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Abstract. The production of numerous high �delity simulations has
been a key aspect of research for many-query problems in �uid dynamics.
The computational resources and time required to generate these simula-
tions can be so large and impractical. With several successes of generative
models, we explore the performance and powerful generative capabilities
of both generative adversarial network (GAN) and adversarial autoen-
coder (AAE) to predict the evolution in time of a highly nonlinear �uid
�ow. These generative models are incorporated within a reduced-order
model framework. The test case comprises two-dimensional Gaussian
vortices governed by the time-dependent Navier-Stokes equation. We
show that both the GAN and AAE are able to predict the evolution
of the positions of the vortices forward in time, generating new samples
that have never before been seen by the neural networks.

Keywords: Generative adversarial networks · Adversarial autoencoder
· two-dimensional turbulence · Spatial-temporal predictions · Deep learn-
ing.

1 Introduction

The study of �uid dynamics has involved massive amounts of data generated
either from controlled experiments, �eld measurements or large-scale numerical
simulations. The high volume of data, amongst other reasons, means these meth-
ods can be relatively slow and require a great deal of computational power to be
able to model the underlying physics. While advancements in high performance
computing research has boosted speed and accuracy of numerical simulation, ob-
stacles still remain [2]. Thus, the development of computational frameworks that
are accurate, robust, cheap and fast enough to model �uid dynamics remains a
key aspect of computational science and engineering research.

In this paper, generative models, a branch of machine learning, is applied to
a two-dimensional turbulent �uid problem for the purposes of rapidly predict-
ing forward in time while avoiding the high computational cost of traditional
numerical methods.

Generative models have garnered a huge amount of interest in recent years [11].
The main idea behind generative models is to build a statistical model around a

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_61

https://dx.doi.org/10.1007/978-3-031-08757-8_61


2 M. Jolaade et al.

given dataset that is capable of generating new sample instances that appear to
be taken from the original dataset. These new samples can further be used for
tackling problems related to the case under study. When the building process is
based on deep networks (arti�cial neural networks such as convolutional neural
networks (CNN) [12]) that use multiple layers to capture how patterns/features
of the dataset are organised or clustered, the resulting model is termed a deep
generative model. Once a deep generative model has learned the structure of the
training dataset, by being fed a random vector as input, its networks can gener-
ate desired samples from complex probability distributions in high-dimensional
spaces [8]. In building deep generative networks two main methods have been
widely used. The �rst is a variational autoencoder that uses stochastic variational
inference to minimize the lower bound of the data likelihood [11]. The second is
a generative adversarial network (GAN) whereby two players (neural network)
play a zero-sum game. The game seeks to minimize the distribution divergence
between the model output and the real/training dataset by using real samples
as a proxy for optimization. A novel third method born out of the amalgamation
of these two methods is the use of adversarial autoencoder (AAE) [14]. In this
project, attention is given to both GAN and AAE as data-driven methods for
prediction and modelling of spatial-temporal turbulent �uid �ow.

Although reduced order models have been used for time-dependent turbulent
�uid modelling in areas such as subsurface �ow [3] and for the solution of the
Navier-stokes equation [19]. In this project, for the �rst time, we use generative
models in a reduced-order model framework to carry out e�cient predictions in
time of a two-dimensional turbulent �uid �ow problem.

The rest of this paper is structured as follows: the next section provides a
description of the methodology adopted from [16] for spatial-temporal prediction
with GANs. Here, we also include the methodology for prediction using the AAE.
Section 3, introduces the test �uid system and a relevant discussion about the
transformation carried out to make the data suitable for use. The obtained results
from predicting single and multiple time levels are also presented in section
3. Finally, conclusion and remarks about possible future work are provided in
section 4.

2 Methodology

The use of GANs for time series prediction and data assimilation of real world dy-
namical systems has been proven to be successful for the spatial-temporal spread
of COVID-19 using SEIRS type models [15, 16]. Particularly, the method in [16]
has been shown to be independent of the underlying system, thus this project
will apply the same method for the two-dimensional turbulent �uid model.

In this project, we start by building a reduced model of the turbulent �uid
�ow, going from a high-�delity spatial domain to a lower dimensional represen-
tation. Then, a generative model is built and trained to learn a mapping between
a input latent vector and the lower dimensional representation. Finally, we apply
the processes of simulating forward in time using the capabilities of the gener-
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ative models. The aim is then for the generative networks to serve as surrogate
models that can reproduce the high-�delity numerical model.

