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Abstract. For high-dimensional dynamical systems, running high-fidelity
physical simulations can be computationally expensive. Much research
effort has been devoted to develop efficient algorithms which can pre-
dict the dynamics in a low-dimensional reduced space. In this paper,
we developed a modular approach which makes use of different reduced-
order modelling for data compression. Machine learning methods are
then carried out in the reduced space to learn the dynamics of the phys-
ical systems. Furthermore, with the help of data assimilation, the pro-
posed modular approach can also incorporate observations to perform
real-time corrections with a low computational cost. In the present work,
we applied this modular approach to the forecasting of wildfire, air pol-
lution and fluid dynamics. Using the machine learning surrogate model
instead of physics-based simulations will speed up the forecast process
towards a real-time solution while keeping the prediction accuracy. The
data-driven algorithm schemes introduced in this work can be easily ap-
plied/extended to other dynamical systems.

1 Introduction

Reduced-order modelling is a reduced dimensionality model surrogate of an ex-
isting system in a reduced-order space. reduced-order modelling (ROM), in com-
bination with machine learning (ML) algorithms is of increasing interest of re-
search in engineering and environmental science. This approach improves the
computational efficiency for high-dimensional systems. Since forecasting the full
physical space is computationally costly, much effort has been given to develop
ML-based surrogate models in the pre-trained reduced-order space.

In recent years, the algorithm schemes which combine ROM and ML surro-
gate models have been applied in a variety of engineering problems, including
computational fluid dynamics [33, 32], numerical weather prediction [25] and
nuclear science [30], among others, to speed up computational models without
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losing the resolution and accuracy of the original model. Typically, the first stage
consists of reducing the dimension of the problem by compression methods such
as Principal Component Analysis (PCA), autoencoder (AE), or a combination of
both [31, 29]. Solutions from the original computational models (known as snap-
shots) are then projected onto the lower-dimensional space, and the resulting
snapshot coefficients are interpolated in some way, to approximate the evolution
of the model.

In order to incorporate real-times observations, data assimilation (DA), orig-
inally developed in meteorological science, is a reference method for system up-
dating and monitoring. Some recent researches [10, 2, 5, 26] have focused on com-
bining DA algorithms and ROMs so that the system correction/adjusting can
be performed with a low computational cost. Adversarial training and Genera-
tive Adversarial Networks (GAN), introduced by [17], has also been used with
ROM. Data-driven modelling of nonlinear fluid flows incorporating adversarial
networks has been successfully studied previously [6]. GANs are also being used
to capture physics of molecular dynamics [41] and have potential to aid in the
modeling and simulation of turbulence [24].

The aim of this work is to create general workflows in order to tackle dif-
ferent applications combining DA and ML approaches. In the present work,
we propose a modular approach, which combines ROM, ML surrogate models,
and DA for complex dynamic systems with applications in computational fluid
dynamic (CFD), wildfire spread and air pollution forecasting. The algorithms
described in this work can be easily applied/extended to other dynamical sys-
tems. Numerical results in both applications show that the proposed approach
is capable of real-time predictions, yielding an accurate result and considerable
speed-up when compared to the computational time of simulations.

The paper is structured as follows: Section 2 presents the modular approach
and its components. The applications are shown in Section 3 and 4. And finally,
Discussions and Conclusions are presented in Section 5.

2 Components of the modular approach

The modular approach shown in this paper can be summarised by Figure 1. The
state model (ut) is compressed using ROMs approaches such as PCA, AE or a
combination of both, followed by a ML-based forecast in the reduced space. This
forecast is then corrected using DA, incorporating real-time observations (vt).
This is an iterative process that can be used to improve the starting point of the
next time-level forecast, thus improving its accuracy [3].

