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Abstract. The cyber threats are often found to threaten individuals, or-
ganizations and countries at different levels and evolve continuously over
time. Cyber Threat Intelligence (CTI) is an effective approach to solve
cyber security problems. However, existing processes are considered in-
herent responses to known threats. CTI experts recommend proactively
checking for emerging threats in existing knowledge. In addition, most
researches focus on static snapshots of the CTI knowledge graph, while
ignoring the temporal dynamics. To this end, we create a novel framework
TSA-TNTM (Time Series Attention based Transformer Neural Turing
Machines) for diachronic graph embedding framework, which uses time
series self-attention mechanism to capture the non-linearly evolving en-
tity representations over time. We demonstrate significantly improved
performance over various approaches. A series of benchmark experiments
illustrate that TSA-TNTM could generate higher quality than the state-
of-the-art word embedding models in tasks pertaining to semantic anal-
ogy, clustering, threat classification and proactively identify emerging
threats in CTI fields.

Keywords: Threat Intelligence · Dynamic Knowledge Graph · Time
Series Attention · Graph Embedding.

1 Introduction

1.1 backgrounds

Due to the dynamically rise of the cyber attacks such as the attack against
GitHub lasted 72 hours in 2015 [20], cyber security is becoming a vital research
area to our society. Attackers exploit vulnerabilities to attack systems, for exam-
ple, a hacker can exploit SQL-related injections to illegally break into the system
and obtain user information. Cyber Threat Intelligence (CTI) based Knowledge
Graphs (KGs) is an effective approach to reveal and predict the latent attack
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behaviors. Especially, KGs that represent structural relations between entities
have become an increasingly popular research direction towards exploration and
prediction of CTI. Most of advances in research based on knowledge graph fo-
cus on Knowledge Representation Learning (KRL) or Knowledge Graph Em-
bedding(KGE) by mapping entities and relations into low-dimensional vectors,
while capturing their static semantic meanings [17] [3].

The existing neural network models have achieved good performance in pro-
cessing graph data. For example, the graph convolution network (GCN [14]) uses
the CNN [21] mode to process the first-order, second-order or even more higher-
order neighbors aggregation on nodes in graphs. Convolution algorithm extracts
the similar features of nodes and graph topological features, Recurrent Neural
Networks(RNN [35]) such as LSTM [10] can extract the input information at
the current moment and the state information at the previous moment through
a gating mechanism.

However, these algorithms can easily cause gradients disappearing or explod-
ing, which make it difficult to extract features depend on the long time distances.
In the field of threat intelligence, the span of cyber security behaviors is usually
very long. For example, the data set [26] which we used in this paper has a
very large time span from 1996 to 2010. Many hacker terms and semantics have
changed with the development of new IT technology over time. So, these current
existing models face a lot of challenges.

1.2 contribution

Recently, there has been a growing research interest for researches in temporal
KG embeddings, where the edges of a KG are also endowed with information
about the time period(s) in which the relationship is considered valid. Many
temporal knowledge graph models have been proposed such as RE-NET [13],
Know-Evolve [30], ATiSE [34], JODIE [15], DGNN [32], GC-LSTM [4], D-GEF
[26]. However, each of these models cannot adequately capture temporal and
spatial information about the network and lack sufficient capability of spatio-
temporal dependent feature extraction. It is difficult to efficiently realize the
joint extraction of temporal and spatial features.

To this end, we leverage the existing NTM (Neural Turing Machines) [8] mem-
ory enhancement neural network model. The controller of existing NTM models
mostly use traditional graph neural network methods such as GCN and RNN.
Our TSA-TNTM model replace the controller with Transformer [31] model, and
use the write head selectively write to memory block and use the read head to
read from it again. In addition, we further propose a time series-based attention
mechanism, focus on the time and space features of dynamic knowledge graph.
Overall, our contributions are as follows:

1) We propose a time series attention based differentiable neural Turing ma-
chine model for dynamic CTI Knowledge Graph so as to promote the processing
seed and accuracy. We use the transformer model for the component of con-
troller rather than LSTM to capture unlimited long distance spatio-temporal
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dependencies, and further modify the structure of transformer such as tempo-
ral position encoding(TPE) to improve the ability to capture the topological
dynamics of the graph.

2) We propose an adaptive multi-head self-attention mechanism based on
time series database which can speed up the spatio-temporal embeddings and
prediction according to the different scenarios which focus on disparate concerns
of attack behaviors in each snapshot.