2.1 POD-based Non-Intrusive Reduced Order Modelling

The connection between physics-based machine learning and dimensionality re-
duction has been substantially studied and well-documented [18]. Results of these
studies have shown that many methods used to obtain a low-dimensional sub-
space of a system are related to machine learning methods. In modern computa-
tional research, Reduced Order Modelling (ROM) is a well-known technique for
dimensionality reduction [3]. By constructing reduced-order models that encap-
sulate the original features of the �uid systems while maintaining its underlying
physics, it is possible to seek solutions to a model in an e�cient and much less
expensive way [20]. The Non-Intrusive Reduced Order Modelling (NIROM) is a
type of ROM so named due to its non-dependent on the system under study. This
model reduction approach can use proper orthogonal decomposition (POD) [17]
to derive a physics-inspired low-dimensional parameterization that represents
the high dimension of the high-�delity spatial domain of the �uid model (i.e.
state of snapshots). POD is closely related to the principal component analysis
(PCA) method in statistics and was �rst used for turbulent �ows by [13].

In this project, the dimensionality reduction aspect of our methodology is
set within a NIROM framework that involved computing the POD basis vectors
(via PCA) using the snapshots of the input data [17].

Consider a three-dimensional �eld ω, which is dependent on some input
parameter and varies in space and time. We can de�ne its function as ω :
X × T × ζ → R where X is the spatial domain, T is the time domain, and
an input domain ζ of initial parameters/condition. The aim of data-driven/non-
intrusive dimensionality reduction is to �nd an approximate model for ω from
the data

D ⊂ {ω(x, t,z) | x ∈ X , t ∈ T , z ∈ ζ} (1)

which, in this case, are snapshots in time of the �eld. The desired approxi-
mate model of the �eld can be expressed as a linear expansion in the POD
basis. This POD basis would be computed from many snapshots data devel-
oped as solutions of a high-�delity model that describes the �eld. To compute
the POD basis, we consider a snapshot data to be ω(t; z) ∈ Rnx where nx is
the dimension of the spatial domain (from �nite discretization). Thus, the set
{ω(ti; zj) | i = 1, · · · , nt; j = 1, · · · , nz} of snapshots at nt di�erent time lev-
els/steps of t1, t2, · · · , tnt

∈ T and nz di�erent initial input conditions of
z1, z2, · · · , znz ∈ ζ comprises of ns = ntnz snapshots. The snapshot matrix
can be de�ned as S ∈ Rnx×ns with each row corresponding to a spatial location
and each column representing a snapshot in the set. At this stage, PCA can then
be introduced for dimensionality reduction.PCA seeks a transformation T that
maps each vector {ω(ti; zj) in S (i.e each snapshot) from the original dimen-
sional space of nx to a new space that only keeps the �rst r principal components
using the �rst r eigenvectors of the transformed matrix [10].
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The idea is to maximize the variance of the original data while minimising
the total least squared errors in the representation of the snapshots. The size of
the POD basis/principal component r is chosen by specifying a tolerance in this
error calculation. This user-speci�ed tolerance, k also indicates how much infor-
mation/energy of the data is captured by the resulting snapshot representation.
We chose r such that:

r∑
k=1

σ2
k

ns∑
k=1

σ2
k

> k, k = 0.999 (2)

This means given a snapshot �eld we can compute its original state, using the
POD coe�cients, with 99.9% reconstruction accuracy. Hence, once the dimension
reduction is completed, the POD expansion coe�cients θk=1,··· ,r(t; z) denote
the model approximation and parameterization of a snapshot �eld ω(t; z) at
time t and input conditions z. The coe�cients are then employed in the training
of generative models for the time series prediction. Results of the POD-based
compression are shown and discussed in section 3.2.

2.2 Generative Models

Generative modelling is the process of training a machine learning model with
speci�c data to produce 'fake' data from a distribution that mimics the proba-
bility distribution of the original training set. Here, we produce two generative
models to perform time series prediction of a turbulent �uid �ow. The two mod-
els utilized are: a generative adversarial network (GAN)[7] and an adversarial
autoencoder (AAE)[14]. The choice of these models was based on their proven
successes in the use of nonlinear �uid modelling. In the result section, a compar-
ison between outputs of the two models is presented.