2.1 Reduced order modelling

In this section, we introduce two types of ROMs, namely the PCA and the
convolutional autoencoder (CAE).
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Reduced order surrogate modelling 3

Fig. 1: Flowchart of the modular approach, modified using figure 1 of [4]

2.1.1 Principle component analysis
principal component analysis, also known as Karhunen–Loève transform or Hotelling
transform, is a reference method of ROM via an orthogonal linear projection.
This approach has been widely applied in dynamical systems [38] with snap-
shots at different time steps. Applications can be found in a large range of en-
gineering problems, including numerical weather prediction [22], hydrology [10]
or nuclear engineering [16]. More precisely, a set of nu simulated or observed
fields {ut0,t1,..tnu−1

} at different time are flattened and combined vertically to a
matrix,

U =
[
ut0

∣∣∣ut1

∣∣∣...∣∣∣utnu−1

]
. (1)

The principle components are then extracted by computing the empirical covari-
ance matrix, that is,

Cu =
1

nu − 1
UUT = LUDULU

T , (2)

where each column of LU which represents an eigenvector of Cu and DU is
the associated eigenvalue diagonal matrix. The dynamical field ut can then be
compressed to

ũt = LU,q
Tut, (3)

where ũt denotes the compressed state vectors and q is the truncation parameter
and the reconstruction to the full physical space reads

uPCA
t = LU,qũt = LU,qLU,q

Tut. (4)

2.1.2 Convolutional autoencoder
PCA, by design, is a linear method for ROM. In the last several years, much effort
has been given to dimension reduction for chaotic dynamical systems via deep
learning (DL) AEs [15]. Typically, an AE is an unsupervised neural network (NN)
which consists two parts: an encoder E which maps the input variables to latent
(i.e., compressed) vectors and a decoder D which performs reconstructions from
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the low-dimensional latent space to the full physical space. These processes can
be summarised as:

ũt = E(ut) and uAE
t = D(ũt). (5)

It is found that employing convolutional layers in AEs is helpful to i) reduce
the number of parameters for high-dimensional systems, and ii) take into account
local spatial patterns for structured data (e.g., images and times series) [19].
Following this idea, CAE was developed [19, 35] where both the encoder E and
the decoder D consist of a series of convolutional layers.

In general, the encoder and the decoder of an AE should be trained jointly, for
instance, with the Mean square error (MSE) or the Mean absolute error (MAE)
loss function of reconstruction accuracy, i.e.,

JMSE(E,D) =

nu−1∑
j=0

||utj −D ◦ E(utj )||2

nu
, JMAE(E,D) =

nu−1∑
j=0

||utj −D ◦ E(utj )||
nu

.

(6)

2.2 Machine Learning for surrogate models

2.2.1 Recurrent neural network
Long short-term memory networks neural networks, introduced in [20], is a vari-
ant of recurrent neural network (RNN), capable of dealing long term dependency,
and vanishing gradient problems that traditional RNN could not handle. One of
the components of our modular approach in the present work, is the sequence-
to-sequence long short-term memory networks (LSTM). The LSTM learns the
dynamics in the latent space from compressed training data.

LSTM can be unidirectional or bidrectional. Recently developed Bidirectional
LSTM (BDLSTM) [36] differs from the unidirectional ones, as the latter can
capture the forward and backward temporal dependencies in spatiotemporal
data [12, 21, 27, 34] . LSTMs are widely recognised as one of the most effective
sequential models for times series predictions in engineering problems [40, 28].

The LSTM network comprises three gates: input (itk), forget (ftk), and output
(otk); a block input, a single cell ctk , and an output activation function. This
network is recurrently connected back to the input and the three gates. Due to
the gated structured and the forget state, the LSTM is an effective and scalable
model that can deal with long-term dependencies [20]. The vector equations for
a LSTM layer are:

itk = ϕ(Wxiutk +WHiHtk−1
+ bi)

ftk = ϕ(Wxfutk +WHfHtk−1
+ bf )

otk = ϕ(Wxoutk +WHoHtk−1
+ bo)

ctk = ftk ◦ ctk−1
+ itk ◦ tanh(Wxcutk +WHcHtk−1

+ bc)

Htk = otk ◦ tanh(ctk)

(7)
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where ϕ is the sigmoid function, W are the weights, bi,f,o,c are the biases for the
input, forget, output gate and the cell, respectively, xtk is the layer input, Htk

is the layer output and ◦ denotes the entry-wise multiplication of two vectors.
This is the output of a unidirectional LSTM.