3) Based on a real hacker forum data set across about 23 years, we made
a series of experiments and achieved the remarkable performance over other
related approaches.

2 related work

Many researchers considered the study of time series or dynamic knowledge
graph. However, these studies are always focused on general fields, and they
are mostly static knowledge graph.

2.1 General Static and Time-based KG Models

In general fields, the most fundamental and widely used model is TransE [2],
which treats the relationship in knowledge graph as some kind of translation
vector between entities. However, TransE only works well for the one-to-one
relationship. TransH [33] regards a relation as a translation operation on a hy-
perplane. TransR [17] projects the entities from the entity space to the corre-
sponding relational space, and then transforms the projected entities, TransD
[11] considers the diversity of entities and relationships, constructing a dynamic
mapping matrix for each entity-relation pair.

The following combination of Trans family models and time series solved the
problems of embedding entities and relationships of data at different times in
low-dimensional vector space. Jin W et.al [13] proposed Recurrent Event Net-
work (RE-NET), which employed a recurrent event encoder to encode past facts,
and uses a neighborhood aggregator to model the connection of facts at the same
timestamp in order to infer future facts. Trivedi R et.al [30] presented Know-
Evolve, which learned non-linearly evolving entity representations over time.
The occurrence of a fact is modeled as a multivariate point process. A García-
Durán et.al [6] proposed a method to utilize recurrent neural networks to learn
time-aware representations of relation types. Tingsong J et.al [12] proposed a
time-aware KG embedding model using temporal order information among facts,
specifically, using temporal consistency information as constraints to incorporate
the happening time of facts. Julien L et al. [16] focused on the task of predicting
time validity for unannotated edges. Shib S D et.al [5] proposed HyTE, which
explicitly incorporates time in the entity relation space by associating each times-
tamp with a corresponding hyperplane. Xu C et.al [34] proposed ATiSE which
incorporates time information into entity or relation representations by using
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additive time series decomposition. Goel R et.al [7] built novel models for tem-
poral KG completion through equipping static models with a diachronic entity
embedding function.

These models can only handle static information and cannot handle complex
dynamic graphs.

2.2 General Fields Dynamic KG Models

Due to the limitations of the static KG algorithms, many researchers began to
study dynamic KGC techniques. Rakshit T et.al [29] proposed a model named
DyRep, which is a latent mediation process bridging two observed dynamics on
the network. Srijan K et.al [15] proposed JODIE, a coupled recurrent neural
network model which employed two recurrent neural networks to update the
embedding. Ma Y et.al [32] proposed DGNN, which could model the dynamic
information as the graph evolving. Manessi F et.al [19] combined LSTM and
GCN to learn long -short term dependencies together with graph structure,
so that jointly exploiting structured data and temporal information. Chen J
et.al [4] proposed GC-LSTM, a GCN embedded LSTM network for dynamic
link prediction. Maheshwari A et.al [18] proposed a novel adversarial algorithm
DyGAN to learn representation of dynamic networks, who leverage generative
adversarial networks and recurrent networks to capture temporal and structural
information.

These dynamic KG models are less studied and ignore time information and
can not capture changes in semantic information over time.

2.3 Cyber Threat Intelligence Fields KG Models

Xiaokui S et.al [28] introduced threat intelligence computing as a graph com-
putation problem, presenting a threat intelligence computing platform through
the design and implementation of a domain-specific graph language. Samtani
S et.al [26] created a novel Diachronic Graph Embedding Framework(D-GEF),
which operated on a Graph of Words(GoW) representation of hacker forum text
to generate word embeddings across time-spells. Rastogi N et al. [25] intro-
duced an open-source malware ontology model named MALOnt, which allows
the structured extraction of information and knowledge graph generation, es-
pecially for threat intelligence. Pingle A et al.[24] proposed a system to create
semantic triples over cyber security text. Sarhan I et al. [27] presented Open-
CyKG, which is constructed using an attention-based neural Open Information
Extraction model to extract valuable cyber threat information from unstructured
Advanced Persistent Threat (APT) reports.

