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Abstract. In this work we study a promising approach for efficient online 

scheduling of job-flows in high performance and distributed parallel computing. 

The majority of job-flow optimization approaches, including backfilling and 

microscheduling, require apriori knowledge of a full job queue to make the op-

timization decisions. In a more general scenario when user jobs are submitted 

individually, the resources selection and allocation should be performed imme-

diately in the online mode. In this work we consider a neural network prototype 

model trained to perform online optimization decisions based on a known opti-

mal solution. For this purpose, we designed MLAK algorithm which imple-

ments 0-1 knapsack problem based on the apriori unknown utility function. In a 

dedicated simulation experiments with different utility functions MLAK pro-

vides resources selection efficiency comparable to a classical greedy algorithm. 
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Network, Machine Learning. 

1 Introduction and Related Works 

Modern high-performance distributed computing systems (HPCS), including Grid, 

cloud and hybrid infrastructures provide access to large amounts of resources [1, 2]. 

These resources typically include computing nodes, network channels, software tools 

and data storages, required to execute parallel jobs submitted by HPCS users.   

Most HPCS and cloud solutions have requirements to provide a certain quality of 

services (QoS) for users’ applications scheduling, execution and monitoring. Corre-

spondingly, QoS constraints usually include a set of requirements for a coordinated 

resources co-allocation [3-5], as well as a number of time and cost criteria and re-

strictions, such as deadline, response time, total execution cost, etc. [2-7]. 

Some of the most important efficiency indicators of a distributed computational 

environment include both system resources utilization level and users’ jobs time and 

cost execution criteria [2-4].  

HPCS organization and support bring certain economical expenses: purchase and 

installation of machinery equipment, power supplies, user support, maintenance 
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works, security, etc. Thus, HPCS users and service providers usually interact in eco-

nomic terms, and the resources are provided for a certain payment. In such conditions, 

resource management and job scheduling based on the economic models is considered 

as an efficient way to coordinate contradictory preferences of computing system par-

ticipants and stakeholders [3-7]. 

A metascheduler or a metabroker are considered as intermediate links between the 

users, local resource management and job batch processing systems [3, 4, 7, 8]. They 

define uniform rules for resources distribution and ensure the overall scheduling effi-

ciency.  

The most straightforward way to schedule a job-flow is by using the First-Come-

First-Served (FCFS) procedure. FCFS executes jobs one by one in an order of arrival. 

Backfilling procedure [4, 9] makes use of advanced resources reservations in order to 

prevent starvation of jobs with a relatively large resource request requirements. Mi-

croscheduling [4-5, 10] approach may be added to backfilling to affect global sched-

uling efficiency by choosing the appropriate secondary optimization criteria.  

Online scheduling, on the other hand, requires HPCS scheduler to make resources 

allocation and optimization decisions immediately when jobs are submitted. One pos-

sible online scheduling strategy is to perform locally efficient resources selection for 

each job. However, in this case the global scheduling efficiency may be degraded. 

CoP microscheduling strategy [4] implements a set of heuristic rules to optimize job-

flow execution time based on the resource’s properties: performance, cost, utilization 

level, etc. 

The main contribution of this paper is a machine learning-based approach which 

can be trained on efficient scheduling results to perform online scheduling based on 

secondary properties of the resources. To achieve this goal, an artificial neural net-

work was designed in combination with a dynamic programming method. We consid-

er a general 0-1 knapsack scheduling model and evaluate algorithms efficiency in a 

dedicated simulation experiment. 

The paper is organized as follows. Section 2 presents a general problem statement 

and the corresponding machine learning model. Section 3 contains description of the 

proposed algorithms and neural network training details. Section 4 provides simula-

tion details, results, and analysis. Finally, section 5 summarizes the paper results. 