For a BDLSTM, the output layer generates an output vector utk :

utk = ψ(
−−→
Htk ,

←−−
Htk) (8)

where ψ is a concatenating function that combines the two output sequences,
forwards and backwards, denoted by a right and left arrow, respectively.

2.2.2 Adversarial network
The work of [18] introduced the idea of adversarial training and adversarial
losses which can also be applied to supervised scenarios and have advanced the
state-of-the-art in many fields over the past years. Additionally, robustness may
be achieved by detecting and rejecting adversarial examples by using adversarial
training [37]. GAN are a network trained adversarially. The basic idea of GAN is
to simultaneously train a discriminator and a generator, where the discriminator
aims to distinguish between real samples and generated samples. By learning
and matching the distribution that fits the training data x, the aim is that new
samples, sampled from the matched distribution formed by the generator, will
produce, or generate, ‘realistic’ features from the latent vector z

The GAN is composed by a discriminator network (D) and a generator net-
work (G) The GAN losses, binary cross-entropy, therefore, can be written as:

Ladv
D = −

∑
logD(x)) + log(1−D(G(z))

Ladv
G = −

∑
log(D(G(z))

(9)

This idea can be developed further if we consider similar elements of the adver-
sarial training of GAN and applied to other domains, e.g. time-series, extreme
events detection, adversarial attacks, among others.

2.3 Data assimilation

Data assimilation algorithms aim to estimate the state variable u relying on a
prior approximation ub (also known as the background state) and a vector of
observed states v. The theoretical value of the state vector is denoted by utrue,
so called the true state, which is out of reach in real engineering problems. Both
the background and the observation vectors are supposed to be noisy in DA,
characterised by the associated error covariance matrices B and R, respectively,
i.e.,

B = Cov(ϵb, ϵb), R = Cov(ϵo, ϵo), (10)

with the prior errors ϵb and ϵo defined as:

ϵb = ub − utrue ϵo = H(utrue)− v. (11)
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Since the the true states are out of reach in real applications, the covariance
matrices B and R are often approximated though statistical estimations [7, 14].
The H function in equation 11 is called the transformation operator, which maps
the state variables to the observable quantities. H(utrue) is also known as the
model equivalent of observations.

By minimizing a cost function J defined as

J(u) =
1

2
(u− ub)

TB−1(u− ub) +
1

2
(v−H(v))TR−1(v−H(v))

= Jb(u) + Jo(u) (12)

DA approaches attempt to find an optimally weighted a priori analysis state,

ua = argmin
u

(
J(u)

)
. (13)

The B and the R matrices, determining the weights of background and ob-
servation information (as shown in equation 12), is crucial in DA algorithms [39,
11]. When H can be approximated by a linear function H and the error covari-
ances B and R are well specified, equation 12 can be solved via Best Linear
Unbiased Estimator (BLUE) [7]:

ua = ub +K(v−Hub) (14)

where K denotes the Kalman gain matrix,

K = BHT (HBHT + R)−1. (15)

The optimisation of equation 12 often involves gradient descent algorithms (such
as "L-BFGS-B") and adjoint-based numerical techniques. In the proposed modu-
lar approach of the present paper, we aim to perform DA in the low-dimensional
latent space to reduce the computational cost, enabling a real-time model up-
dating. The latent assimilation (LA) approach was first introduced in the work
of [2] for CO2 spread modeling. A generalised Latent Assimilation algorithm
was proposed in the recent work of [9]. The observation quantities vt are first
preprocessed to fit the space of the state variables ut, i.e.,

