales, exploiting exascale computing in this domain is
still a challenge. Particularly difficult is the rapid and scalable design of novel
tightly coupled multiscale applications for which the domain scientists urgently
need tools that facilitate the rapid integration of sub-models while maintaining
high scalability and efficiency of the produced applications.

For loosely coupled multiscale applications, scientific workflows and workflow
management systems (WMSs) have been established solutions. Thereby, the un-
derlying models are usually wrapped by scripts or Python functions and so in-
tegrated as nodes and tasks into a workflow, while the couplings are represented
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by dataflow links. The workflow nodes of such applications can be executed as
separate jobs on one or more high performance computing (HPC) clusters.

Recently, we have demonstrated [16] that workflows for different WMSs can
be automatically generated from a single abstract description, WConfig, and
have provided a proof-of-concept implementation in the wfGenes tool [11]. The
WConfig input file, written in JSON or YAML format, is a simple description of
a scientific workflow, that specifies in an arbitrary order all functions with their
input parameters and returned objects by unique global names. The wfGenes
tool has been first employed in the settings of a collaborative project [1] in which
the participants use two different WMSs, FireWorks [10] and SimStack [2], to
perform multiscale simulation in nanoscience. This often requires defining a set
of simulation workflows in two different languages simultaneously. Previously, we
have shown how to generate a workflow to compute the adsorption free energy in
catalysis for these two WMSs by using wfGenes [16]. Such a workflow is proto-
typical for loosely coupled applications, where the number of data dependencies
is small in relation to the average execution time of single tasks. However, there
is another class of multiscale models [6,8] in which the ratio between the number
of data dependencies and the average task execution time is very high. These
tightly coupled models are usually implemented in a program running as a single
job on an HPC cluster in order to minimize the task scheduling overheads and
the times for data transfers between dependent tasks.

In previous work [8], we implemented and optimized a tightly coupled mul-
tiscale model describing charge and exciton transfer in organic electronics.
Thereby, we used the Python language to integrate electronic structure codes,
such as Turbomole and NWChem, and the mpi4py package [7] to schedule the
tasks and data transfers. We found that the use of Python greatly facilitated the
adoption of the Message Passing Interface (MPI) through mpi4py as well as the
integration of simulation codes in the domain of computational materials science
that are provided as Python application programming interfaces. Nevertheless,
we found that this approach had several disadvantages: i) The development effort
was high due to lack of specific semantics for modeling application’s parallelism.
ii) The task graph and the task execution order had to be produced manually be-
fore starting the application. iii) The lack of domain-specific semantics prevented
code reuse in other applications. The developer had to repeat the cumbersome
procedure “from scratch” to design new task-parallel applications using that
approach. More recently, Dask [15] and Parsl [3, 4] have provided semantics for
writing implicitly parallel applications in Python by decorating particular ob-
jects. While being powerful for rapid design of parallel applications in Python,
Parsl and Dask have not been designed as typical WMSs from their outset.

In this work, we extend wfGenes to generate Python input code for Parsl and
Dask starting from an existing workflow description. This is extremely beneficial
for the use cases where the workflow model is not available as a graph and/or the
developer is familiar neither with these tools nor with Python. We find that the
newly integrated task graph scheduler works with two different executor strate-
gies of Dask and Parsl, lazy evaluation and immediate execution, respectively,
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and enables maximum level of parallelism while preserving the functionality of
generated code. In the next Section 2, we provide an overview of related work.
In Section 3, we provide some implementation insights into the new features, the
generators for Dask and Parsl, and the static task graph scheduler. We employ
the thus extended wfGenes tool to generate executable Python code from task
graphs representative for a tightly coupled application and measure the parallel
performance in Section 4. In Section 5 we summarize the paper.

2 Related Work

Numerous frameworks, tools and WMSs can be employed in task-based mul-
tiscale computing. In principle, dedicated environments, such as the domain-
specific Multiscale Modeling and Simulation Language (MMSL) and the Mul-
tiscale Coupling Library and Environment (MUSCLE) can be adopted for any
applications of multiscale modeling and computing applications, in particular
for solving tightly coupled problems (see Ref. 18 and the references therein). In
this work, we pursue a more general concept allowing to use the same tools also
in a high-throughput computing context [17] and to address additional domain-
specific requirements from computational nanoscience and virtual materials de-
sign. Therefore, we identify task-based parallel computing as a common concept
in this more general context of usage.

