
Machine Learning-based Scheduling and Resources

Allocation in Distributed Computing

Victor Toporkov [0000−0002−1484−2255], Dmitry Yemelyanov [0000−0002−9359−8245]

and Artem Bulkhak

National Research University “MPEI”, Russia

ToporkovVV@mpei.ru, YemelyanovDM@mpei.ru, BulkhakAN@mpei.ru

Abstract. In this work we study a promising approach for efficient online

scheduling of job-flows in high performance and distributed parallel computing.

The majority of job-flow optimization approaches, including backfilling and

microscheduling, require apriori knowledge of a full job queue to make the op-

timization decisions. In a more general scenario when user jobs are submitted

individually, the resources selection and allocation should be performed imme-

diately in the online mode. In this work we consider a neural network prototype

model trained to perform online optimization decisions based on a known opti-

mal solution. For this purpose, we designed MLAK algorithm which imple-

ments 0-1 knapsack problem based on the apriori unknown utility function. In a

dedicated simulation experiments with different utility functions MLAK pro-

vides resources selection efficiency comparable to a classical greedy algorithm.

Keywords: Resource, Scheduling, Online, Knapsack, Optimization, Neural

Network, Machine Learning.

1 Introduction and Related Works

Modern high-performance distributed computing systems (HPCS), including Grid,

cloud and hybrid infrastructures provide access to large amounts of resources [1, 2].

These resources typically include computing nodes, network channels, software tools

and data storages, required to execute parallel jobs submitted by HPCS users.

Most HPCS and cloud solutions have requirements to provide a certain quality of

services (QoS) for users’ applications scheduling, execution and monitoring. Corre-

spondingly, QoS constraints usually include a set of requirements for a coordinated

resources co-allocation [3-5], as well as a number of time and cost criteria and re-

strictions, such as deadline, response time, total execution cost, etc. [2-7].

Some of the most important efficiency indicators of a distributed computational

environment include both system resources utilization level and users’ jobs time and

cost execution criteria [2-4].

HPCS organization and support bring certain economical expenses: purchase and

installation of machinery equipment, power supplies, user support, maintenance

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

mailto:YemelyanovDM@mpei.ru
https://dx.doi.org/10.1007/978-3-031-08760-8_1

2

works, security, etc. Thus, HPCS users and service providers usually interact in eco-

nomic terms, and the resources are provided for a certain payment. In such conditions,

resource management and job scheduling based on the economic models is considered

as an efficient way to coordinate contradictory preferences of computing system par-

ticipants and stakeholders [3-7].

A metascheduler or a metabroker are considered as intermediate links between the

users, local resource management and job batch processing systems [3, 4, 7, 8]. They

define uniform rules for resources distribution and ensure the overall scheduling effi-

ciency.

The most straightforward way to schedule a job-flow is by using the First-Come-

First-Served (FCFS) procedure. FCFS executes jobs one by one in an order of arrival.

Backfilling procedure [4, 9] makes use of advanced resources reservations in order to

prevent starvation of jobs with a relatively large resource request requirements. Mi-

croscheduling [4-5, 10] approach may be added to backfilling to affect global sched-

uling efficiency by choosing the appropriate secondary optimization criteria.

Online scheduling, on the other hand, requires HPCS scheduler to make resources

allocation and optimization decisions immediately when jobs are submitted. One pos-

sible online scheduling strategy is to perform locally efficient resources selection for

each job. However, in this case the global scheduling efficiency may be degraded.

CoP microscheduling strategy [4] implements a set of heuristic rules to optimize job-

flow execution time based on the resource’s properties: performance, cost, utilization

level, etc.

The main contribution of this paper is a machine learning-based approach which

can be trained on efficient scheduling results to perform online scheduling based on

secondary properties of the resources. To achieve this goal, an artificial neural net-

work was designed in combination with a dynamic programming method. We consid-

er a general 0-1 knapsack scheduling model and evaluate algorithms efficiency in a

dedicated simulation experiment.