ṽt = E(vt). (16)

As a consequence, the transformation operator becomes the identity function in
the latent space, leading to the loss function of LA:

J̃(ũt) =
1

2
(ũt − ũt,b)

TB−1(ũt − ũt,b) +
1

2
(ũt − ṽt)

TR−1(ũt − ṽt), (17)

where the latent background state ũt,b is issued from the RNN predictions
as mentioned in section 2.2.1. The analysis state,

ut,a = argmin
ut

(
J̃(ũt)

)
, (18)

can then replace the background prediction ũt,b, which can be used as the
starting-point for the next-level prediction in ML algorithms.
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3 Application to Wildfires

The first application is real-time forecasting of wildfire dynamics. Wildfires have
increasing attention recently in fire safety science world-widely, and it is an ex-
tremely challenging task due to the complexities of the physical models and the
geographical features. Real-time forecasting of wildfire dynamics which raises
increasing attention recently in fire safety science world-widely, is extremely
challenging due to the complexities of the physical models and the number of
geographical features. Running physics-based simulations for large-scale wild-
fires can be computationally difficult, if not infeasible. We applied the proposed
modular approach for fire forecasting in near real-time, which combines reduced-
order modelling, recurrent neural networks RNN, data assimilation DA and error
covariance tuning. More precisely, based on snapshots of dynamical fire simu-
lations, we first construct a low-dimensional latent space via proper orthogonal
decomposition or convolution AE. A LSTM is then used to build sequence-to-
sequence predictions following the simulation results projected/encoded in the
reduced space. In order to adjust the prediction of burned areas, latent DA cou-
pled with an error covariance tuning algorithm is performed with the help of daily
observed satellite wildfire images as observation data. The proposed method was
tested on two recent large fire events in California, namely the Buck fire and the
Pier fire, both taking place in 2017 as illustrated in figure 2.

(a) Buck fire (b) Pier fire

Fig. 2: Observed burned area of the Buck fire and the Pier fire at the first day

We first employed an operational cellular automata (CA) fire spread model [1]
to generate the training dataset for ROM and RNN surrogate modelling. This CA
model is a probabilistic simulator which takes into account a number of local geo-
physical features, such as vegetation density (see figure 2) and ground elevation.
Once the latent space is acquired, the ML-based surrogate model is then trained
using the results of stochastic CA simulations in the corresponding area of fire
events. With a much shorter online execution time, the so-obtained data-driven
model provides similar results as physics-based CA simulations (stochastic) in
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the sense that the mean and the standard deviation of CA-CA and CA-LSTM
differences are similar as shown in figure 3 for the Pier fire. In fact, the ROM-
and ML-based approach run roughly 1000 times faster than the original CA
model as shown in figure 3(b).
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Fig. 3: Model difference and computational time

Each step in CA-LSTM predictions is roughly equivalent to 30 minutes in
real time while the satellite observations are of daily basis. The latter is used to
adjust the fire prediction consistently since the actual fire spread also depends
heavily on other factors such as real-time climate or human interactions which
are not included in the CA modelling. The evolution of the averaged relative root
mean square error (R-RMSE) is shown in figure 4 . The numerical results show
that, with the help of error covariance tuning [14, 8], DA manages to improve
the model prediction accuracy in both fire events.

4 Application to Computational Fluid Dynamics and air
pollution

Similar to the wildfire problem, we also present an general workflow to gen-
erate and improve the forecast of model surrogates of CFD simulations us-
ing deep learning, and most specifically adversarial training. This adversarial
approach aims to reduce the divergence of the forecasts from the underlying
physical model. Our two-step method, similar to the wildfire application, in-
tegrates a PCA AE with adversarial LSTM networks. Once the reduced-order
model (ROM) of the CFD solution is obtained via PCA, an adversarial au-
toencoder (AAE) is used on the principal components time series. Subsequently,
a LSTM model is adversarially trained, named adversarial LSTM (ALSTM),
on the latent space produced by the principal component adversarial autoen-
coder (PC-AAE) to make forecasts. Here we show, that the application of ad-
versarial training improves the rollout of the latent space predictions.
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Fig. 4: Relative error of pure LSTM and assimilated prediction compared to
satellite observations