Task-based parallel applications can be implemented in many different ways.
The most preferred approach to do this in HPC is based on established standards
such as MPI and OpenMP. The MPI standard [12] is only available for C and
Fortran, and for other languages available via third-party libraries, e.g. Boost [5]
for C++ and mpi4py [7] for Python. Although MPI provides a powerful interface
allowing to implement any kind of parallelism, there are no specific definitions
to support task-based parallelism directly. Starting from version 3, OpenMP
[14] provides support for task-based parallelism based on compiler directives.
However, OpenMP only supports shared-memory platforms and C, C++ and
Fortran languages and requires support by the corresponding compiler.

There are domain-specific languages for writing task-based parallel comput-
ing applications. Swift [19] is a domain-specific language enabling concurrent
programming to exploit task and data parallelism implicitly rather than describ-
ing the workflow as a static directed acyclic graph. A Swift compiler translates
the workflow for different target execution backends. For instance, Swift/T [20]
provides a Swift compiler to translate code for the dataflow engine Turbine [21]
that uses the asynchronous dynamic load balancer (ADLB) based essentially on
MPI. Another domain-specific language, Skywriting [13] also provides semantics
for task parallelism and for handling dataflow.

Starting from version 3.2, the Python standard library provides the
concurrent package to facilitate task parallelism through an abstract interface
allowing asynchronous execution of the same Python code on different backends,
e.g. implemented in the multiprocessing and mpi4py [7] packages. However,
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these can be regarded as execution engines for tasks that have to be scheduled
according to their data dependencies and resource requirements.

3 Implementation

3.1 wfGenes architecture

The wfGenes implementation has been described in detail in previous work [16].
For a better understanding of the new features introduced below, we will here
briefly outline the basic stages that are shown in Figure 1. First, the model
designer authors an abstract workflow description (WConfig) in that all details
about the concrete backend system implementation are left out. After that, the
WConfig is validated and analyzed, and a task graph of the application is cre-
ated including the dependencies describing the control flow and the dataflow. In
addition, wfGenes extracts various properties of a directed acyclic graph relying
on multi-level analysis in the following two steps. First, a thorough dependency
analysis is performed using join operations over the input/output lists of the
nodes. Second, the depth-level–breadth structure of the graph, discussed in Sec-
tion 4, is measured by counting the dependent partitions of the graph, the depth
levels, and total number of parallel tasks in each depth level, called breadth.
Finally, a workflow in the language of the target backend system is automati-
cally generated and validated against a schema provided from the target backend
system. In our previous work [16], generators for two different backend systems,
FireWorks [10] and SimStack [2], have been implemented as a proof of concept.

3.2 Task-level parallelism

The graph analysis stage, shown in Figure 1, includes a node-level global de-
pendency analysis and a task-level local dependency analysis that enable graph-
aware code generation in wfGenes [16]. Combining the results of these two anal-
yses allows automated optimization of the granularity of the workload towards
increasing the degree of parallelism of the generated input code. This is carried
out through a transformation of the workflow graph as depicted in Figure 2. The
original WConfig describes two logical nodes, A and B, that are strictly sequen-
tial, each containing a group of tasks that can be scheduled in parallel, as shown
in Figure 2a. Now, if there is no need to schedule Node A and Node B on different
resources, for example on different computing clusters or in different batch jobs,
then Tasks 4 and 5 can be scheduled much earlier, as shown in Figure 2b. In
this way, the degree of parallelism can be increased by automatically replacing
the node-level with task-level granularity without having to modify the original
user input in WConfig. The maximum degree of parallelism that can be realized
in Figure 2a is two while it is three in Figure 2b. It is noted that the order of
execution, shown in Figure 2b as rows from top to bottom, is for the maximum
degree of parallelism that can be achieved if sufficient computing resources are
provided.
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Fig. 1: Flowchart of wfGenes process stages

3.3 Task scheduling

Parsl and Dask resemble each other in many different aspects, however, the dif-
ferences become more apparent with the task scheduling. A proper scheduling
strategy for any task-parallel application relies on the task graph. Both Dask and
Parsl are equipped with mechanisms to extract the task graph of the application
model from decorated Python code. Although these decorators have different
syntax, they both enable an underlying scheduler to perform static analysis and
to direct the execution toward parallel computing. While the stages of task graph
generation and the task scheduling are logically distinct, they are not well sep-
arated in time. In particular, Parsl schedules tasks on the fly, i.e. during the
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(a) Node Level Parallelism (b) Task Level Parallelism

Fig. 2: Transforming the workflow granularity in order to exploit the maximum
possible parallelism.