The paper is organized as follows. Section 2 presents a general problem statement

and the corresponding machine learning model. Section 3 contains description of the

proposed algorithms and neural network training details. Section 4 provides simula-

tion details, results, and analysis. Finally, section 5 summarizes the paper results.

2 Problem Statement

2.1 Online Resources Selection and Knapsack Problem

The 0-1 knapsack problem is fundamental for optimization of resources selection and
allocation. The classic 0-1 knapsack problem operates with a set of 𝑁 items having two
properties: weight 𝑤𝑖 and utility 𝑢𝑖. The general problem is to select a subset of items
which maximizes total utility with a restriction 𝐶 on the total weight:

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

3

 ∑ 𝑥𝑖𝑢𝑖
𝑁
𝑖=1 → max, (1.1)

 ∑ 𝑥𝑖𝑤𝑖
𝑁
𝑖=1 ≤ 𝐶, (1.2)

where 𝑥𝑖 - is a decision variable determining whether to select item 𝑖 (𝑥𝑖 = 1) or not

(𝑥𝑖 = 0) for the knapsack.

This problem definition (1.1), (1.2) fits the economic scheduling model with avail-

able computing resources having cost 𝑐𝑖 (weight) and performance 𝑝𝑖 (utility) proper-

ties. Many scheduling algorithms and approaches implement exact or approximate

knapsack solutions for the resources’ selection step [4, 11-14]. Sometimes the job

scheduling problem may require additional constraints, for example, to limit the num-

ber 𝑛 of items in the knapsack [12, 13] or to select items of different subtypes [14].

The most straightforward exact solution for the knapsack problem can be achieved

with a brute force algorithm. However, with increasing 𝑁 and 𝐶 in (1.1), (1.2) its

application eventually requires inadequately large computational costs. Dynamic pro-

gramming (DP) algorithms can provide exact integer solution with a pseudo-

polynomial computational complexity of 𝑂(𝑁 ∗ 𝐶) or 𝑂(𝑛 ∗ 𝑁 ∗ 𝐶) depending on the

problem constraints. Dynamic programming algorithms usually rely on recurrent

calculation schemes optimizing additive criteria (1.1) when iterating through the

available items. For example, the following recurrent scheme can be used to solve the

problem (1.1), (1.2):

 𝑓𝑖(𝑐) = max{𝑓𝑖−1(𝑐), 𝑓𝑖−1(𝑐 − 𝑤𝑖) + 𝑢𝑖}, (1.3)

𝑖 = 1, . . , 𝑁, 𝑐 = 1, . . , 𝐶,

where 𝑓𝑖(𝑐) defines the maximum criterion (1.1) value allocated out of first 𝑖 items

with a total weight limit 𝑐.

When recurrent calculation (1.3) is finished, 𝑓𝑁(𝐶) will contain the problem solu-

tion.

Approximate solution can be obtained with more computationally efficient greedy

algorithms. Greedy algorithms for the knapsack problem usually use a single heuristic

function to estimate the items’ importance for the knapsack in terms of their weight

𝑤𝑖 and utility 𝑢i ratio. Thus, the most common greedy solution for problem (1.1),

(1.2) decreasingly arranges items by their 𝑢𝑖/𝑤𝑖 ratio and successively selects them

into the knapsack up to the weight limit.

This greedy solution usually provides a satisfactory (1.1) optimization for an ade-

quate computational complexity estimated as 𝑂(𝑁 ∗ 𝐿𝑜𝑔 𝑁).

Most modern scheduling solutions in one way or another implement these algo-

rithms or their modifications. For example, backfilling scheduling procedure defines

additional rules for the job queue execution order and is able to minimize the overall

queue completion time (a makespan). Once the execution priority is defined, each

parallel job is scheduled independently based on the problem similar to (1.1), (1.2).

One important requirement for the backfilling makespan optimization efficiency is

that the job queue composition must be known in advance. The backfilling core idea

implies execution of relatively small jobs from the back of the queue on the currently

idle and waiting resources.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

4

 However, in a more general scenario the user jobs are submitted individually,

and the resources selection and allocation should be performed immediately in the

online mode. Thus, our main goal is to schedule user jobs independently in a way to

optimize global scheduling criteria, for example average jobs’ finish time or a

makespan.