2 Problem Statement 

2.1 Online Resources Selection and Knapsack Problem 

The 0-1 knapsack problem is fundamental for optimization of resources selection and 
allocation. The classic 0-1 knapsack problem operates with a set of 𝑁 items having two 
properties: weight 𝑤𝑖   and utility 𝑢𝑖. The general problem is to select a subset of items 
which maximizes total utility with a restriction 𝐶 on the total weight:       
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 ∑ 𝑥𝑖𝑢𝑖
𝑁
𝑖=1 → max,     (1.1) 

 ∑ 𝑥𝑖𝑤𝑖
𝑁
𝑖=1 ≤ 𝐶,  (1.2) 

where 𝑥𝑖 - is a decision variable determining whether to select item 𝑖 (𝑥𝑖 = 1) or not 

(𝑥𝑖  = 0) for the knapsack. 

This problem definition (1.1), (1.2) fits the economic scheduling model with avail-

able computing resources having cost 𝑐𝑖 (weight) and performance 𝑝𝑖  (utility) proper-

ties. Many scheduling algorithms and approaches implement exact or approximate 

knapsack solutions for the resources’ selection step [4, 11-14]. Sometimes the job 

scheduling problem may require additional constraints, for example, to limit the num-

ber 𝑛 of items in the knapsack [12, 13] or to select items of different subtypes [14]. 

The most straightforward exact solution for the knapsack problem can be achieved 

with a brute force algorithm. However, with increasing 𝑁 and 𝐶 in (1.1), (1.2) its 

application eventually requires inadequately large computational costs. Dynamic pro-

gramming (DP) algorithms can provide exact integer solution with a pseudo-

polynomial computational complexity of 𝑂(𝑁 ∗ 𝐶) or 𝑂(𝑛 ∗  𝑁 ∗ 𝐶) depending on the 

problem constraints. Dynamic programming algorithms usually rely on recurrent 

calculation schemes optimizing additive criteria (1.1) when iterating through the 

available items. For example, the following recurrent scheme can be used to solve the 

problem (1.1), (1.2): 

                                      𝑓𝑖(𝑐) = max{𝑓𝑖−1(𝑐), 𝑓𝑖−1(𝑐 − 𝑤𝑖) + 𝑢𝑖},  (1.3) 

𝑖 = 1, . . , 𝑁, 𝑐 = 1, . . , 𝐶, 

where 𝑓𝑖(𝑐) defines the maximum criterion (1.1) value allocated out of first 𝑖 items 

with a total weight limit 𝑐.  

When recurrent calculation (1.3) is finished, 𝑓𝑁(𝐶) will contain the problem solu-

tion. 

Approximate solution can be obtained with more computationally efficient greedy 

algorithms. Greedy algorithms for the knapsack problem usually use a single heuristic 

function to estimate the items’ importance for the knapsack in terms of their weight 

𝑤𝑖   and utility 𝑢i ratio. Thus, the most common greedy solution for problem (1.1), 

(1.2) decreasingly arranges items by their 𝑢𝑖/𝑤𝑖  ratio and successively selects them 

into the knapsack up to the weight limit.  

This greedy solution usually provides a satisfactory (1.1) optimization for an ade-

quate computational complexity estimated as 𝑂(𝑁 ∗ 𝐿𝑜𝑔 𝑁).  

Most modern scheduling solutions in one way or another implement these algo-

rithms or their modifications. For example, backfilling scheduling procedure defines 

additional rules for the job queue execution order and is able to minimize the overall 

queue completion time (a makespan). Once the execution priority is defined, each 

parallel job is scheduled independently based on the problem similar to (1.1), (1.2). 

One important requirement for the backfilling makespan optimization efficiency is 

that the job queue composition must be known in advance. The backfilling core idea 

implies execution of relatively small jobs from the back of the queue on the currently 

idle and waiting resources.  
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 However, in a more general scenario the user jobs are submitted individually, 

and the resources selection and allocation should be performed immediately in the 

online mode. Thus, our main goal is to schedule user jobs independently in a way to 

optimize global scheduling criteria, for example average jobs’ finish time or a 

makespan.  

