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Abstract. The paper presents computational schemes of the multipoint meshless 
method – the numerical modeling tool that allows accurate and effective solving 
of boundary value problems. The main advantage of the multipoint general ver-
sion is its generality – the basic relations of derivatives from the unknown func-
tion depend on the domain discretization only and are independent of the type of 
problem being solved. This feature allows to divide the multipoint computational 
strategy into two stages and is advantageous from the calculation efficiency point 
of view. The multipoint method algorithms applied to such engineering problems 
as numerical homogenization of heterogeneous materials and nonlinear analysis 
are developed and briefly presented. The paper is illustrated by several examples 
of the multipoint numerical analysis. 

Keywords: Meshless FDM, Higher order approximation, Multipoint method, 
Homogenization, Nonlinear analysis, Elastic-plastic problem 

1 Introduction 

Besides the most commonly applied method of computational analysis – the Finite 
Element Method, the alternative methods, such as various meshless methods are more 
and more developed [1] contemporary tools for analysis of engineering problems. The 
paper introduces computational schemes of the application of the recently developed 
higher order multipoint meshless finite difference method [2, 3] to the boundary value 
problems. The new multipoint approach (higher order extension of the meshless FDM 
(MFDM) [4]) is based on the arbitrary irregular meshes, the moving weighted least 
squares (MWLS) approximation, and the local or various global formulations of bound-
ary value problems. The multipoint technique leads to greater flexibility when com-
pared with the FEM, provides p-type solution quality improvement, and may be used 
to solve various types of engineering problems. Due to its characteristic features, the 
method application especially for the nonlinear and multiscale analyses needs specific 
solutions, which are presented in the paper.  

The paper is organized as follows. Section 2 describes the idea of the multipoint 
meshless FDM and its two versions. The general version is especially useful to solve 
various engineering problems including nonlinear ones. The basic steps of the mul-
tipoint MFDM analysis are presented in this part. The algorithm of the method 
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application to the two-scale analysis of heterogeneous materials, based on the mul-
tipoint MFDM characteristic features,  is discussed in detail in section 3. The general 
multipoint strategy in the nonlinear analysis is outlined in section 4. Finally, a short 
summary and some concluding remarks are given. 

2 The fundamentals of the new Multipoint meshless FDM  

The idea of the multipoint method as the higher order FDM (translated as the “Her-
mitian method” in the English version of Collatz’s book) was proposed by L. Collatz 
[5] more than sixty years ago, and forgotten since then due to complex calculations, too 
difficult to apply without the modern computational techniques. The original multipoint 
concept has been modified and extended recently [3] to the new multipoint meshless 
FDM, which is based on an arbitrary irregular cloud of nodes, the MWLS approxima-
tion [4] instead of the polynomial interpolation, and the local or various global formu-
lations of the boundary value problems. This allows to obtain a fully automatic high 
quality solution as well as an error estimation tool. Generalized and unified description 
of the multipoint method is presented in the articles [2, 3]. The concept of the multipoint 
approach is based on raising the approximation order of the unknown function by using 
a combination of its values together with a combination of additional degrees of free-
dom at all nodes of a stencil. 

The idea of the approach is illustrated by derived multipoint difference operators of 
the various approximation orders of the following type  

 ( ) ( )
j j j j

j i j i

c u f 
  (1) 

Here, i – is the central node number of the stencil consisting of nodes Pj,  j = 1...m,  f – 
the additional degrees of freedom (d.o.f), cj  and  αj – coefficients. In this formula, a 
combination of the additional d.o.f. values at each node of the stencil (MFD star) is 
used instead of the function value  f  at the central node only, as it is in the classic 
(M)FDM solution approach. 

The analysis of the method effectivity was done. As is depicted in  Fig.1, to obtain 
the required level of solution error, the multipoint method needs a decreased number of 
nodes when compared with the standard MFDM. Additionally, the convergence rate of 
derivatives obtained by the multipoint method has the same order as it is for the solution 
itself (phenomena of "superconvergence"). It is very important for engineering prob-
lems due to problem formulation posed in terms of the derivatives and unknowns 
(stresses, strains, etc). 
2.1 The general approach of the multipoint method – versions 

There are two basic versions of the multipoint method – the specific one, where the 
values f  of the considered differential equation right-hand side are assumed as the ad-
ditional d.o.f. (1), and the general approach – the unknown values of selected function 
derivatives are used as the additional d.o.f.  