 Similar ideas underlie the so-called microsheduling approaches, including CoP

and PeST [4, 10]. They implement heuristic rules of how the resources should be

selected for a job based on their meta-parameters and properties: utilization level,

performance, local schedules, etc.

2.2 Machine Learning Model

Currently relevant is the topic of using machine learning methods to perform combi-

natorial optimization tasks, including the knapsack problem (1.1), (1.2) [15-17]. For

example, [16] introduces a detailed research of a heuristic knapsack solver based on

neural networks and deep learning. The neural solver was successfully tested on in-

stances with up to 200 items and provided near optimal solutions (generally better

compared to the greedy algorithm) in scenarios with a correlation between the items’

utilities and weights.

In [17], a new class of recurrent neural networks is proposed to compute an opti-

mal or provably good solutions for the knapsack problem. The paper considers a

question of a network size theoretically sufficient to find solutions of provable quality

for the Knapsack Problem. Additionally, the proposed approach can be generalized to

other combinatorial optimization problems, including various Shortest Path problems,

the Longest Common Subsequence problem, and the Traveling Salesperson problem.

In the current work we consider a more specific job scheduling problem based on a

machine learning model. An efficient scheduling plan which minimizes makespan of

a whole job-flow can be used to train an artificial neural network (ANN) to schedule

each job individually (online) with a similar result. However, the job-flow scheduling

plan provides only the efficient resources selections for each job (knapsack result),

but not the corresponding utility values of the selected resources. Thus, for the train-

ing procedure we can use only secondary meta-parameters and properties of the re-

sources. These typically include resources’ cost, utilization level, performance attrib-

utes, average downtime, time distance to the neighbor reservations, etc. [4]

The more factors and properties of the efficient reference solution are considered

the more accurate solution could be achieved online. Besides, online scheduling im-

poses additional restrictions on a priori knowledge of the computing environment

composition and condition. The exact values of the resources’ properties and utility

function may be inaccurate or unknown.

 In a more general and formal way, the main task is to design a model, which will

solve (predict solution of) 0-1 knapsack problem with a priori unknown utility 𝑢𝑖 val-

ues based only on a set of secondary resource’s properties. Thus, to generalize this

task we will use more complex knapsack model interpretation with items having four

numeric properties 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 in an addition to the weight w𝑖. Utility values 𝑢𝑖 will

be calculated for each resource as a function 𝐹𝑣𝑎𝑙 of properties 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 . This func-

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

5

tion will be used to calculate the optimal knapsack solution (by using a dynamic pro-

gramming algorithm). Based on this solution the machine learning model will be

trained to select resources based only on the input properties 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖, thus, simu-

lating the online scheduling procedure.
In this paper, the following utility functions 𝐹𝑣𝑎𝑙 will serve as examples of hidden

conditions for selecting items in a knapsack:

 𝐹𝑣𝑎𝑙 = 𝑎 + 𝑏 + 𝑑 − 𝑔, (2.1)

 𝐹𝑣𝑎𝑙 = 𝑎 ∗ 𝑏 + 𝑑 ∗ 𝑔2, (2.2)

 𝐹𝑣𝑎𝑙 = sin(𝑎 + 𝑏) + cos 𝑑 + 𝑔2, (2.3)

 𝐹𝑣𝑎𝑙 = 𝑎 + lg(𝑏 + 𝑑) ∗ 𝑔, (2.4)

 𝐹𝑣𝑎𝑙 = 𝑎 ∗ lg 𝑏 + 𝑑 ∗ 𝑒
𝑔

10, (2.5)

where 𝑎, 𝑏, 𝑑, 𝑔 are knapsack item’s properties in addition to the weight. The given

functions contain almost the entire mathematical complexity spectrum in order to

investigate at the testing stage how the function complexity affects the algorithm’s

accuracy and efficiency.