 Similar ideas underlie the so-called microsheduling approaches, including CoP 

and PeST [4, 10]. They implement heuristic rules of how the resources should be 

selected for a job based on their meta-parameters and properties: utilization level, 

performance, local schedules, etc. 

 

2.2 Machine Learning Model 

Currently relevant is the topic of using machine learning methods to perform combi-

natorial optimization tasks, including the knapsack problem (1.1), (1.2) [15-17]. For 

example, [16] introduces a detailed research of a heuristic knapsack solver based on 

neural networks and deep learning. The neural solver was successfully tested on in-

stances with up to 200 items and provided near optimal solutions (generally better 

compared to the greedy algorithm) in scenarios with a correlation between the items’ 

utilities and weights. 

In [17], a new class of recurrent neural networks is proposed to compute an opti-

mal or provably good solutions for the knapsack problem. The paper considers a 

question of a network size theoretically sufficient to find solutions of provable quality 

for the Knapsack Problem. Additionally, the proposed approach can be generalized to 

other combinatorial optimization problems, including various Shortest Path problems, 

the Longest Common Subsequence problem, and the Traveling Salesperson problem. 

In the current work we consider a more specific job scheduling problem based on a 

machine learning model. An efficient scheduling plan which minimizes makespan of 

a whole job-flow can be used to train an artificial neural network (ANN) to schedule 

each job individually (online) with a similar result. However, the job-flow scheduling 

plan provides only the efficient resources selections for each job (knapsack result), 

but not the corresponding utility values of the selected resources. Thus, for the train-

ing procedure we can use only secondary meta-parameters and properties of the re-

sources. These typically include resources’ cost, utilization level, performance attrib-

utes, average downtime, time distance to the neighbor reservations, etc. [4] 

The more factors and properties of the efficient reference solution are considered 

the more accurate solution could be achieved online. Besides, online scheduling im-

poses additional restrictions on a priori knowledge of the computing environment 

composition and condition. The exact values of the resources’ properties and utility 

function may be inaccurate or unknown.  

 In a more general and formal way, the main task is to design a model, which will 

solve (predict solution of) 0-1 knapsack problem with a priori unknown utility 𝑢𝑖 val-

ues based only on a set of secondary resource’s properties. Thus, to generalize this 

task we will use more complex knapsack model interpretation with items having four 

numeric properties 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖  in an addition to the weight w𝑖. Utility values 𝑢𝑖 will 

be calculated for each resource as a function 𝐹𝑣𝑎𝑙 of properties 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 . This func-
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tion will be used to calculate the optimal knapsack solution (by using a dynamic pro-

gramming algorithm). Based on this solution the machine learning model will be 

trained to select resources based only on the input properties 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖, thus, simu-

lating the online scheduling procedure. 
In this paper, the following utility functions 𝐹𝑣𝑎𝑙  will serve as examples of hidden 

conditions for selecting items in a knapsack: 

 𝐹𝑣𝑎𝑙 = 𝑎 + 𝑏 + 𝑑 − 𝑔, (2.1) 

 𝐹𝑣𝑎𝑙 = 𝑎 ∗ 𝑏 + 𝑑 ∗ 𝑔2, (2.2) 

 𝐹𝑣𝑎𝑙 = sin(𝑎 + 𝑏) + cos 𝑑 + 𝑔2, (2.3) 

 𝐹𝑣𝑎𝑙 = 𝑎 + lg(𝑏 + 𝑑) ∗ 𝑔, (2.4) 

 𝐹𝑣𝑎𝑙 = 𝑎 ∗ lg 𝑏 + 𝑑 ∗ 𝑒
𝑔

10, (2.5) 

where 𝑎, 𝑏, 𝑑, 𝑔 are knapsack item’s properties in addition to the weight. The given 

functions contain almost the entire mathematical complexity spectrum in order to 

investigate at the testing stage how the function complexity affects the algorithm’s 

accuracy and efficiency. 

