
A GPU-based algorithm
for environmental data filtering

P. De Luca1[0000−0001−7031−920X] and A. Galletti2[0000−0002−5208−6219]

L. Marcellino2[0000−0003−2319−8008]

1 International PhD Programme / UNESCO Chair “Environment, Resources and
Sustainable Development”, Department of Science and Technology, Parthenope

University of Naples, Centro Direzionale, Isola C4, (80143) Naples, Italy,
2 Department of Science and Technology, Parthenope University of Naples, Centro

Direzionale, Isola C4, (80143) Naples, Italy
{pasquale.deluca,ardelio.galletti,livia.marcellino}@uniparthenope.it

Abstract. Nowadays, the Machine Learning (ML) approach is needful
to many research fields. Among these, the Environmental Science (ES)
which involves a large amount of data to be processed and collected. On
the other hand, in order to provide a reliable output, those data infor-
mation must be assimilated. Since this process requires a large execution
time when the input dataset is very huge, here we propose a parallel
GPU algorithm based on a curve fitting method, to filter the starting
dataset, by exploiting the computational power of the CUDA tool. The
innovative aspect of the proposed procedure can be used in several ap-
plication fields. Our experiments show the achieved results in terms of
performance.

Keywords: Machine Learning · Curve fitting · Filtering · GPU parallel
algorithm · HPC

1 Introduction

In recent years, the Machine Learning approach is becoming very helpful for en-
vironmental data analysis, e.g. weather prediction, air pollution quality analysis
or earthquakes. The large amount of available data can be successfully used to
define, classify, monitor and predict the ecosystem conditions in which we live
[1]. However, data are known to have errors of a random nature because, very
often the acquisition tools can provide false measurements or with missing data.
This implies that mathematical models used to analyze them can provide unac-
ceptable results.
To overcome this problem Data Assimilation (DA) plays a key role in ML meth-
ods. DA is a standard practice, which combines mathematical models and de-
tected measures, and it is heavily employed in numerical weather prediction [2].
Lately its application is becoming widespread in many other areas of climate,
atmosphere, ocean, and environment modeling; i.e. in all circumstances where
one intends to estimate the state of a large dynamical system based on lim-
ited information. In this context, here we deal with a smoothing method based

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_4

https://dx.doi.org/10.1007/978-3-031-08760-8_4


2 P. De Luca et al.

on local least-squares polynomial approximation to filter initial data, known as
Savitzky-Golay (SG) filter [3]. This filter provides to fit a polynomial to a set
of sampled values, in order to smooth noisy data while maintaining the shape
and height of peaks. The innovative aspect of the proposed procedure can be
used in several applications with satisfactory results: for example for image anal-
ysis, signals electrocardiograms processing and for environmental measurements
filtering [4–6]. Nevertheless, the large amount of data to be processed requires
several waiting hours and this represents a problem that must be solved. High-
Performance Computing (HPC) offers a powerful tool to overcome this issue
through parallel strategies, suitably designed to be applied in several applica-
tion fields [7–9].

In this work, we present a novel parallel algorithm, for Graphics Processing
Units (GPUs) environment, appropriately designed to efficiently perform the
SG filter. Our implementation exploits the computational power of the Com-
pute Unified Device Architecture (CUDA) framework [10], together with the
cuBLAS and cuSOLVER libraries, in order to achieve an appreciable gain of
performance in dealing advanced mathematical algebraic operations.

Then the rest of the paper is organized as follows. Section 2 recalls the math-
ematical model related to the SG filter. In Section 3, the GPU-CUDA parallel
approach and the related algorithm are described. The experiments discussed
in Section 4 confirm the efficiency of the proposed implementation in terms of
performance. Finally, conclusions in Section 5 close the paper.

2 Numerical model details

In this section we recall some mathematical preliminaries about the model im-
plemented. This allows us to describe a pseudo-algorithm which is the basis of
the GPU-parallel implementation, described in next section, we propose. The
discussion follows scheme and main notations presented in [11]. In the follow-
ing, we limit the discussion to the basic information to design the GPU-parallel
implementation and recommend the reader to see papers [3, 12, 13] for further
details. The model we consider is the Savitky-Golay filter, which consists in fact
in applying a least square fitting procedure to the entries values lying in moving
windows of the input signal.