In the field of cyber threat intelligence, there are fewer researches on knowl-
edge graphs, especially with time information. Most of these studies focus on
how to construct a knowledge graph, unable to predict potential threats, and
ignore the changes in some threat terminology over time.
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3 method

3.1 Dynamic Graph Embedding Models

Most dynamic graph embedding models given a graph G = G1, G2, · · · , GT ,
where GT = (VT , ET ), V is the node set, T is different timestamp and E is the
edge set. Nodes have an edge if they are adjacent. Define mapping f : V → Rd,
function f preserves some proximity measure defined on the graph G, graph
embedding is a time series of mappings F = {f1, · · · , fT } such that mapping fT
is a graph embedding for GT and all mappings preserve the proximity measure
for their respective graphs.

Current existing graph embedding methods cannot capture embedding shifts
and changes in the temporal datasets mostly. Graph data is splitted into time-
spells and the embeddings are created in each time-spell. However, each time-
spell has a different semantic embedding space, which makes it difficult to di-
rectly compare the graph embeddings in different time-spells.

3.2 Attention Model

The attention model has become an important concept in neural networks. The
Transformer model replaces convolution entirely with the attention mechanism
and can be processed in parallel. There are many ways to calculate attention.
We use the dot product formula, which is as shown:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
Q (2)

where Q,K, V represents the query, the key, and the value respectively,
√
dk

is represented for normalization and headi = attention(QWQ
i ,KWK

i , V WV
i ).

Each position of output is the vector weighted average of all positions of the
value, the weight is calculated by attention from all positions of the query and
key.

Attention maps the query and key to a same high-dimensional space for cal-
culating similarity, while multi-head attention allows the model to jointly attend
to information from different representation sub-spaces at different positions [1].
For Example, the temporal and spatial features can be weighted in different head
simultaneously.

3.3 TSA-TNTM Model

Based on the previous two steps, we will build our TSA-TNTM model. Firstly
we describe the high-level structure of our model TSA-TNTM. The major novel
component of the whole model is transformer-based controller, which can be uti-
lized to capture unlimited spatio-temporal features for the dynamic CTI knowl-
edge graph over time with high speed. The Neural Turing Machine (NTM) [8] had
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a similar structure, which extend the capabilities of neural networks by coupling
them to external memory resources, which they can interact with each other by
attention mechanism to read from and write to the memory block selectively
according to different weights.

Our proposed model TSA-TNTM extend and modify the controller of NTM,
which is equivalent to the CPU part of the computer. The extension of controller
could be realized by graph neural network in the neural Turing machine [8]. We
abandon the existing RNN [35], GCN [14] and other graph neural networks,
adopt the prevalent transformer model, and use the attention mechanism to
improve the dynamic time feature extraction capability and parallel processing
capability of the threat intelligence knowledge graph.

In addition, we propose time series hybrid attention and realize seamless
docking with memory in key-value mode. In time series hybrid attention, the
three Tensors of Q (Query) value, K(Key) value, and V (Value) value are all from
the same memory input. We calculate the dot product between Q value and K
value firstly, and then divided by a scale

√
dk in order to prevent the result from

being too large, where dk is the dimension of a query and key tensor. Then use
the softmax operation to normalize the result to a probability distribution, and
multiply the result by the tensor V so that getting the weighted summation.
This operation can be expressed as formula (1), where K and V establish a
mapping with the key and value of the underlying time series database such
as OpenTSDB [23] by parallel processing technology, so as to make the best of
massive data processing of the underlying big data technology.

Finally, we introduce a positive and negative feedback mechanism. Memory is
not only used for general data reading and writing, but also forms the input and
output of the transformer. Among them, memory provides dynamic preprocess-
ing capabilities based on attention for the input, and automatically learns the
distribution and spatio-temporal characteristics of the graph data. This further
reduces the burden on transformer, and improve the processing performance. In
contrast to most models of working memory, our model is analogous to a Turing
Machine or Von Neumann architecture but is differentiable end-to-end, allowing
it to be efficiently trained with gradient descent. The model is as shown in Figure
1.

As illustrated in Figure 1, TSA-TNTM consist of a memory block followed by
a controller block according to the architecture of Neural Turing Machines. Each
block may contain multiple stacked layers of the same type. The memory block
extract spatio-temporal features from the dynamic graph with unfixed-length
through the multi-head self-attention aggregation. The details of this attention
approach will be described in the next section. In this memory block, there are
two ways to ingest the graph data: one way is to employee the online method
to capture the topological evolution and node interactions of the dynamic graph
continuously, the other way is to employee the offline method to capture the long-
time historical temporal and topological evolution of multiple graphs. During the
real time ingestion of dynamic graph, we can also use multi-head self-attention
to extract multi-grained long span features to store into the time series database
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Fig. 1. Simple illustration of TSA-TNTM.

so as to deal with the long-distance correlation such as a new threat intelligence
first appear in 1996 and changed representation in 1998, 2001, 2012 respectively.