3 Algorithms Implementation 

3.1 Artificial Neural Network Design and Training 

An artificial neural network (ANN) can be represented as a sequence of layers that 

can compute multiple transformations to return a result. As the design of the network 

structure is mostly based on an empirical approach, we performed a consistent design 

and research of neural network architectures for the knapsack problem. 

Firstly, we are faced with the task of classifying an action 𝑥𝑖 with a certain item: 

whether to put it in a knapsack or not. Generally, classification tasks are solved with 

the decision tree models. However, unlike in a classic problem of individual elements 

classification, the items in a knapsack invest into a common property: their total 

weight should not exceed the constraint (1.2). Thus, it is infeasible to classify the 

elements separately, the model should accept and process everything at once. So, 

most suitable topology for such a classification problem is a fully connected multi-

layer neural network (multilayer perceptron). 

To implement this model, the Python programming language was used with the 

Tensorflow framework and the Keras library [18]. Keras has a wide functionality for 

design artificial neural networks of diverse types. 

After selecting the general structure, it is necessary to experimentally select the 

network parameters. These include: the number of layers, the number of neurons in 

layers, the neurons activation function, the quality criterion, the optimization algo-

rithm.  

First, we used binary cross-entropy as the most suitable loss function for predicting 

a set of dependent output values. 
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Next, we designed and tested a set of small candidate models to decide on other 

meta-parameters (see Table 1).  

Table 1. ANN Training Results for 5-elements Knapsack 

Configuration 

Number 
Activation 

Function 
Optimizer 

Number of 

Layers 

Neurons in 

Hidden 

Layers 
Training Set 

Train/Test 

Accuracy 

1 sigmoid SGD 1 35 10000 0.79/0.80 

2 sigmoid Adam 1 35 10000 0.87/0.86 

3 relu SGD 1 35 10000 0.51/0.49 

4 relu Adam 1 35 10000 0.77/0.78 

5 sigmoid Adam 5 35 10000 0.89/0.89 

6 sigmoid Adam 5 35 100000 0.93/0.94 

7 sigmoid Adam 5 70 500000 0.96/0.96 

8 sigmoid Adam 5 200 100000 0.97/0.94 

9 sigmoid Adam 9 35 100000 0.89/0.89 

10 sigmoid Adam 9 90 100000 0.94/0.93 

11 relu Adam 9 90 100000 0.69/0.69 

 

From the initial training results (see Table 1), we can make the following conclu-

sions: 
1) a pair of Sigmoid activation function and Adam optimizer showed the best result 

in terms of the accuracy criteria; 

2) increase in a number of ANN layers requires a larger size of the training set to 
achieve a higher accuracy; 

3) the achieved 0.96 accuracy shows that ANN is able to solve knapsack problem 
fairly well given the right number of layers and the size of the training set. 

Fig. 1 shows how accuracy and loss values were improved on the validation set 
during the training of the best ANN configuration (number 7) from Table 1. The 
smoothness and linearity of the graphs indicates the adequacy of the selected parame-
ters and the possibility of stopping at using 150-200 training epochs. 

Next, we consistently increased the dimension of the knapsack problem and esti-
mated how different hidden utility functions affect the ANN accuracy.  

The training set was obtained as a dynamic programming-based exact solution for a 
randomly generated knapsack problem. The items’ properties and the weight constraint 
were generated randomly to achieve the required features: 1) representativeness – a 
data set selected from a larger statistical population should adequately reproduce a 
large group according to any studied characteristic or property; 2) consistency – con-
tradictory data in the training sample will lead to a low quality of network training. 
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Fig. 1. ANN validation loss and accuracy for 5-element knapsack problem (configuration 7 

from Table 1) 

The ANN input data is a training sample consisting of the knapsack element prop-

erties vectors 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖  and the normalized weights vector 𝑤𝑖
′ = 𝑤𝑖/𝐶. Weights 

normalization allows us to generalize the weight constraint in (1.2) to 𝐶=1 for any 
input sample.  Vector 𝑦_𝑎𝑛𝑠𝑤𝑒𝑟𝑖  of the correct selection is used for the loss function 
calculation and backpropagation step. The correct solution was obtained using a dy-
namic programming algorithm with explicit use of the hidden utility function. 