Generative Adversarial Network: A GAN is an arti�cial learning technol-
ogy that is composed of two neural networks as shown in Fig. 2.2. GANs have
been adopted widely in several research areas, showing huge successes in prac-
tical applications including simulating �uid models [5]. The training process is
essentially a game between two models competing as adversaries. While the gen-
erator module (G) generates fake samples from an input random distribution, a
discriminator module (D) tries to distinguish between real samples drawn from
the original distribution and the sample output from the generator. D does this
by estimating a score which serves as the probability that a particular sample
came from the original distribution i.e. D(G(θr)) = 1. The training process of a
GAN is a minimization-maximization problem that is based on a cross-entropy
loss function

J(D,G) : min
G

max
D

Eθr∼pdata(θr)[logD(θr)] + E
z∼pz(z)[log(1−D(G(θ)))] (3)
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where pdata(θr) is the probability data distribution of the target output of real
samples θr and pz(z) is the prior distribution for the random latent vector z.
The training process involves:

� Updating D with gradients that maximize the discriminator function by
di�erentiating with respect to parameters of the discriminator.

� Updating G with gradients that minimize the generator function by di�er-
entiating with respect to parameters of the generator.

Fig. 1. Generative modelling using GAN. In this work�ow, real samples obtained from
POD-based NIROM are utilized as training data for the discriminator module of a
GAN. Fake data produced by the generator, G from an input latent vector is simulta-
neously used in the training process, with loss back propagated through both neural
network modules.

A common problem in the use of GANs for sample generation is mode col-
lapse. Typically, a GAN is trained to produce a wide variety of outputs that
mimic the training data distribution. For example, if a GAN is trained with
pictures of di�erent dog breeds, we want a di�erent dog for every random input
to the dog generator. However, it is possible that the generator only produces a
small set of realistic outputs and learns to generate only that seemingly credible
output (or small set of outputs) to the discriminator.

The Wasserstein GAN (WGAN) [1] is a type of GAN that avoids this problem
of mode collapse by circumventing the issue of vanishing gradients. This implies
that the discriminator is trained to optimality, learning to reject any output/set
of outputs the generator tries to stabilize on. The WGAN method introduces a
new loss function that alternatively minimizes an approximation of the Earth
Mover distance between the distributions completely avoiding mode collapse.
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In developing a GAN for the generative modelling of this project, a typical
Deep Convolutional GAN (DCGAN) was developed and trained to produce the
target output. Following evidence of mode collapse however, an ImprovedWGAN
[9] was also developed by altering the loss functions of the original DCGAN. The
WGAN also included a gradient penalty term that led to more diverse output
from the generator.

The WGAN loss function uses a Earth mover distance criteria to enforce
match of a prior data distribution. The loss function for this type of GAN is
given as follows

L = Ex̂∼Pg [D (x̃)]− Ex∼Pr [D (x)] + λEx̂∼Px̂

[
(||∇x̃D (x̃) ||2 − 1)

2
]

(4)

where the second term is a gradient penalty that replaces weight clipping to
achieve Lipschitz continuity (gradient with norm at most 1 everywhere). The
discriminator in this GAN works as a critic.

The generative model (GAN and/or WGAN) developed and trained using
the presented work�ow can be used for time-series/forward prediction without
any changes to its structure. This is also the case when the model is utilized for
the assimilation of given observation/sensor data [16].

Adversarial Autoencoder: A second type of generative model built and im-
plemented in this project is an AAE (Fig. 2.2). Similar to a GAN, the AAE
was proposed as a generative model that seeks to match an aggregated posterior
distribution of its hidden latent vector with a prior distribution. To be able to
function as a deep generative model, the AAE is trained to perform variational
inference that enables its decoder to learn a statistical model that maps between
the imposed prior and the data distribution. The AAE has a wide range of ap-
plications including semi-supervised classi�cation, unsupervised clustering and
data visualization [14]. In the �eld of computational �uid dynamics, Cheng et. al
[4] studied the capability of an advanced deep-AAE for parameterizing nonlinear
�uid �ow and utilized it in the prediction of a water collapse test case. Here, we
develop an AAE and test it for prediction of nonlinear turbulent �ow.

2.3 Space-time predictions using generative models

The goal of this project is to show that generative models such as GANs and
AAEs can be utilized for the time-series prediction of nonlinear turbulent �uid
models. This section discusses the time-series prediction and an algorithm for its
implementation. The methodology proposed by [16] is further tested on a two-
dimensional turbulent �uid model to obtain a surrogate model that is accurate
and computationally cheap. The next subsections discuss the this method and
its components.