3 Algorithms Implementation

3.1 Artificial Neural Network Design and Training

An artificial neural network (ANN) can be represented as a sequence of layers that

can compute multiple transformations to return a result. As the design of the network

structure is mostly based on an empirical approach, we performed a consistent design

and research of neural network architectures for the knapsack problem.

Firstly, we are faced with the task of classifying an action 𝑥𝑖 with a certain item:

whether to put it in a knapsack or not. Generally, classification tasks are solved with

the decision tree models. However, unlike in a classic problem of individual elements

classification, the items in a knapsack invest into a common property: their total

weight should not exceed the constraint (1.2). Thus, it is infeasible to classify the

elements separately, the model should accept and process everything at once. So,

most suitable topology for such a classification problem is a fully connected multi-

layer neural network (multilayer perceptron).

To implement this model, the Python programming language was used with the

Tensorflow framework and the Keras library [18]. Keras has a wide functionality for

design artificial neural networks of diverse types.

After selecting the general structure, it is necessary to experimentally select the

network parameters. These include: the number of layers, the number of neurons in

layers, the neurons activation function, the quality criterion, the optimization algo-

rithm.

First, we used binary cross-entropy as the most suitable loss function for predicting

a set of dependent output values.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

6

Next, we designed and tested a set of small candidate models to decide on other

meta-parameters (see Table 1).

Table 1. ANN Training Results for 5-elements Knapsack

Configuration

Number
Activation

Function
Optimizer

Number of

Layers

Neurons in

Hidden

Layers
Training Set

Train/Test

Accuracy

1 sigmoid SGD 1 35 10000 0.79/0.80

2 sigmoid Adam 1 35 10000 0.87/0.86

3 relu SGD 1 35 10000 0.51/0.49

4 relu Adam 1 35 10000 0.77/0.78

5 sigmoid Adam 5 35 10000 0.89/0.89

6 sigmoid Adam 5 35 100000 0.93/0.94

7 sigmoid Adam 5 70 500000 0.96/0.96

8 sigmoid Adam 5 200 100000 0.97/0.94

9 sigmoid Adam 9 35 100000 0.89/0.89

10 sigmoid Adam 9 90 100000 0.94/0.93

11 relu Adam 9 90 100000 0.69/0.69

From the initial training results (see Table 1), we can make the following conclu-

sions:
1) a pair of Sigmoid activation function and Adam optimizer showed the best result

in terms of the accuracy criteria;

2) increase in a number of ANN layers requires a larger size of the training set to
achieve a higher accuracy;

3) the achieved 0.96 accuracy shows that ANN is able to solve knapsack problem
fairly well given the right number of layers and the size of the training set.

Fig. 1 shows how accuracy and loss values were improved on the validation set
during the training of the best ANN configuration (number 7) from Table 1. The
smoothness and linearity of the graphs indicates the adequacy of the selected parame-
ters and the possibility of stopping at using 150-200 training epochs.

Next, we consistently increased the dimension of the knapsack problem and esti-
mated how different hidden utility functions affect the ANN accuracy.

The training set was obtained as a dynamic programming-based exact solution for a
randomly generated knapsack problem. The items’ properties and the weight constraint
were generated randomly to achieve the required features: 1) representativeness – a
data set selected from a larger statistical population should adequately reproduce a
large group according to any studied characteristic or property; 2) consistency – con-
tradictory data in the training sample will lead to a low quality of network training.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

7

Fig. 1. ANN validation loss and accuracy for 5-element knapsack problem (configuration 7

from Table 1)

The ANN input data is a training sample consisting of the knapsack element prop-

erties vectors 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 and the normalized weights vector 𝑤𝑖
′ = 𝑤𝑖/𝐶. Weights

normalization allows us to generalize the weight constraint in (1.2) to 𝐶=1 for any
input sample. Vector 𝑦_𝑎𝑛𝑠𝑤𝑒𝑟𝑖 of the correct selection is used for the loss function
calculation and backpropagation step. The correct solution was obtained using a dy-
namic programming algorithm with explicit use of the hidden utility function.