Let us begin by denoting by: x[n], (n = . . . ,−2,−1, 0,−1, 2, . . .) the entries
of the input, and set two nonnegative integer values ML and MR. Then, for all
value x[i] to be filtered, let consider the window:

xi =
(
x[i−ML], . . . , x[i], . . . , x[i+MR]

)
(1)

centered at x[i] and including ML values “to the left” and MR values “to the
right”. xi, that is: In the SG filter, to get the filtered value y[i], firstly we find
the polynomial:

pN (n) =

N∑
k=0

akn
k −ML ≤ n ≤ MR (2)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_4

https://dx.doi.org/10.1007/978-3-031-08760-8_4


A GPU-based algorithm for environmental data filtering 3

of degree N that minimizes, in the least square sense, its distance from val-

ues in xi, i.e. the quantity: εN =
∑MR

k=−ML

(
pN (k) − x[i + k]

)2
. Then we set

y[i] = pN (0) = a0., as the value the polynomial takes at n = 0. We ob-
serve that pN is the least square polynomial approximating points (i, x[i]), (for
i = −ML, . . . ,MR) and it can be proved that its coefficients ak solve the normal
equations linear system:

ATAa = ATxT
i , where A =

(
ij

)j=0,...,N

i=−ML,...,MR
. (3)

It follows that a0 and all other coefficients of pN depend on (are linear com-
bination of) xi. However, by rearranging (3) we get: a = (ATA)−1ATxT

i the
0-th row of the pseudo-inverse matrix:

H = (ATA)−1AT , (4)

whose entries do not depend on xi. In other words each filtered value y[i] is a
linear combination of values in xi with coefficients in the 0-th row of H, that
can be pre-computed once, independently from the filtered value we need, i.e.:

y[i] =

MR∑
k=−ML

h0,k · x[i+ k] (5)

Previous discussion allows us to introduce the pseudo-algorithm 1, which sum-
marizes the main steps needed to solve the numerical problem.

Algorithm 1 Sequential pseudo-algorithm
Input: x, ML, MR, N . Output: y
1: build A % as in (3)
2: build H % as in (4)
3: extract H0 % the 0−th row of H
4: for i ∈ Z do
5: extract xi % from the input x
6: compute y[i] % as in (5)
7: end for

3 Parallel approach and GPU algorithm

Observing the significant results achieved in [14–16], due to large amount of pro-
duced data from scientific community, we have chosen to develop a GPU-based
parallel implementation, equipped by a suitable Domain Decomposition (DD)
with overlapping, already proposed in [17], for most modern GPU architecture.
From now on, in this section, to describe the parallel algorithm, we set: ML =
MR = M and assume the input signal x to have finite size s, i.e., there is no
likelihood of confusion by setting: x =

(
x[0], x[1], . . . , x[s− 1]

)
. We observe that

to apply the algorithm to all moving windows, included the edge ones, we also

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_4

https://dx.doi.org/10.1007/978-3-031-08760-8_4


4 P. De Luca et al.

need to increase the size of the input with a zero-padding procedure, which con-
sists of extending the original input signal with artificial M zeros at the left and
M zeros at the right boundaries, as follows:

xM = (0, . . . , 0, x[0], . . . , x[s− 1], 0, . . . , 0). (6)

The overall parallel scheme is shown in the pseudo-algorithm 2.

Algorithm 2 Parallel pseudo-algorithm
Input: x, M N . Output: y

1: build xM as in (6) % zero-padding of x
% step 1: Pseudo-inverse building

2: build A, as in (3) by using the cuSOLVER routine
3: build H, as in (4) by using the cuBLAS routine
4: extract H0 % the 0−th row of H

% step 2: Domain Decomposition with overlapping

5: for each ti do
6: Si ← xi

7: end for
% step 3: Computation of final output

8: compute y as in (7), by using the cuBLAS routine

The main steps of the pseudo-algorithm 2 are described below:

STEP 1 - Pseudo-inverse building.
This step is based on the QR factorization of a matrix A, which is suit-
ably efficient for computing the pseudo-inverse H when A is symmetric.
To this aim, the algorithm exploits the potential of the cuSOLVER and
cuBLAS libraries [18, 19] for numerical linear algebra operations on GPU.
In particular, we firstly build matrix A by using the cusolverDnDgeqrf

cuSOLVER routine, then to build of H, we observe that it holds: H =
R−1QT , where Q and R come from the QR factorization of A. Then, we
use the cublasDgetriBatched cuBLAS routine to compute R−1 and the
cublasDgemm CUBLAS routine, to get the matrix-matrix multiplication H.