 

( )

( ) ( )

k
j j j j

j i j i

c u u 
 (2) 
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Fig. 1. Solution convergence for the multipoint method, the standard MFDM, and the FEM 
(Poisson's BVP with the different right-hand side) 

Although the specific formulation is simpler and easier in implementation, its appli-
cation is more restricted, mainly to the linear boundary value problem (BVP) posed in 
the strong formulation. The general formulation [2] is more complex but it can be used 
for all types of the BVP, including nonlinear ones, and all types of problem formulation 
– strong (local), weak (global), and mixed (global-local, MLPG). The global relation 
between the additional d.o.f. (unknown k-th order derivatives) and the basic ones 

     
( )k U AU ,  (3) 

which follows from the multipoint general FD operator (2), is the key feature of the 
general version. Here A – is the coefficient matrix.   

Having found such dependencies for any derivative emerging in the considered 
BVP, any differential equation can be approximated. In this way, the general multipoint 
approach can be considered as a tool for solving a wide class of engineering problems. 

2.2 The basic steps of the multipoint MFDM analysis  

The basic multipoint MFDM algorithm (described in detail in [2, 3]) is based on the 
meshless FDM scheme [4] and consists of the several steps (Fig. 2), which are listed 
below with some comments: 

Selection of the appropriate boundary value problem formulation:  
local (strong), global (weak), or global-local (e.g. MLPG [6]). Global formulation may 
be posed in the problem domain  Ω  as the following variational principle 

 ( , ) ( ),b v u l v v V    (4) 

as well as minimization of the energy functional given in the general form. 
In the weak formulation (4), the trial u (searched problem solution) and test v func-

tion may be the same – it is the Bubnov-Galerkin approach, or different from each other 
– the Petrov-Galerkin one. In the last case, the multipoint method may be used also with 
various mixed global-local problem formulations. The MLPG5 (Meshless Local Pe-
trov-Galerkin) global-local formulation [6], due to the use Heaviside-type test function 
may be computationally more efficient than the other formulations. 
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Fig. 2. The flow chart of the multipoint MFDM algorithm   

Domain discretization  
 nodes generation (e.g. by applying Netgen [8], or the Liszka’s type generator [7]);  
 domain partition by Voronoi tessellation and Delaunay triangulation; 
 domain topology determination (neighborhoods). 
Only a cloud of nodes is needed in the case of local problem formulation. For global or 
global-local formulation, the integration and, consequently, the integration cells, like 
Voronoi polygons (subdomains assigned to individual nodes) [9] or Delaunay triangles, 
are needed. 

Optimal MFD star (stencil) generation 
The MFD star (stencil) is the basis of the MWLS approximation and can be generated 
by using various criteria (Fig. 3), like the nearest distance (the simplest one), the cross 
(the optimal one), or the Voronoi neighbors criterion (best, but more complex) [4, 9]. 
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a)        b)          c) 

Fig. 3. Stencil criteria in 2D: a) nearest distance, b) cross criterion,  c) the Voronoi neighbors 

Local approximation by moving weighted least squares (MWLS) method 

The important part of the multipoint MFDM algorithm is the computation of the FD 
operators using MWLS approximation. Construction of the local (based on the stencil) 
function approximation is performed by assuming appropriate d.o.f. at stencil nodes. 
The Taylor polynomial of degree p is considered in the MFDM [3, 4] as the basis func-
tion. Minimization of the weighted error functional { }J D  u 0  yields at each node the 

local multipoint MFD formulas for a set of derivatives  and 
finally for the local basic operators (2).  

Generation of the multipoint difference formulas 

Simultaneous equations ( )kCu αu  are generated in the whole domain   afterward.  
For the nonlinear problems or problems posed in global formulation, the approximation 
of unknown function u and its derivatives are provided by the general multipoint tech-
nique only. Several variants of the general multipoint approach may be used [2]. Fi-
nally, the solution provides the relation (3) formula for each k = 1,…n  derivative. 

Generation of the MFD simultaneous equations 
Having found the FD formula (3) in the whole domain for all derivatives emerging in 
the considered BVP, these relations are applied to the given problem. After such dis-
cretization PDE depends on the primary unknowns u only. 
Solution of the system of linear algebraic equations (SLAE)  

Error estimation  

In general, the error e of the obtained solution u is evaluated by the exact (analytical) 
one uE (benchmark tests only): e = uE - u;  or in the case when it is unknown, by apply-
ing an improved solution uH as the reference one eH = uH - u.  