The training and testing results for a 20-elements knapsack are presented in Table
2. As a main result, ANN was able to solve knapsack problem equally successfully for
all the considered hidden functions (2.1) - (2.5) by using only the properties
𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 of the knapsack items.

Table 2. Training Results for 20-elements Knapsack

Hidden Utility Function
Number of

Layers
Train/Test

Accuracy

𝑎 + 𝑏 + 𝑑 − 𝑔 14 0.94/0.93

𝑎 ∗ 𝑏 + 𝑑 ∗ 𝑔2 17 0.92/0.91

sin(𝑎 + 𝑏) + cos 𝑑 + 𝑔2 14 0.93/0.92

𝑎 + lg(𝑏 + 𝑑) ∗ 𝑔 14 0.93/0.92

𝑎 ∗ lg 𝑏 + 𝑑 ∗ 𝑒
𝑔

10 14 0.92/0.91

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

8

3.2 MLAK Algorithm

While training a neural network, it is impossible to operate with formal mathematical

concepts, in particular those defined for the knapsack problem (1.1), (1.2). The train-

ing relies on a set of pre-prepared examples of an optimal selection of the knapsack

items.

The main problem with the pure ANN knapsack prediction is that even with a high

accuracy we cannot be sure that the condition for the knapsack total weight is ful-

filled.

To consider the restriction on the total knapsack weight, we propose to use the

ANN classification result as a predicted utility vector ℎ𝑖 which can be used in a sepa-

rate algorithmic knapsack solution. That is, the input data for the problem (1.1), (1.2)

will contain weight 𝑤𝑖 and utility 𝑢𝑖 = 𝑢𝑖
′ vectors, where 𝑢𝑖

′ values are predicted for

each element based on the item’s properties 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 . In this way, the ANN will

operate as a conversion module to identify mutual relationships between the knapsack

items’ properties and map them to the predicted utility values 𝑢𝑖
′.

Fig. 2. MLAK algorithm flowchart

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

9

Fig. 2 shows the flowchart of the proposed composite Machine Learning-based Al-

gorithm for the Knapsack problem (hereinafter MLAK). It consists of ANN conver-

sion module and a dynamic programming-based algorithm to provide the final solu-

tion for problem (1.1), (1.2) with an unknown, but predicted utility values and a con-

straint on the total weight.
The artificial neural network input for items 𝑖 = 1. . . 𝑛:

• 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 – vectors of the properties;

• 𝑤𝑖 – vector of the items’ weights;

• 𝑤𝑖
′ = 𝑤𝑖/𝐶 – normalized vector of the weights;

• 𝑦_𝑎𝑛𝑠𝑤𝑒𝑟𝑖 – an optimal selection result calculated by the dynamic pro-

gramming method with use of a hidden utility function;

• 𝑦_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖 – items selection predicted by the neural network;

• 𝑦_𝑟𝑒𝑠𝑖 – the final MLAK items selection.

Fig. 3. ANN and MLAK prediction comparison

Fig. 3 presents sample data to demonstrate ANN and MLAK prediction differences

with only a single utility property. In this example of a problem (1.1), (1.2) weight

limit 𝐶 = 159 is stated in the first line, while weight and utility vectors are presented

on the following lines of Fig. 3. No hidden function is used, utility values are directly

used as input data for ANN.

The exact solution (True_result) of 𝑥𝑖 values was obtained with a dynamic pro-

gramming procedure (1.3); approximate solution was provided by a greedy algorithm.

ANN result is a prediction vector of the 𝑥𝑖 values. Based on this prediction, items

(3, 7, 8) should be selected for the knapsack (indicated in red squares in Fig. 3), which

is not the exact solution.

MLAK algorithm used ANN prediction vector as new utility values 𝑢𝑖
′ for the

knapsack items. The dynamic programming procedure (1.3) was performed over 𝑢𝑖
′

and 𝑤𝑖 values in (1.1), (1.2) with the result equal to the exact solution.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

10

4 Simulation Experiment

4.1 Simulation Environment

We evaluate MLAK efficiency based on a comparison with classical knapsack al-
gorithms (including dynamic programming and greedy implementation), as well as
with a pure ANN knapsack implementation. ANN results were additionally modified
to comply with the weight restriction: selected items with the smallest prediction con-
fidence were removed one by one until the restriction is satisfied.