The processing flow of the TSA-TNTM are as follows:
Firstly, Memory Block Construction. The main function of Memory Block is

collecting CTI threat intelligence corpus in real time and dynamically construct-
ing a knowledge graph. The Memory module takes the acquisition of the dynamic
knowledge graph as its main function, uses the attention mechanism to optimize
the storage performance of the Memory Block. The Graph Construction process
in Memory Block is as follows:

1) Collect threat intelligence corpus text, preprocess and store it into time
series database such as OpenTSDB[23]. In this paper, the hacker forum data we
used is one of the corpus, we would consider to add other sources later.

2) Split data into time-spell and construct Threat Text Graph. According
to the order of words in the sentence, build two adjacent words in accordance
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with first-order and second-order neighbors, adopt the CBOW model to learn
the weight of word embedding, construct the time information before and after
the word as a separate entity structure and add it to the edge set list uniformly.
The figure 2 is illustration of the constructed threat text graph in the time-spell
2019. From the graph, we can see that hackers exploit remote administration
tools(RATs), email hacks, denial of service(DOS), and others to attack the sys-
tem.

Fig. 2. The Diachronic Threat Text Graph in Time-Spell 2019.

3) Embedding alignment. Embedding spaces across time-spells are aligned
while retaining cosine similarities by optimizing the following objective function:

R(t) = argmin
QTQ=I

||W (t)Q−W (t+1)||F (3)

where || · ||F denotes the Forbnius norm.
4) Read the dynamic edge set list in real time and construct the graph in

real time.
5) Calculate the attention score of the new input side information, and dy-

namically modify the weights. The related details can be found in Formula (1)
and Formula (2).

6) Realize the initial embedding of the spatio-temporal features of the graph
according to the attention weight, and adjust the relevant value in L1 and L2
norm.

Secondly, Controller Block Graph Embedding and Computation. Controller
Block selectively read the word embedding vector of Memory Block through
Gated Read Head, encoded by the Encoder, further extracts and processes

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_2

https://dx.doi.org/10.1007/978-3-031-08760-8_2


TSA-TNTM Model for Diachronic Graph Embedding in CTI 9

spatio-temporal features, and outputs processing results through the Decoder,
and then stores the results into Memory Block.

In the TSA-TNTM model, we divide the memory block into two parts: the
controller memory Mc and the hidden memory Mh. TheMc is controlled by
the controller block and store the controller’s result into time series database for
persistent store. The Mh is not memory by the controller and is connected with
the Mc. The hidden memory saves the accumulated content into the controller,
the procedure of read and write in time t is:

Mc(t) = h(Mc(t− 1), w(t− 1), c(t)) (4)

Mh(t) = aMh(t− 1) + bMc(t) (5)

r(t) = Wr(t)Mh(t) (6)
where Mc is updated at time t-1 by the write head w(t − 1) and generate the
output of Mc at time t and update the Mh which is used to generate read head
r(t) at time t. c(t) is the output of controller, h is the function of update the
controlled memory and the write weight in order to realize the function of erasion
and addition. The a and b is hybrid weight of the scalar and read head reads
from the Mh(t).

Based on the above analysis, it can be seen that TSA-TNTM expands the
attention mechanism from the controller as a neural network to memory, thereby
realizing the lightweight attention of the entire Turing model from storage to
computing. Meanwhile, it realize unlimited spatio-temporal feature extraction
by the expansion of memory.

4 Experiment and Evaluation

4.1 dataset

We adopt the real hacker forum data set from D-GEF model [26] to complete the
experiment in this paper. In order to analysis the temporal changes about hacker
threats, the author collected a large and long-standing international hacker fo-
rum. According to the descriptions, collection procedures resulted in data set
with 32766 threats posts made by 8429 hackers between January 1, 1996 and
July 10, 2019 (across 23 years), but actually we only find 6,767 posts in their
publicly opened data at the GitHub repository. The statistics of the data set
are summarized into Table 1. The detail descriptions of hacker forum data set
in this table can be viewed from the D-GEF model [26].