Due to the high quality of the multipoint result, it can be used to calculate the refer-
ence solution needed for a posteriori error estimation [12]. The p-type error analysis 
can be performed by comparison of the multipoint higher order solution with the one 
obtained by the second order MFDM. The error analysis may be applied for two pur-
poses: an examination of the solution quality and, if required, the mesh refinement. The 
mesh can be easily locally modified by moving existing or entering new nodes, which 
is simpler in the meshless methods than in the FEM. 

Postprocessing of the results 

At the postprocessing stage, after the nodal values of the displacement are obtained, the 
strains and stresses are evaluated. The advantage of the MFDM-based methods is that 
difference formulas are generated at once for the full set of derivatives Du, and the 

( ){ , , , }p
i i i i iD D u u u u   u u
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characteristic feature of the multipoint general case is the relation between the unknown 
function and its derivative (3). All derivative operators depend on the domain discreti-
zation only. Therefore, the stress and strain fields can be easily calculated by using 
coefficient matrices (3). 

3 Multipoint approach in the two-scale analysis of 
heterogeneous materials  

The higher order multipoint approach may be applied at the macro as well as the micro 
levels in the procedure of homogenization [11, 13] (Fig. 4). At the macro level, the 
heterogeneous material with a periodic distribution of inclusions was considered. The 
values of the effective material constants were determined for a single representative 
volumetric element RVE with defined material parameters for the matrix and inclu-
sions. 

 

Fig. 4. Formulation of the homogenization problem  

At the macro level, the problem for a heterogeneous or porous material may be posed 
in both weak and strong formulation, instead at the micro RVE level, the variational 
form (4) of the linear elasticity problem was assumed. In general, the homogenization 
solution approach based on two separate scales consists of the following steps [10]: 
Discretization of the domain 
 initial mesh generation for both – the macro and microstructures; 
 selection of the points at the macroscale (typically the Gauss points), for which the 
effective parameters will be evaluated at the microscale; 
 determination of type and size of the RVE. 
Microscale analysis 
 solution of the BVP at the RVE; 
 computation of the effective material tensor Ceff ; 
 verification of the multiscale analysis;  
 error estimation. 
Transfer of the homogenized effective parameters to Gauss points at the macrostructure 
Macroscale problem solution 
Postprocessing and error estimation. 
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Fig. 5. The numerical homogenization algorithm 

The multipoint approach to computational homogenization was developed and de-
scribed in detail in the article [11] taking into account the characteristic features of the 
method. The homogenization algorithm is presented in Fig. 5 with some comments 
added below.   
Steps 3-7 (Fig. 5) regard both the macro and micro levels but have different details:  

 At the macrostructure level, the selected formulation depends on the solved problem. 
At the micro level – the variational formulation (global or global-local) was assumed 
instead. 
 On the discretization stage, the quality of the mesh (density, distribution of nodes) 
for the macrostructure is not so important and mostly depends on the geometry of the 
domain and solved problem. The RVE mesh may be generated either independently 
on the inclusion distribution or may be adjusted to them. In the latter case, a better 
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result is expected, but such influence is not very significant for sufficiently fine mesh 
[11]. 
 Selection and generation of the stencils (MFD stars) for the local approximation is 
very important in the RVE domain of the multiscale problem. The stencils should be 
adjusted to the inclusion distribution [11]. It is significant due to the oscillations phe-
nomenon occurring near the inclusion boundary in another case (Fig. 6). Their ampli-
tude was significantly influenced by the Gauss point number used for numerical inte-
gration. To generate the optimal stencils adjusted to the inclusion, the nearest criterion 
(the simplest one) or the Voronoi neighbors (more complex) stencil generation have to 
be applied. Although the asymmetrical stencils cause a slightly worse approximation 
quality, they allow obtaining good results at the inclusion boundary. 
Inside the domain – at the main matrix of heterogeneous material or subdomains of 
inclusions, the best choice is to use the cross criterion due to its simplicity.  
 In the case of local formulation (macrostructure) only trial function u has to be ap-
proximated by the MWLS method. In the weak formulation (the microscale), the Pe-
trov-Galerkin approach (the trial u and test v function are different) was applied. The 
trial function u and its derivatives were approximated by the multipoint meshless 
FDM. The test function v and its derivatives at Gauss points can be calculated by the 
MWLS approximation based on the same stencils as u, or by simple interpolation on 
the integration subdomain, e.g. Delaunay triangle. In the preliminary tests, the type 
and order of approximation of test function v do not influence on results. 