The training and testing results for a 20-elements knapsack are presented in Table 
2.  As a main result, ANN was able to solve knapsack problem equally successfully for 
all the considered hidden functions (2.1) - (2.5) by using only the properties 
𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 of the knapsack items. 

 

Table 2. Training Results for 20-elements Knapsack 

Hidden Utility Function 
Number of 

Layers 
Train/Test 

Accuracy 

𝑎 + 𝑏 + 𝑑 − 𝑔 14 0.94/0.93 

𝑎 ∗ 𝑏 + 𝑑 ∗ 𝑔2 17 0.92/0.91 

sin(𝑎 + 𝑏) + cos 𝑑 + 𝑔2 14 0.93/0.92 

𝑎 + lg(𝑏 + 𝑑) ∗ 𝑔 14 0.93/0.92 

𝑎 ∗ lg 𝑏 + 𝑑 ∗ 𝑒
𝑔

10 14 0.92/0.91 
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3.2 MLAK Algorithm 

While training a neural network, it is impossible to operate with formal mathematical 

concepts, in particular those defined for the knapsack problem (1.1), (1.2). The train-

ing relies on a set of pre-prepared examples of an optimal selection of the knapsack 

items.  

The main problem with the pure ANN knapsack prediction is that even with a high 

accuracy we cannot be sure that the condition for the knapsack total weight is ful-

filled. 

To consider the restriction on the total knapsack weight, we propose to use the 

ANN classification result as a predicted utility vector ℎ𝑖 which can be used in a sepa-

rate algorithmic knapsack solution. That is, the input data for the problem (1.1), (1.2) 

will contain weight 𝑤𝑖  and utility 𝑢𝑖 = 𝑢𝑖
′ vectors, where 𝑢𝑖

′ values are predicted for 

each element based on the item’s properties 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 . In this way, the ANN will 

operate as a conversion module to identify mutual relationships between the knapsack 

items’ properties and map them to the predicted utility values 𝑢𝑖
′. 

 

 

 

Fig. 2. MLAK algorithm flowchart 
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Fig. 2 shows the flowchart of the proposed composite Machine Learning-based Al-

gorithm for the Knapsack problem (hereinafter MLAK). It consists of ANN conver-

sion module and a dynamic programming-based algorithm to provide the final solu-

tion for problem (1.1), (1.2) with an unknown, but predicted utility values and a con-

straint on the total weight. 
The artificial neural network input for items  𝑖 = 1. . . 𝑛: 

• 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 – vectors of the properties;  

• 𝑤𝑖  – vector of the items’ weights;  

• 𝑤𝑖
′ = 𝑤𝑖/𝐶 – normalized vector of the weights;  

• 𝑦_𝑎𝑛𝑠𝑤𝑒𝑟𝑖  – an optimal selection result calculated by the dynamic pro-

gramming method with use of a hidden utility function;  

• 𝑦_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖 – items selection predicted by the neural network; 

• 𝑦_𝑟𝑒𝑠𝑖  – the final MLAK items selection. 

 

 

 

Fig. 3. ANN and MLAK prediction comparison 

Fig. 3 presents sample data to demonstrate ANN and MLAK prediction differences 

with only a single utility property. In this example of a problem (1.1), (1.2) weight 

limit 𝐶 = 159 is stated in the first line, while weight and utility vectors are presented 

on the following lines of Fig. 3. No hidden function is used, utility values are directly 

used as input data for ANN. 

The exact solution (True_result) of 𝑥𝑖 values was obtained with a dynamic pro-

gramming procedure (1.3); approximate solution was provided by a greedy algorithm.  

ANN result is a prediction vector of the 𝑥𝑖 values. Based on this prediction, items 

(3, 7, 8) should be selected for the knapsack (indicated in red squares in Fig. 3), which 

is not the exact solution. 