scheduling and execution stages. In other words, Parsl’s executor performs im-
mediate evaluation of the delayed execution objects (futures) when the result()
method is called and blocks further computation until all tasks within the call
are completed before it proceeds with tasks defined further in the python code
after this call. This behavior may lead to unwanted idle workers since the sched-
uler cannot launch any tasks after this barrier before synchronization. On the
other hand, Dask performs lazy evaluation of deferred execution objects after
constructing the relevant portion of the task graph by applying the compute()

method to these objects. This strategy is problematic for computations with task
graphs that evolve at run time, i.e. dynamic workflows. In particular, Dask lazy
evaluation objects cannot be used in loop boundaries or in conditional state-
ments. These problems are resolved in wfGenes by ordering the task calls in a
way i) to avoid unnecessary barriers when using Parsl and ii) to obtain results
of delayed execution objects when they are needed to dynamically branch the
data flow when using Dask. This is done in the generation phase using the task
graph produced by the newly integrated task graph scheduler.

3.4 Task graph scheduler

To circumvent these scheduling and dependency handling issues, we have ex-
tended wfGenes with an independent task graph scheduler that is switched be-
fore the code generator, as is shown in Figure 1. The task ordering and grouping
technique implemented in the task scheduler enables Parsl’s executor to launch
the maximum number of independent tasks in parallel and avoids unnecessary
barriers during execution.

Building the task graph prior to code scheduler allows exploiting fully the
task parallelism. In the case of Python code generated for Dask, the wfGenes’
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task scheduler is not necessary since Dask extracts the dependency information
from the Python code with no additional effort from developer’s side. Here, we
use Dask’s first generation scheduler which is based on lazy evaluation of the
task graph prior to execution. The second generation of Dask executors uses
immediate execution of callables that resembles the strategy for Parsl used in
this work. Nevertheless, for execution of dynamic workflows, the two tools offer
no low-effort solution since the user must implement explicit barriers to assure
synchronization.

Figure 3 shows the execution patterns of two different versions of Python
code produced by wfGenes for Parsl with disabled and enabled wfGenes’ task
graph scheduler. In the case of disabled scheduler (Figure 3a) almost all tasks
are executed sequentially. With enabling the scheduler (Figure 3b) independent
tasks are run in parallel. Although there is some overhead leading to increased
pending times, the total running time is about twice shorter. This demonstrates
the benefit from wfGenes’ task graph scheduler in terms of improved parallel
speedup when code for Parsl is generated.

(a) wfGenes scheduler disabled (b) wfGenes scheduler enabled

Fig. 3: Parallel execution with Parsl of code generated from a task graph includ-
ing 13 tasks with maximum concurrency of three tasks with wfGenes’ task graph
scheduler turned off and on. For better visualization, Figure 3b is zoomed by a
factor of two.

4 Use case

In this section, we address a use case of a tightly coupled multiscale model that
is realized as a fine-granular task-parallel application. The up-scaling of such a
multiscale application on HPC clusters is a highly non-trivial scheduling problem
as it has been shown for computing charge carrier transport properties in organic
semiconductors [8]. The scheduling strategy in Ref. 8 has been implemented
with huge effort using the state-of-the-art techniques and tools. Although this
application can now be implemented with significantly less effort using Dask and
Parsl, that have become available in the mean time [3,4,15], we are showing here
an approach with a much better usability, in that the Python code for Dask and
Parsl does not have to be manually written but can be generated from a simple
workflow description.
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Here we are not going to repeat the specific application in Ref. 8. Instead, we
use several randomly generated task graphs that have use-case specific character-
istics relevant for the performance and scalability of the task-based multiscale
application. These characteristics are the total number of tasks, the number
of parallel tasks and the task execution times. Such an approach allows us to
generalize the results of our experiments beyond the domains of the available
application use cases by varying these parameters. To this end, a random graph
generator [9] is used to produce random task graphs that are then converted into
valid WConfig workflow descriptions, that in turn are used to generate input for
FireWorks, Dask and Parsl.

In order to simulate the execution time, we call a sleep function in every task.
As we use random graphs, the ideal completion time depends on the structure of
the graph and the maximum number of independent nodes at each depth level.
The depth levels are the points in time when one or more nodes are scheduled
for execution. The breadth at a depth level is the maximum number of nodes
that can be scheduled in parallel. wfGenes inspects the WConfig and reports the
graph structure and the breadth at each depth level. For example, the graph
used in the measurements has the following depth-level–breadth structure:

depth_level-breadth: {'1': 2952, '2': 3890, '3': 1881,

'4': 769, '5': 300', '6': 124, '7': 50,

'8': 23, '9': 9, '10': 2, '11': 1}

This analysis provides the necessary information to estimate the resource re-
quirements and to calculate the ideal completion time of the application

Ttotal = Ttask

D∑
d=1

dBd

P
e (1)

where D is the maximum depth level of the graph, Bd is the breadth, i.e. the
maximum number of parallel tasks at depth level d, P is the number of available
processing elements, that is here the number of CPU cores, and Ttask is the
average task execution time. For calculating the parallel speedup we need the
time for running the same task graph sequentially. To this end, we have used
Ttask multiplied by the total number of tasks. This estimated time is in a good
agreement with the measured sequential execution time.