STEP 2 - Domain Decomposition with overlapping.
Here, we decompose the problem by building a matrix: S = [x0,x1, . . . ,xs−1]

T

whose rows are the xi defined in (1). According to SIMT paradigm, which is
used by the CUDA configuration, we use: s threads, t0, t1, . . . , ts−1, and each
of them copies the i − th moving window from xM to i − th row of S, in a
fully parallel way. To this aim, we implemented a CUDA kernel which takes
advantage of the large number of processing units of the GPU environment.

STEP 3 - Computation of final output.
The final output y can be regarded as the matrix-vector product

y = S ·HT
0 . (7)

This operation is performed by using the cublasDgemv CUBLAS routine.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_4

https://dx.doi.org/10.1007/978-3-031-08760-8_4


A GPU-based algorithm for environmental data filtering 5

4 Performance analysis

In this section, some experimental results show and confirm the efficiency of pro-
posed software. Following, the hardware specifications where the GPU algorithm
has been implemented and tested, are listed: 1 x CPU Intel i7 860 with 4 cores,
2 threads per core, 2.80 Ghz, 8 GB of RAM; 1 x GPU NVIDIA Quadro K5000
with 1536 CUDA Cores, 706 MHz Core GPU Clock, and 4 GB 256-bit, GDDR5
memory configuration. Thanks to CUDA framework, Algorithm 2 exploits the
overall GPU’s parallel computational power. The evaluation of a parallel algo-
rithm is covered by different metrics, and here: we preliminarily show a execution
time comparison in order to highlight the gain of performance obtained, then
we focus on the spent time for each computational expensive operation listed
in pseudo-algorithm 2. Finally, last subsection shows a example output of the
parallel algorithm applied to a set of environmental data.

Execution time comparison. Table 1 exhibits an execution time comparison
among the GPU implementation and the native function sgolayfilt in matlab,
by varying the input data sample dimension. We underline the sgolayfilt function
runs in a parallel way by using 4 cores. Input data come from the environmental
dataset related to the last London Atmospheric Emissions Inventory (LAEI) for
year 2019. The area covered by the LAEI includes Greater London, as well as
areas outside Greater London up to the M25 motorway (see [20]). These emis-
sions have been used to estimate ground level concentrations of key pollutants
NOx, NO2, PM10 and PM2.5 across Greater London for year 2019, using an at-
mospheric dispersion model. In this test we used M = 2 and N = 3. The CUDA
configuration is static and set to 512 × 1024 block per threads. We highlight a
significant time reduction of GPU algorithm with respect to multi-core execu-
tion. The achieved speed-up is closely linked to accelerated operations computed
in parallel way by giving a strong impact of time reduction. Despite the accom-
plished good performance, we must stop to increase the input data sample due
to small memory size adopted by the CPU. Conversely, the large dimension
and accurate management of GPU memory together, allows us to introduce a
great increment of the input data sample in order to process big data sample.

Table 1. Execution times: matlab vs. GPU.

Time (ms)

s Multi-core GPU

3.4× 101 5.92 2.96

4.0× 103 6.59 3.54

4.6× 104 7.01 3.45

7.3× 104 7.50 3.50

3.9× 105 7.90 3.51

CUDA kernels analysis. An additional performance analysis acts as a support
for previous experimental result. More precisely, for each single kernel by vary-
ing the input sample dimension, we show the time consumption for each CUDA
kernel which computes the operations of most expensive procedure of pseudo-

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_4

https://dx.doi.org/10.1007/978-3-031-08760-8_4


6 P. De Luca et al.

algorithm 2. Table 2 shows time values for each CUDA kernel by positively con-
firming the efficiency of the proposed software. Specifically, a good work-load bal-
ancing among CUDA threads is performed. Transfer and copy times are avoided
to underline the gain of performance for each kernel.

Table 2. Time execution analysis for each CUDA kernel in milliseconds.

Execution time (ms)

operation 3.4× 101 4.0× 103 4.6× 104 7.3× 104 3.9× 105

QR 0.11 0.11 0.11 0.11 0.11

Pseudo-inverse 0.30 0.32 0.31 0.30 0.31

S computation 0.12 0.12 0.13 0.07 0.28

Polynomial evaluation 0.11 0.12 0.20 0.26 0.92

Overall time 0.68 0.69 0.78 0.84 1.73

Environmental data testing. Last plot, Figure 1, aims to show how the al-
gorithm performs when applied to data of environmental nature. In particular,
this qualitative test is referred to the Greater London mean PM10 particulate
matter arising from the dataset in [20]. Input data is plotted in blue while the
SG filtered output is the red line. We recall that results sharply overlap with the
ones obtained by means of the matlab routine sgolayfilt. We remark that,
unlike the matlab procedure, our implementation is able to manage input data,
of very large size, in a reasonable time.