MLAK algorithm used ANN prediction vector as new utility values 𝑢𝑖
′ for the 

knapsack items. The dynamic programming procedure (1.3) was performed over 𝑢𝑖
′ 

and 𝑤𝑖  values in (1.1), (1.2) with the result equal to the exact solution. 
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4 Simulation Experiment 

4.1 Simulation Environment 

We evaluate MLAK efficiency based on a comparison with classical knapsack al-
gorithms (including dynamic programming and greedy implementation), as well as 
with a pure ANN knapsack implementation. ANN results were additionally modified 
to comply with the weight restriction: selected items with the smallest prediction con-
fidence were removed one by one until the restriction is satisfied. 

For this comparison we used the same (2.1) - (2.5) hidden utility functions 𝐹𝑣𝑎𝑙. 
Thus, MLAK and ANN received 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 properties as an input, while Dynamic 
programming (DP) and Greedy implementations used 𝑢𝑖 = 𝐹𝑣𝑎𝑙 calculated utility func-
tions to solve the knapsack problem. 

Additionally, we implemented a Random selection algorithm to evaluate MLAK 
and ANN efficiency in the interval between the optimal solution provided by DP and a 
completely random result. 

All the considered algorithms were given a set of the same 1000 knapsack prob-
lems as input. We consider two main efficiency indicators for each algorithm’s solu-
tion: 

• the resuting knapsack total utility and its relation to the DP result (average 

utility);  

• the resulting accuracy as element-wise comparison with the DP result for all 

the experiments. 

Both efficiency criteria are based on DP algorithm as it provides an optimal integer 

solution based on the known utility function.  

Accuracy criterion will have 100% value when knapsack solution is identical to the 

DP in all 1000 experiments. Thus, low accuracy value does not necessarily mean low 

algorithm efficiency, as the same or comparable knapsack utilities sometimes may be 

achieved by selecting different combinations of items. Accuracy parameter shows 

how often the resulting solution matches the optimal one by performing similar opti-

mization operations. 

Therefore, an average total utility should serve as a main comparison criterion for 

problem (1.1), (1.2). 

Besides, we measure and compare average working times. All the considered algo-

rithms were implemented using Python language. Working time was observed on 

desktop PC with Core i5 and 8Gb RAM. MLAK working time includes both internal 

ANN and DP algorithms execution (see Fig. 2). 
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4.2 Simulation Results and Analysis 

Simulation results collected over 1000 independent knapsack problems with 20 items 

are presented in Tables 3-7. Each table corresponds to a single hidden function (2.1) -

(2.5). 

Firstly, the results show that Greedy algorithm provided almost optimal average 

utility: nearly 99% compared to DP. This result is expected for 20 elements with ran-

domly and uniformly generated properties and utility values. 50-85% accuracy shows 

that it is usually possible to achieve comparable optimization results with different 

items selected. Different utility functions are mostly affecting the accuracy difference 

(50-85% interval) as they provide varying diversity in the resulting utility values of 

the knapsack items. Low diversity usually leads to a higher accuracy values, as there 

are less options to achieve an efficient solution. 

MLAK and ANN optimization efficiency is generally comparable to the Greedy 

implementation. Relative difference by the average utility between Greedy and 

MLAK is less than 1% for functions (2.1), (2.3), (2.4), and (2.6). ANN provides simi-

lar results with less than 1% lower utility compared to MLAK.  

For functions (2.2) and (2.5) the relative difference with DP reaches 3%, which 

may be explained by much larger absolute values of the utility functions obtained 

from the same set of the randomly generated input properties (see column Average 

Utility in Tables 3-7). ANN prediction works less efficient when relations between 

the properties include multiplication and exponentiation operations. 

However, even this less than 3% optimization loss (in the worst case observed sce-

narios) is rather small and reasonable when compared to the random selection result 

with more than 40% difference from DP solution. Besides, in this comparison DP and 

Greedy performed knapsack optimization using the actual utilities calculated from the 

hidden functions, while Random shows average results with no optimization. 