4.1 Measurement results

A task graph with 10,000 nodes has been produced and transformed to WConfig
as described in the previous section. Afterwards, separate inputs for FireWorks,
Parsl and Dask have been generated. The workflows have been executed on dif-
ferent number of processor cores on a node of the HPC systems bwUniCluster
(with two Intel Xeon Gold 6230 processors) and HoreKa (with two Intel Xeon
Platinum 8368 processors). For every run, the parallel speedup has been calcu-
lated by dividing the measured total running time by the total time of sequential
execution, i.e. on one worker.
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In Figure 4 the speedup on all 80 hardware threads of a bwUniCluster com-
pute node is shown for different task execution times. Dask shows an almost
constant speedup of about 60 for all task execution times due to minimum mon-
itoring effort on parallel workers. In contrast to Dask, FireWorks has a very low
speedup of around 7 for the task graph with execution time of 1 s. The speedup
is improved with increasing the execution time. This can be explained with
the communication overheads due to queries to a remote MongoDB database
performed by the FireWorks executor. Very short task execution times become
comparable to the times of these queries and the latter limit the scalability of
parallel execution with the FireWorks executor. With sufficiently long task ex-
ecution times, FireWorks’ speedup is comparable to that of Dask and Parsl, as
shown in Figure 4.

Fig. 4: Parallel speedup of FireWorks, Parsl and Dask for varying task execution
times using 80 workers

Furthermore, in Figure 5 we consider the speedup with varying the number of
workers. In addition to balanced task graphs, in which the task execution times of
all tasks are either 1 or 10 s, we consider unbalanced task graphs in which 10% of
the tasks have long execution times and 90% have short execution times. Mixing
two types of tasks with different execution times in similar ratios is prototypical
for multiscale task-parallel applications for computing charge carrier transport
properties in organic semiconductors [8]. In Figures 5a and 5b, we show the
performance for a balanced task graph with 10,000 tasks for 1 and 10 s task
execution times, respectively, by measuring the total running times on 1 up to
32 HoreKa compute nodes using 128 workers per compute node. In addition,
we measure the performance for unbalanced task graphs: one in which 10% and
90% of the tasks run 10 s and 1 s each, respectively (Figure 5c) and one in which
10% and 90% of the tasks run 100 s and 10 s each, respectively (Figure 5d).

In all measurements, the running time decreases with the number of work-
ers due to parallel execution of independent tasks. After a certain number of
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workers, e.g. 1000 in Figure 5a, no more time gain can be observed because no
more tasks are available for parallel execution. The same limit holds also for the
ideal time shown in Figure 5 calculated using Eq. (1). In the cases of balanced
workloads, Dask exhibits a slightly better performance than Parsl and a very
similar scaling with the number of workers running on up to 32 nodes. In the
case of a balanced workload with long task execution time shown in Figure 5b,
the measured running times with both Dask and Parsl are virtually the same as
the ideal time.

With unbalanced workloads, Parsl shows better performance and overall
speedup with respect to Dask. The measured time with Dask for the unbalanced
workload in Figure 5c does not improve any more already with 100 workers and
gives rise to a flat plateau-like dependence that is due to Dask’s executor imple-
mentation. Dask’s executor cannot scale as good as Parsl due to a local limit of
the SLURM workload manager not allowing more than 64 concurrently queued
jobs. Therefore, no measurement with Dask is available in Figure 5d. This prob-
lem is circumvented in the case of Parsl by submitting a single job allocating
several nodes that can be efficiently utilized by Parsl’s executor, as depicted in
Figure 5d. The workers in Figure 5d are uniformly distributed over up to 256
HoreKa compute nodes while in Figures 5a, 5b and 5c the scaling is performed
on up to 64 nodes.

Figure 6 depicts the efficiency (%) of parallelization that is here defined as the
ratio of the measured total running time with the ideal time defined in Eq. (1).
The best parallel efficiency with both Dask and Parsl is achieved for balanced
workloads with long task execution times (10 s) since the communication latency
has less impact on the overall performance. Furthermore, Dask has overall better
efficiency than Parsl that is more pronounced for the workload with short task
execution times (1 s).