 
(a)            (b) 

Fig. 6. Stress xx : stencils adapted to the inclusion;  
stencils do not correspond to the inclusion with 1(a) and 3(b) Gauss point 

 Various versions of the general multipoint case can be applied for difference formu-
las generation [2]. The best way due to the necessity of adjusting the stencil to the 
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inclusion at the RVE is version 4-”XY”, where u,x as well as u,y derivatives are used as 
the additional d.o.f. in the Multipoint FD operator. 
 For the local problem formulation (in the macroscale only), the system of difference 
equations is generated by the collocation technique. The numerical integration is ad-
ditionally required in the case of the global formulation. Simultaneous algebraic equa-
tions are generated directly from the variational principle (5) by aggregation from each 
integration cell  (Delaunay triangle or Voronoi polygon, which could be different from 
the test or trial function subdomains) and taking into account the multipoint FD oper-
ators.   
 At the postprocessing stage the strain and stress volume averages can be evaluated 
and the effective values of the material parameter tensor Ceff  are calculated. 

The preliminary comparison of the effective material constants calculated by the 
MFDM algorithm, with the ones obtained by the FEM [17] as presented in Fig. 7, shows 
a more stable solution process in the case of the MFDM.  

 

Fig. 7. Convergence of the effective Young's modulus obtained by the FEM and MDFM 

4 The nonlinear analysis by the Multipoint MFDM  

The multipoint MFDM has also been developed for the analysis of geometrically and 
physically nonlinear problems [14]. The strategy of the multipoint method for nonlinear 
analysis consists of the same parts as in the case of the linear BVP described above and 
several additional steps related to nonlinearity. The whole algorithm may be divided 
into two stages.  

The initial one concerns the calculation of the primary derivative relations of type 
(3) in the whole domain. The higher order and mixed derivative dependencies (3) can 
be obtained from the first order derivatives by the formulae composition approach as is 
shown in the following examples  

2 2 2, , , ,x y xx xy yy xxy      u Au u Bu u A u u ABu u B u u A Bu
 

The process of the calculation of the primary derivatives in the general multipoint ap-
proach is quite complex and computationally demanding [2], but it does not depend on 
the analyzed problem. Moreover, the relations (3) have to be computed only once for 
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the assumed domain and discretization. This first part of the algorithm can be imple-
mented in C++ or Fortran environment to obtain the coefficient matrices optimally.  

Having found the global multipoint coefficient matrices for derivatives, the relations 
(3) can be applied to the given BVP in the second part of the algorithm. This part, 
strictly related to the analyzed nonlinear problem, may be easily computed in, e.g. 
Matlab environment. Due to its matrix-oriented programming language and extended 
graphic possibilities, Matlab is a perfect tool for this purpose. Besides the optimization 
of the computational time, this partitioning is especially useful for engineering tasks, 
where problem formulation may be changed but the discretization remains the same. 

The nonlinear algorithm is based on the key features of the MFDM and especially 
of the higher order multipoint method. First of all, it is the independence of the FD 
operators from the problem formulation. Using this feature, the nonlinear problem for-
mulation PDE may be easily rewritten in terms of unknown function only.  
The Multipoint meshless FDM solution algorithm is presented in the flowchart (Fig. 8).  

 

Fig. 8. The flow chart of the nonlinear analysis algorithm 
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4.1  Geometrically nonlinear problems 

Obtained by the multipoint general approach simultaneous nonlinear algebraic equa-
tions can be solved by using an iterative technique. The most commonly applied pro-
cedure for this purpose is the Newton–Raphson method. The Jacobian tangent matrix 
on each iteration step has to be evaluated by the formula 

 
 

 
 

...
yxi i k i k i k

j k j x j jyk k

uuF F u F F

u u u u u uu

    
   

     

 

The first part of the Jacobian matrix ( ( ) , 0,1,...s
i jF u s   ) may be analytically calculated, 

e.g. by using the symbolic differentiation, while the second part (the derivatives 
( ) ,s
j iu u  ) is evaluated numerically only once for the discretization. Appropriate mul-

tipoint difference operators (3) generated for the set of the partial derivatives can be 
used here. For example, if ,x y u Au u Bu ,  then  , , yx


  

  

uuu
I A B

u u u
, where A 

and B – are the FD coefficient matrices, I is the identity matrix. In this way, the calcu-
lation time can be significantly reduced. 