When compared to each other, MLAK provides a slightly better average resulting 

utility and noticeably higher accuracy than ANN. Pure ANN usually generates quite 

efficient solutions which degrade when the weight constraint is applied. So, MLAK is 

one of the efficient ways to apply weight constraint over the pure ANN knapsack 

prediction. 

In terms of the actual working time MLAK is inferior to all the other considered 

algorithms. Obviously, the strong difference in execution time between ANN-based 

and traditional algorithms is due to the nature and complexity of artificial neural net-

works, which are required to replicate hidden utility functions. For the considered 20-

items knapsack problem MLAK prediction time of 0.05 seconds may seem quite in-

significant, but larger problems will require increase in the ANN structure, training 

sample size, time and calculation efforts for the training. 
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Table 3. Function 2.1 Optimization Results 

Algorithm Average Utility Average Utility, % Accuracy, % 
Average working 

time, s 

Greedy  2175 98,7 48,0 0.00004 

MLAK 2163 98,2 39,9 0.04206 

ANN 2117 96,1 25,9 0.02363 

Random  1270 57,6 0,6 0.00005 

Greedy  2175 98,7 48,0 0.00004 

 

 

Table 4. Function 2.2 Optimization Results 

Algorithm Average Utility Average Utility, % Accuracy, % 
Average working 

time, s 

DP 25.2*10^5 100,0 100 0.00609 

Greedy  25*10^5 99,2 59,2 0.00004 

MLAK 24.6*10^5 97,7 36,6 0.04145 

ANN 23.9*10^5 94,9 21,6 0.02385 

Random  13.5*10^3 53,5 1,4 0.00005 

 

 

Table 5. Function 2.3 Optimization Results 

Algorithm Average Utility Average Utility, % Accuracy, % 
Average working 

time, s 

DP 154057 100,0 % 100 % 0.00743 

Greedy  153127 99,4 % 64,1 % 0.00004 

MLAK 151601 98,4 % 42,5 % 0.04531 

ANN 148806 96,6 % 22,6 % 0.02380 

Random  79732 51,7% 1,2 % 0.00005 

 

 

Table 6. Function 2.4 Optimization Results 

Algorithm Average Utility Average Utility, % Accuracy, % 
Average working 

time, s 

DP 3371 100 100 0.00734 

Greedy  3339 99,0 49,6 0.00004 

MLAK 3326 98,7 40,8 0.04556 

ANN 3245 96,3 22,6 0.02400 

Random  2024 60,0 1,4 0.00005 
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Table 7. Function 2.5 Optimization Results 

Algorithm Average Utility Average Utility, % Accuracy, % 
Average working 

time, s 

DP 6049*10^6 100,0 100 0.00823 

Greedy  6036*10^6 99,8 85,9 0.00004 

MLAK 5849*10^6 96,7 41,2 0.04784 

ANN 5864*10^6 96,9 24,1 0.02391 

Random 2407*10^6 39,8 1,0 0.00005 

5 Conclusion 

The paper introduced a promising machine learning-based approach for online 

scheduling and resources allocation. A generalized model for knapsack problem solu-

tion based on hidden (unknown) utility functions was proposed and simulated. The 

main design and practical development stages of the artificial neural network were 

presented and considered. Additional optimization step was proposed to apply weight 

constraint over the neural network prediction.  

As a main result, the proposed algorithm MLAK showed the knapsack optimiza-

tion efficiency comparable to a classical greedy implementation for five different 

hidden utility functions covering a wide spectrum of mathematical complexity. The 

importance of this result is that MLAK, unlike greedy algorithm, did not directly used 

the hidden utility functions of the elements. Instead, it was pre-trained on a set of 

optimal solutions for randomly generated knapsack problems. 

Future work will concern problems of the algorithm scalability and more practical 

online job-flow scheduling implementations. 
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