With unbalanced workloads, the efficiency is generally reduced presumably
due to a load imbalance that cannot be mitigated at run time due to the lack of
dynamic load balancing. Communication latency times and scheduling overheads
do not seem to be the only reasons for the reduced performance. This can be
seen in the measurement of the same unbalanced task graph with ten times
larger task execution times (in Figures 6, blue dotted line) for which the parallel
efficiency is improved by up to 25% but still 30% lower than the efficiency of
the balanced case with the long task execution time. Strikingly, the code for
the Parsl executor generated with wfGenes task graph scheduler shows higher
efficiency with unbalanced workloads. In contrast, Dask shows poor scalability
with the number of workers for the unbalanced workload.

A similar measurement comparing FireWorks, Dask and Parsl has been per-
formed in a recent study [3]. However, every workload used in Ref. 3 includes
independent tasks with equal execution times. Here, we investigate the effect of
dependencies, using a random task graph, and of the imbalance on the perfor-
mance and scalability. In addition, the task execution ordering in the generated
code for Parsl has been automatically optimized employing the wfGenes task
graph scheduler. In the most simple case of a balanced workload our results are
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(a) 100% 1 s
(b) 100% 10 s

(c) 90% 1 s, 10% 10 s (d) 90% 10 s and 10% 100 s

Fig. 5: Completion time of a balanced (a, b) and an unbalanced workload (c, d).
The ideal time is calculated by Eq. (1).

in agreement with Ref. 3. In the case of Parsl, the HighThroughputExecutor

over SLURM has been used offering the high throughput execution model for
up to 4000 nodes. In the case of Dask, the SLURM scheduler shows the best
performance characteristics for these use cases.

5 Conclusion

Tightly coupled multiscale models often exhibit task-based parallelism with fine
granularity. On the other hand, the complexity of the models and of the avail-
able tools limits developer’s productivity in the design of novel applications and
deployment on high performance computing resources. We have addressed these
issues by extending the wfGenes tool. To eliminate the coding effort for appli-
cation developers, we have added support for Parsl and Dask into the generator
stage of wfGenes. In order to optimize the scheduling in both Dask and Parsl, we
have integrated a task graph scheduler to wfGenes that allows optimal ordering
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Fig. 6: Parallel efficiency with Dask and Parsl for task graphs with variations of
the task execution times

of the Python function calls in the generated Python code, such that enables
maximum task parallelism.

We demonstrate the benefits of our approach by generating valid and effi-
cient Python code for Parsl and Dask and executed the produced code on up to
256 computing nodes on an HPC cluster. The performance measurements have
shown that the application executed with Dask has better performance and par-
allel scaling for all balanced workloads whereby all tasks have the same duration.
In contrast, Parsl outperforms for unbalanced workloads, in which 10% of the
tasks have ten times longer duration than the rest 90% of the tasks. It must
be noted that the code for Parsl has been generated employing the wfGenes’
internal task graph scheduler. Additionally, it has been shown that the paral-
lelism of the application cannot be sufficiently exploited without wfGenes’ task
graph scheduler. Our measurements with the FireWorks executor suggest that
the performance penalties introduced by the MongoDB queries, necessary for
the operation of the executor, are only acceptable for long task execution times
(larger than 60 seconds). Therefore, scaling applications with task graphs includ-
ing more than 10,000 nodes is not recommended for short running tasks using
FireWorks. The measurements show that the right choice from Dask, Parsl and
FireWorks largely depends on the resource requirements profile of the specific
workload, even for the same application.

Our approach is not limited to the demonstrated use case. Rather it can be
employed in any use case where a formal description of a tightly coupled simu-
lation is available but the implementation in a concrete WMS or parallelization
with Dask and Parsl is not otherwise feasible. For example, by combining the
built-in functions FOREACH and MERGE in WConfig, common dataflow patterns
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such as map-reduce can be formally described and through wfGenes translated
to workflows for different target WMSs, e.g. FireWorks and SimStack, or into
Parsl and Dask inputs. In use cases with extensive number of tightly coupled
tasks, the end user can benefit from the high performance and scalability of the
generated code without having the burden to code the application in the syntax
and semantics of the target system. In future work, we will enable embedding of
Parsl and Dask scripts into FireWorks workflows, and will exploit useful features,
such as memoization and checkpointing in Parsl.
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Science, Research and the Arts Baden-Württemberg and by the Federal Ministry
of Education and Research. The authors acknowledge support by the state of
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