4.2 Evaluation Method and Computational Setup

We evaluate our model performances by using well-established metrics of accu-
racy, precision, recall, and F1-score (i.e., F-measure) as following:

Accuracy =
TP + TN

TP+ TN+ FP + FN
(7)
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Table 1. Statistics for Hacker Forum DataSet.

Threat Type Target Platform Date Range Exploit Numbers Total

Remote Windows 03/23/2009 – 07/05/2019 1,418 1,864Linux 06/24/2000 – 07/02/2019 446

Local Windows 09/28/2004 – 06/20/2019 1,818 2,429Linux 01/01/1996 – 07/02/2019 611
Total - 01/01/1996 – 07/05/2019 4,293 4,293

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1-score =
2 ∗ Precision ∗ Recall
Precision + Recall

(10)

where the True Positive (TP) means the percent of correctly classified normal
samples; the False Positive (FP) means the percent of classifying abnormal sam-
ples as normal samples; the True Negative (TN) means the percent of classifying
abnormal samples as abnormal samples; the False Negative (FN) means the
percent of classifying normal samples as abnormal samples.

We use a mobile workstation notebook equipped with an Intel R© Core i7-
8750H@2.20GHz processor, 32 GB of RAM, and an NVIDIA R© Quadro P2000
Graphical Processing Unit(GPU). The experiments use Python language, version
3.9. All word embedding approaches were implemented using the Genism package
and Open Network Embedding(OpenNE) package. We use scikit-learn to process
performance metrics and statistical tests. All of the experiments were trained
over 50 epochs, and generated 128 dimensions embeddings.

4.3 Benchmark Methods

We select prevailing word and graph embedding approaches to compare with
our TSA-TNTM model. In order to compare with D-GEF [26] in the same data
set, considering almost no model predict the emerging threat in threat intel-
ligence, our TSA-TNTM model just compare the classification of attack type
and platform with six prevailing word embedding models and four famous graph
embedding models.

Although the two classification tasks are based on the past facts, they contain
temporal information about the threat facts, the subsequent happened facts are
also the their future. So, the classification experiments also check the ability of
prediction about the future threat type (local or remote attack) and platform
(attack from Linux or windows). The happened facts are also the labels for
prior facts. The methods include classic word embedding models and graph
embedding methods.
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Table 2. Summary of Results from Attack Type Classification Experiments.

Category Method Accuracy Precision Recall F1 AUC
TF-IDF X2 87.6±1.3% 88.1±1.2% 77.6±1.2% 80.6±1.5% 0.862

word2vec SGNS 84.6±1.3% 82.6±1.3% 74.6±1.3% 76.1±2.3% 0.899
CBOW 83.1±1.3% 81.6±1.3% 70.6±1.3% 73.6±1.3% 0.868

FastText SGNS 85.6±1.3% 83.6±1.3% 76.5±1.3% 78.2±2.1% 0.901
CBOW 83.1±1.3% 81.6±1.3% 70.6±1.3% 73.6±1.3% 0.868

Doc2Vec DM 82.5±1.2% 79.5±1.3% 68.5±1.5% 71.6±1.8% 0.845
DBOW 85.7±1.2% 81.8±1.3% 74.6±1.3% 76.9±1.5% 0.898

Graph Factorization
GF 87.6±1.3% 85.5±1.3% 79.5±1.5% 81.2±2.1% 0.915
HOPE 84.5±1.3% 82.1±1.2% 72.7±1.2% 75.6±1.3% 0.881
GraRep 86.5±1.2% 83.8±1.3% 77.6±1.3% 80.6±1.3% 0.912

Random Walk DeepWalk 88.6±1.3% 86.6±1.3% 80.5±1.3% 82.2±2.1% 0.925
node2vec 87.9±1.5% 85.6±2.1% 80.6±1.3% 82.2±2.3% 0.921

AutoEncoder SDNE 83.2±1.3% 81.3±1.2% 71.5±1.2% 74.7±3.3% 0.872
EdgeReconstruction LINE 86.1±1.3% 83.3±1.2% 77.8±3.2% 78.5±3.5% 0.912
TSA-TNTM NTM 91.7±1.5% 92.5±2.6% 87.6±2.3% 86.6±2.5% 0.961

We conduct two experiments, which include:
1) experiment 1: attack type (Local vs Remote) classification bench-

mark. The experiment 1 is an attack type classification benchmark of the hacker
forum data set from January 1, 1996 to July 10, 2019, which contains the attack
type information for the past 23 years period. It is a typical use case to check
word and graph embedding and prediction capability for dynamic graph across
time-spells. In this experiment, we will use the above 10 benchmark methods
and our TSA-TNTM model to compare the attack type classification prediction
results by using the metrics of accuracy, precision, F1-score and AUC.