For this comparison we used the same (2.1) - (2.5) hidden utility functions 𝐹𝑣𝑎𝑙.
Thus, MLAK and ANN received 𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 , 𝑔𝑖 properties as an input, while Dynamic
programming (DP) and Greedy implementations used 𝑢𝑖 = 𝐹𝑣𝑎𝑙 calculated utility func-
tions to solve the knapsack problem.

Additionally, we implemented a Random selection algorithm to evaluate MLAK
and ANN efficiency in the interval between the optimal solution provided by DP and a
completely random result.

All the considered algorithms were given a set of the same 1000 knapsack prob-
lems as input. We consider two main efficiency indicators for each algorithm’s solu-
tion:

• the resuting knapsack total utility and its relation to the DP result (average

utility);

• the resulting accuracy as element-wise comparison with the DP result for all

the experiments.

Both efficiency criteria are based on DP algorithm as it provides an optimal integer

solution based on the known utility function.

Accuracy criterion will have 100% value when knapsack solution is identical to the

DP in all 1000 experiments. Thus, low accuracy value does not necessarily mean low

algorithm efficiency, as the same or comparable knapsack utilities sometimes may be

achieved by selecting different combinations of items. Accuracy parameter shows

how often the resulting solution matches the optimal one by performing similar opti-

mization operations.

Therefore, an average total utility should serve as a main comparison criterion for

problem (1.1), (1.2).

Besides, we measure and compare average working times. All the considered algo-

rithms were implemented using Python language. Working time was observed on

desktop PC with Core i5 and 8Gb RAM. MLAK working time includes both internal

ANN and DP algorithms execution (see Fig. 2).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

11

4.2 Simulation Results and Analysis

Simulation results collected over 1000 independent knapsack problems with 20 items

are presented in Tables 3-7. Each table corresponds to a single hidden function (2.1) -

(2.5).

Firstly, the results show that Greedy algorithm provided almost optimal average

utility: nearly 99% compared to DP. This result is expected for 20 elements with ran-

domly and uniformly generated properties and utility values. 50-85% accuracy shows

that it is usually possible to achieve comparable optimization results with different

items selected. Different utility functions are mostly affecting the accuracy difference

(50-85% interval) as they provide varying diversity in the resulting utility values of

the knapsack items. Low diversity usually leads to a higher accuracy values, as there

are less options to achieve an efficient solution.

MLAK and ANN optimization efficiency is generally comparable to the Greedy

implementation. Relative difference by the average utility between Greedy and

MLAK is less than 1% for functions (2.1), (2.3), (2.4), and (2.6). ANN provides simi-

lar results with less than 1% lower utility compared to MLAK.

For functions (2.2) and (2.5) the relative difference with DP reaches 3%, which

may be explained by much larger absolute values of the utility functions obtained

from the same set of the randomly generated input properties (see column Average

Utility in Tables 3-7). ANN prediction works less efficient when relations between

the properties include multiplication and exponentiation operations.

However, even this less than 3% optimization loss (in the worst case observed sce-

narios) is rather small and reasonable when compared to the random selection result

with more than 40% difference from DP solution. Besides, in this comparison DP and

Greedy performed knapsack optimization using the actual utilities calculated from the

hidden functions, while Random shows average results with no optimization.

When compared to each other, MLAK provides a slightly better average resulting

utility and noticeably higher accuracy than ANN. Pure ANN usually generates quite

efficient solutions which degrade when the weight constraint is applied. So, MLAK is

one of the efficient ways to apply weight constraint over the pure ANN knapsack

prediction.