Fig. 5: Top: Flow past the cylinder - 2D CFD simulation. Bottom: 3D Urban Air
pollution CFD simulation. Right: Unstructured meshes of both domains

Different case studies are shown in Figure 5:

– FPC: the 2D case describes a typical flow past the cylinder CFD, in which
a cylinder placed in a channel at right angle to the oncoming fluid making
the steady-state symmetrical flow unstable. This simulation has a Reynolds
number (Re) of 2, 300 with m = 5, 166 nodes and n = 1, 000 time-steps.

– 3DAirPollution: The 3D case is a realistic case including 14 buildings repre-
senting a real urban area located near Elephant and Castle, South London,
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(a) Compression

(b) Forecast

Fig. 6: Top: Mean absolute error (MAE) of the different compression methods on
the velocities (ms−1) of the flow past the cylinder domain. Red, magenta, and
cyan represents a compression to 8, 4, and 2 dimensions, respectively. Circle and
triangle markers are a PC and a PC-AAE compression, respectively. Bottom:
Ensemble, of 50 different starting points, of the MAE of the forecast, for 100
time-levels, of the velocities (ms−1) of the 3D Urban Air Pollution domain. Blue
is the original test data, and orange is the prediction obtained with the PC-AAE
and the ALSTM.
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UK. The 3D case (720m × 676m × 250m) is composed of an unstructured
mesh including m = 100, 040 nodes per dimension and n = 1, 000 time-steps.

The two-dimensional (2D) CFD case study was performed using Thetis [23]
and the three-dimensional (3D) CFD simulations were carried out using Fluid-
ity [13]. For these domains, the framework was trained and validated on the first
1000 time-steps of the simulation, and tested on the following 500 time-steps.

A PCA as applied to a 2-dimensional velocity field (ms−1) in Flow past the
cylinder and likewise to the velocities of the 3D model. The full-rank PCs were
used as input for the AAE and divided in 3 different experiments named LSτ

and compared to the corresponding reconstruction xτ with τ = {2, 4, 8} PCs.
The results of the mean absolute error using the different dimension reduction
approaches are shown in Figure 6a for the flow past the cylinder case. The AAE
outperforms a simple truncation of the PCs in both domains.

In terms of forecasting, our framework generalises well on unseen data 6b.
This is because of the Gaussian latent space obtained with the adversarial AE
constraints the further predictions and forces the predictions back into the dis-
tribution. Furthermore, the adversarial training of the LSTM learns how to stay
within the distribution data. Followed by the training of an adversarial LSTM, we
can assess the forecasts using our workflow. An ensemble of 50 different starting
points from the test dataset were used to be forecasted in time for 100 time-
levels. The ensemble of Mean Absolute Errors results are based on a dimension
reduction 8 dimensions in the latent space of the AAE, which is a compression
of 5 orders of magnitude. The error percentage of the means of these forecasts
is 5% in the test dataset.

5 Conclusions

In the present paper, we introduced a ROM- and ML-based modular approach
for efficient predictions of high-dimensional dynamical systems. In addition, this
method can also incorporate real-time observations for model correction/adjusting
with a low computational cost. A variety of ROM and RNN approaches can be
included in the algorithm scheme regarding different applications. The replace-
ment of the physics-based simulation/resolution by these models will speed up
the forecast process towards a real-time solution. And, the application of adver-
sarial training could potentially produce more physically realistic scenarios. We
showed the strength of the proposed method in predicting wildfire spread and
air pollution diffusion in this work. Furthermore, this framework is data-agnostic
and could be applied to different physical models when enough data is available.
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