2) experiment 2: platform (Linux vs Windows) classification bench-
mark. The experiment 2 is a platform classification benchmark about the hacker
forum dataset from January 1, 1996 and July 10, 2019, which contains the plat-
form information for the past 23 years period. In this experiment, we will use the
above ten benchmark methods and our TSA-TNTM model to compare the plat-
form classification prediction results by using the metrics of accuracy, precision,
F1-score and AUC.

4.4 Experiment Results

We report the accuracy, precision, recall, and F1 scores with a confidence in-
terval for each algorithm. Besides our TSA-TNTM model, results across both
classification tasks indicate that the random walk-based methods outperform
the competing graph and word embedding approaches. In terms of F1 scores,
the DeepWalk model has achieved a score of 82.6%. However, our TSA-TNTM
model achieves the best scores in all metrics both experiment 1 and experiment
2. The experiment 1 results are as shown in Table 2 and the experiment 2 results
are as shown in Table 3.
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Table 3. Summary of Results from Attack Platform Experiments.

Category Method Accuracy Precision Recall F1 AUC
TF-IDF X2 84.6±1.3% 88.1±1.2% 77.6±1.2% 80.6±1.5% 0.916

word2vec SGNS 85.6±1.3% 82.5±1.5% 74.6±1.3% 76.1±2.3% 0.925
CBOW 80.1±1.3% 81.6±1.3% 70.5±1.3% 73.7±1.2% 0.896

FastText SGNS 85.6±1.3% 83.5±1.3% 76.5±1.3% 78.2±2.1% 0.922
CBOW 79.5±1.2% 80.7±1.3% 70.6±1.2% 73.5±1.3% 0.882

Doc2Vec DM 80.6±1.3% 79.5±1.3% 68.5±1.3% 71.5±2.1% 0.881
DBOW 85.6±1.3% 81.8±1.3% 74.5±1.3% 76.9±1.3% 0.921

Graph Factorization
GF 86.6±1.3% 85.1±1.3% 79.5±1.3% 81.2±2.1% 0.936
HOPE 84.5±1.3% 82.1±1.3% 72.6±1.2% 75.5±1.3% 0.922
GraRep 86.5±1.3% 83.6±1.3% 78.5±1.3% 80.7±1.3% 0.937

Random Walk DeepWalk 87.6±1.3% 86.6±1.3% 80.5±1.3% 82.5±2.1% 0.937
node2vec 87.9±1.3% 85.6±1.3% 80.6±1.3% 82.5±1.3% 0.938

AutoEncoder SDNE 83.5±1.3% 81.3±1.2% 71.5±1.2% 74.7±3.3% 0.916
EdgeReconstruction LINE 86.1±1.3% 83.3±2.2% 77.6±3.2% 79.5±3.2% 0.938
TSA-TNTM NTM 91.6±1.2% 92.6±2.1% 86.5±2.3% 85.5±2.3% 0.959

5 Conclusion

In this paper, we propose a model named TSA-TNTM based on time series at-
tention. Our model can capture the temporal and spatial features assisted by
time series database which breaking the long time dependencies limitation of
previous models. Meanwhile, we propose an adaptive multi head self attention
mechanism based on time series big data, which can promote the speed of tempo-
ral prediction across across long timescales. Our model achieved the best results
among the mentioned methods based on the data set of a real hacker forum.

In the future work, we consider improving our model on more larger datasets
and more data sources such as the the National Vulnerability Database (NVD)[22]
which gather and store many Common Vulnerabilities and Exposures (CVEs)
across long time span so as to find more unseen latent threats and predict emerg-
ing threats in the future. In addition, we also introduce the Hawkes process [9]
for modeling sequential discrete events occurring in continuous time where the
time intervals between neighboring events may not be identical. Thus, we can
build a enhanced continuous time series based attention mechanism to further
promote our TSA-TNTM model.
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