In terms of the actual working time MLAK is inferior to all the other considered

algorithms. Obviously, the strong difference in execution time between ANN-based

and traditional algorithms is due to the nature and complexity of artificial neural net-

works, which are required to replicate hidden utility functions. For the considered 20-

items knapsack problem MLAK prediction time of 0.05 seconds may seem quite in-

significant, but larger problems will require increase in the ANN structure, training

sample size, time and calculation efforts for the training.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

12

Table 3. Function 2.1 Optimization Results

Algorithm Average Utility Average Utility, % Accuracy, %
Average working

time, s

Greedy 2175 98,7 48,0 0.00004

MLAK 2163 98,2 39,9 0.04206

ANN 2117 96,1 25,9 0.02363

Random 1270 57,6 0,6 0.00005

Greedy 2175 98,7 48,0 0.00004

Table 4. Function 2.2 Optimization Results

Algorithm Average Utility Average Utility, % Accuracy, %
Average working

time, s

DP 25.2*10^5 100,0 100 0.00609

Greedy 25*10^5 99,2 59,2 0.00004

MLAK 24.6*10^5 97,7 36,6 0.04145

ANN 23.9*10^5 94,9 21,6 0.02385

Random 13.5*10^3 53,5 1,4 0.00005

Table 5. Function 2.3 Optimization Results

Algorithm Average Utility Average Utility, % Accuracy, %
Average working

time, s

DP 154057 100,0 % 100 % 0.00743

Greedy 153127 99,4 % 64,1 % 0.00004

MLAK 151601 98,4 % 42,5 % 0.04531

ANN 148806 96,6 % 22,6 % 0.02380

Random 79732 51,7% 1,2 % 0.00005

Table 6. Function 2.4 Optimization Results

Algorithm Average Utility Average Utility, % Accuracy, %
Average working

time, s

DP 3371 100 100 0.00734

Greedy 3339 99,0 49,6 0.00004

MLAK 3326 98,7 40,8 0.04556

ANN 3245 96,3 22,6 0.02400

Random 2024 60,0 1,4 0.00005

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

13

Table 7. Function 2.5 Optimization Results

Algorithm Average Utility Average Utility, % Accuracy, %
Average working

time, s

DP 6049*10^6 100,0 100 0.00823

Greedy 6036*10^6 99,8 85,9 0.00004

MLAK 5849*10^6 96,7 41,2 0.04784

ANN 5864*10^6 96,9 24,1 0.02391

Random 2407*10^6 39,8 1,0 0.00005

5 Conclusion

The paper introduced a promising machine learning-based approach for online

scheduling and resources allocation. A generalized model for knapsack problem solu-

tion based on hidden (unknown) utility functions was proposed and simulated. The

main design and practical development stages of the artificial neural network were

presented and considered. Additional optimization step was proposed to apply weight

constraint over the neural network prediction.

As a main result, the proposed algorithm MLAK showed the knapsack optimiza-

tion efficiency comparable to a classical greedy implementation for five different

hidden utility functions covering a wide spectrum of mathematical complexity. The

importance of this result is that MLAK, unlike greedy algorithm, did not directly used

the hidden utility functions of the elements. Instead, it was pre-trained on a set of

optimal solutions for randomly generated knapsack problems.

Future work will concern problems of the algorithm scalability and more practical

online job-flow scheduling implementations.

Acknowledgments. This work was supported by the Russian Science Foundation

(project no. 22-21-00372).

References

1. Bharathi, S., Chervenak, A.L., Deelman, E., Mehta, G., Su, M., Vahi, K.: Characterization

of Scientific Workflows. In: 2008 Third Workshop on Workflows in Support of Large-

Scale Science, pp. 1–10 (2008)

2. Rodriguez, M.A., Buyya, R.: Scheduling Dynamic Workloads in Multi-tenant Scientific

Workflow as a Service Platforms. Future Generation Computer Systems, 79 (P2), 739–750

(2018)

3. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of Grid Re-

source Management. In: Nabrzyski, J., Schopf, J.M., Weglarz J. (eds.) Grid resource man-

agement. State of the art and future trends, pp. 271-293. Kluwer Academic Publishers.