Several simple benchmarks and nonlinear engineering problems, including the de-
flections of the ideal membrane and analysis of the large deflection of plates using the 
von Karman plate theory, were tested. Two iterative approaches were used – the simple 
one using the staggered scheme (4th order von Karman problem), and the Newton-
Raphson (NR) iterative scheme. The ideal membrane deflections problem was solved 
by the incremental-iterative approach and the NR method. Despite a fully random ir-
regular cloud of nodes assumed, a high quality almost axially symmetric solution was 
obtained (Fig. 9).  The 14 pressure increments and only 73 iteration steps were needed 
to reach the required level of the error (assumed 10-12) by the 3rd order general mul-
tipoint approach. It is a very encouraging result. The standard MFDM (using relaxation 
modification of NR algorithm [15]) requires twice more iteration steps to reach the 
appropriate level of error. 

 
Fig. 9.  Random irregular mesh and numerical solution for ideal membrane deflection  

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_5

https://dx.doi.org/10.1007/978-3-031-08760-8_5


12 

4.2 Physically nonlinear problems 

In the case of physically nonlinear problems in elastic-plastic analysis, the iterative 
procedure may lead to increased errors in the neighborhood of the elastic-plastic inter-
face, and the incremental-iterative approach is especially useful. The multipoint opera-
tors can be calculated only once at the initially assumed discretization, or the solution 
may be improved by using the adaptation process [16, 17] based on the error estimation 
near the elastic-plastic boundary.   

The oscillation problem similar to the situation in the homogenization analysis was 
expected to occur in the physically nonlinear analysis along the elastic-plastic bound-
ary. However, the preliminary numerical results do not demonstrate the oscillations. 
This can be due to the different types of problem formulation (the weak one in the 
numerical homogenization), might be related to the type of discontinuity or other dis-
cretization factors, and needs further investigation. 

The additional part of the nonlinear strategy in the case of elastic-plastic analysis is 
presented in the scheme (Fig. 10) 

The physically nonlinear de Saint-Venant's problem of a prismatic bar elastic-plastic 
torsion has been analyzed by the multipoint MFDM and outlined in the paper [14]. The 
boundary between elastic and plastic parts was determined by using the Nadai “roof” 
approach [18]. The problem was solved by the Newton-Raphson method. In Fig. 11 (b) 
the elastic-plastic boundaries for various increasing loads θ of square-shape cross-
section bar are presented. The Prandtl stress function of the torsional problem is 
depicted in Fig. 11(a). 

  

Fig. 10. An additional part of the multipoint nonlinear strategy for elastic-plastic analysis 
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(a)   (b) 

 

 
Fig. 11. Prismatic bar torsion: (a) the Prandtl stress function for polygon cross-section;  

(b) elasto-plastic boundaries of the square cross-section for loads θ =1.2, 1.5, 1.8 and 2.1 

5 Final remarks 

The paper introduces the application schemes of the new higher order multipoint mesh-
less method for more demanding engineering problems such as numerical homogeni-
zation and nonlinear analysis. The appropriate algorithms were developed, characteris-
tic features of the method application for particular types of engineering problems were 
examined, and necessary procedures were written and tested. 

Like the other methods, the multipoint meshless approach has its advantages and 
disadvantages. They were examined, tested, and analyzed. The following characteristic 
features belong to the advantages of the multipoint method application to the analyzed 
problems: 
 the possibility of using various formulations of BVP (weak, strong, mixed);  
 modification and adaptation of whole mesh or only part of them without difficulties; 
 higher order approximation and improved precision of the obtained solution on the 
arbitrarily irregular meshes, which allows for decreased number of nodes;  
 the difference operators for the particular derivatives are generated besides the solu-
tion at once without additional computational cost; 
 the multipoint FD operators depend on the domain discretization rather than on the 
analyzed specific problem;  
 convergence rate of solution derivatives has the same order as it is for the solution  
itself (phenomena of “superconvergence”);  
 the general approach of the multipoint MFDM allows for the analysis of various  prob-
lems including nonlinear ones; 
 in nonlinear analysis – computationally more efficient updating and evaluation of the 
tangent matrices needed in iteration approach;  
 the multipoint solution may be used as the improved reference solution instead of the 
true analytical one for a posteriori error estimation.  

In subsequent research, it is planned to combine both the nonlinear analysis and heter-
ogeneous material homogenization and apply it for numerical modeling in e.g. concrete 
mechanics.  
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