Fig. 1. Application of the SG filter to PM10. Input signal is reported in blue, filtered
output of the Savitzky-Golay filter in red.

5 Conclusion

In this work, we presented a novel GPU-parallel algorithm, based on the SG
filter, to approximate by a polynomial sampled data values. This procedure can
be seen as a pre-processing step to correctly assimilate data within the Machine
Learning approach in order to provide a reliable output and without affecting
execution times. Our experiments showed very good performance even with real
environmental data. Future work could consider a further application of our
implementation to the ECG denoising field.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_4

https://dx.doi.org/10.1007/978-3-031-08760-8_4


A GPU-based algorithm for environmental data filtering 7

References

1. Kanevski, M. (2009). Machine learning for spatial environmental data: theory, ap-
plications, and software. EPFL press.

2. Cuomo, S., Galletti, A., Giunta, G., & Marcellino, L. (2017). Numerical effects of the
gaussian recursive filters in solving linear systems in the 3dvar case study. Numerical
Mathematics: Theory, Methods and Applications, 10(3), 520-540.

3. Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by sim-
plified least squares procedures. Analytical chemistry, 36(8), 1627-1639.

4. Liu, Yang & Dang, Bo & Li, Yue & Lin, Hongbo & Ma, Haitao. (2015). Applications
of Savitzky-Golay Filter for Seismic Random Noise Reduction. Acta Geophysica. 64.
10.1515/acgeo-2015-0062.

5. Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004).
A simple method for reconstructing a high-quality NDVI time-series data set based
on the Savitzky–Golay filter. Remote sensing of Environment, 91(3-4), 332-344.

6. Rodrigues, J., Barros, S., & Santos, N. (2021, July). FULMAR: Follow-Up
Lightcurves Multitool Assisting Radial velocities. In Posters from the TESS Sci-
ence Conference II (TSC2 (p. 45).

7. D’Amore, L., Casaburi, D., Galletti, A., Marcellino, L., & Murli, A. (2011). Inte-
gration of emerging computer technologies for an efficient image sequences analysis.
Integrated Computer-Aided Engineering, 18(4), 365-378.

8. Luca, P. D., Galletti, A., Giunta, G., & Marcellino, L. (2020, June). Accelerated
Gaussian convolution in a data assimilation scenario. In International Conference
on Computational Science (pp. 199-211). Springer, Cham.

9. De Luca, P., Galletti, A., & Marcellino, L. (2020, July). Parallel solvers comparison
for an inverse problem in fractional calculus. In 2020 Proceeding of 9th International
Conference on Theory and Practice in Modern Computing (TPMC 2020).

10. https://developer.nvidia.com/cuda-zone
11. Schafer, R. W. (2011). What is a Savitzky-Golay filter?[lecture notes]. IEEE Signal

processing magazine, 28(4), 111-117.
12. Schafer, R. W. (2011). What is a Savitzky-Golay filter?[lecture notes]. IEEE Signal

processing magazine, 28(4), 111-117.
13. Luo, J., Ying, K., & Bai, J. (2005). Savitzky–Golay smoothing and differentiation

filter for even number data. Signal processing, 85(7), 1429-1434.
14. Cuomo, S., De Michele, P., Galletti, A., & Marcellino, L. (2016, June). A GPU par-

allel implementation of the local principal component analysis overcomplete method
for DW image denoising. In 2016 IEEE Symposium on Computers and Communi-
cation (ISCC) (pp. 26-31). IEEE.

15. Cuomo, S., De Michele, P., Galletti, A., & Marcellino, L. (2016, March). A GPU-
parallel algorithm for ECG signal denoising based on the NLM method. In 2016 30th
International Conference on Advanced Information Networking and Applications
Workshops (WAINA) (pp. 35-39). IEEE.

16. De Luca, P., Galletti, A., Giunta, G., & Marcellino, L. (2021). Recursive filter
based GPU algorithms in a Data Assimilation scenario. Journal of Computational
Science, 53, 101339.

17. De Luca, P., Galletti, A., & Marcellino, L. (2019, November). A Gaussian recursive
filter parallel implementation with overlapping. In 2019 15th international confer-
ence on signal-image technology & internet-based systems (SITIS) (pp. 641-648).

18. https://docs.nvidia.com/cuda/cusolver/index.html
19. https://docs.nvidia.com/cuda/cublas/index.html
20. https://data.london.gov.uk/

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_4

https://dx.doi.org/10.1007/978-3-031-08760-8_4