(2003)

4. Toporkov, V. and Yemelyanov, D.: Heuristic Rules for Coordinated Resources Allocation

and Optimization in Distributed Computing. In: J. M. F. Rodrigues et al. (Eds.): ICCS

2019, LNCS 11538, Springer Nature Switzerland AG, pp. 395–408 (2019)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

14

5. Toporkov, V., Yemelyanov D. and Toporkova, A.: Coordinated Global and Private Job-

Flow Scheduling in Grid Virtual Organizations. J. Simulation Modelling Practice and The-

ory, Vol. 107, Elsevier. (2021)

6. Sukhoroslov, O., Nazarenko, A. and Aleksandrov, R.: An Experimental Study of Schedul-

ing Algorithms for Many-Task Applications. Journal of Supercomputing, 75, 7857–7871

(2019)

7. Samimi, P., Teimouri, Y., Mukhtar M.: A Combinatorial Double Auction Resource Allo-

cation Model in Cloud Computing. J. Information Sciences, 357(C), 201-216 (2016)

8. Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.: Enabling Interoperabil-

ity Among Grid Meta-schedulers. Journal of Grid Computing, 11(2), 311–336 (2013)

9. Shmueli, E., Feitelson, D.G.: Backfilling with Lookahead to Optimize the Packing of Par-

allel Jobs. Journal of Parallel and Distributed Computing, 65(9), 1090–1107 (2005)

10. Khemka, B., Machovec, D., Blandin, C., Siegel, H.J., Hariri, S., Louri, A., Tunc, C., Far-

go, F., Maciejewski, A.A.: Resource Management in Heterogeneous Parallel Computing

Environments with Soft and Hard Deadlines. In: Proceedings of 11th Metaheuristics Inter-

national Conference (MIC’15) (2015)

11. Netto, M. A. S., Buyya, R.: A Flexible Resource Co-Allocation Model based on Advance

Reservations with Rescheduling Support. In: Technical Report, GRIDSTR-2007-17, Grid

Computing and Distributed Systems Laboratory, The University of Melbourne, Australia,

(2007)

12. Toporkov, V., Toporkova, A., Yemelyanov, D. Slot Co-Allocation Optimization in Dis-

tributed Computing with Heterogeneous Resources. Studies in Computational Intelligence,

Volume 798, Pages 40-49, Springer Nature Switzerland AG (2018)

13. Toporkov, V., Yemelyanov, D. Optimization of Resources Selection for Jobs Scheduling

in Heterogeneous Distributed Computing Environments // Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bio-

informatics) 10861 LNCS, 2018, Springer Verlag, pp. 574-583 (2018)

14. Toporkov, V., Yemelyanov, D. (2021). Scheduling Optimization in Heterogeneous Com-

puting Environments with Resources of Different Types. In: Zamojski, W., Mazurkiewicz,

J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Theory and Engineering of Dependable

Computer Systems and Networks. DepCoS-RELCOMEX 2021. Advances in Intelligent

Systems and Computing, vol 1389. Springer, Cham. (2021)

15. Xu, S.; Panwar, S. S.; Kodialam, M. S.; and Lakshman, T. V.: Deep Neural Network Ap-

proximated Dynamic Programming for Combinatorial Optimization. In: AAAI Conference

on Artificial Intelligence, 1684–1691 (2020)

16. Nomer, H. A. A., Alnowibet, K. A., Elsayed, A. and Mohamed, A. W.: Neural Knapsack:

A Neural Network Based Solver for the Knapsack Problem. In: IEEE Access, vol. 8, pp.

224200-224210 (2020)

17. Hertrich, C. and Skutella, M.: Provably Good Solutions to the Knapsack Problem via Neu-

ral Networks of Bounded Size. In: Proceedings of the AAAI Conference on Artificial In-

telligence, 35(9), 7685-7693 (2021)

18. Chollet, F.: Xception: Deep Learning with Depthwise Separable Convolutions, 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1800-1807

(2017)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08760-8_1

https://dx.doi.org/10.1007/978-3-031-08760-8_1