Prediction using GANs: The ability of a GAN to produce realistic samples
that seem to belong to a prior distribution is leveraged in this project. To predict

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_61

https://dx.doi.org/10.1007/978-3-031-08757-8_61


Generative Networks Applied to Model Fluid Flows 7

Fig. 2. Generative modelling using AAE. The training process of this work�ow at-
tempts to match output of the autoencoder with a prior distribution. While the encoder
generates fake samples that matches this distribution, the discriminator attempts to
critic against the generated samples.

forward in time, an algorithm, Predictive GAN (PredGAN) algorithm [16] is im-
plemented in this project on two-dimensional turbulent �ow data. The PredGAN
algorithm begins with training a GAN to generate a data sequence of p+1 time
levels from an input latent vector. To achieve this, the GAN is trained with p+1
consecutive time levels of compressed variables/POD coe�cients concatenated
to form a trajectory. Once the training is completed, the generator of the GAN
is capable of producing fake snapshots at multiple time levels, n− p to n where
n ≥ p. In order to complete prediction with the trained GAN, the �rst p time
levels of a known trajectory/given solution is matched with corresponding time
levels of the output of the GAN through loss optimization. Once convergence
has been reached, the additional time step p+ 1, in the output of the generator
serves as the forward prediction of the trajectory. This process can be repeated
by using the predicted p + 1 solution as a known solution while similar opti-
mization is carried out to predict time level p+2. Ultimately, all time steps can
be predicted by replicating the process and obtaining a new time step for each
iteration of the PredGAN algorithm.

Prediction using Adversarial Autoencoder: To predict with an autoen-
coder, the following steps were followed:

1. Since the autoencoder does not require a latent variable as input, we use the
�rst p− 1 time levels of the known solution as input.

2. To predict forward, the p − 1 time level is used as an initial guess for the
desired p time level. and passed into the autoencoder to give a prediction.
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Following successful training, the autoencoder then attempts to match the
true snapshot at time p from the input initial guess.

3. The output prediction from a single iteration through the autoencoder is
further re-used as input guess for the time level p and the time series is
passed through the autoencoder till convergence is reached.

4. The �nal output is the snapshot prediction at time p.
5. For multiple time level predictions, the process is repeated from steps 1- 4

using the last p time levels as initial guesses for subsequent time levels.

3 Implementation and Results

3.1 Case study: Parameter-varying �ow in a periodic box

In order to train a GAN capable of time-series prediction of the two-dimensional
turbulent �uid problem, a dataset comprising two velocities component (x, y)
and the pressure for each discretized node of a two-dimensional incompressible
Navier-Stokes simulations has been obtained. Fig. 3.1 shows the spatial prop-
erties of each snapshot. This dataset represents a parameter-varying �ow in a
�xed-wall box. Given that the convolutional layers of a neural network are de-

Fig. 3. Two-dimensional Gaussian vortices in a square domain. The positive and neg-
ative vortices are of equal strength and each snapshot S ∈ Ry×y where y = 256, are
randomly initialized within a prede�ned subdomain nx×ny. The images on the bottom
right show the magnitude of the vortices projected over a 1-D domain.

signed to detect object/features anywhere in an image, it can be used in this
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project since the large-parameter variations implicit in the dataset generation is
of a similar nature as object randomly located in an image [6].

The simulations were run on Imperial College-Finite Element Reservoir Sim-
ulator (IC-FERST) using the following criteria: turbulent �ow with Re=5000,
constant viscosity and no slip walls boundary conditions.The �rst step in the
project is to transform the velocity dataset into vorticity data so it represents ini-
tial Gaussian (randomly initialized) vortices that decay due to viscosity changes.
Following this transformation, the vorticity data are then compressed by carry-
ing out a POD.

The training set for this project included snapshots from 300 separate tra-
jectories. Snapshots from trajectories were obtained such that each trajectory
included 50 snapshots - a total of 15K snapshots. Prior to actual training, the
data is prepared for time series prediction by concatenating successive snap-
shots, 5s apart, into a time series of 7 instances (i.e. each time series represents
vortices' evolution over a period of 30s). This sums up to 6K distinct time series
- one trajectory can be split into a maximum of 20 time series of 7 snapshots.
In predicting with generative models post-training, we were able to forecast 1-3
additional instances (evolution over a period of ≤15s) for never before seen time
series (30 trajectories). See 3.3 for more details.

3.2 POD compression and order reduction

Each snapshot is no longer a 256 by 256 array but now represented using 292 fea-
tures (POD coe�cients). The cumulative information/energy retained measured
using explained variance is over 99.99% as shown in Fig.3.2. A visual comparison
of the compression is shown in Fig. 3.2.

Fig. 4. POD singular values and relative cumulative energy for the two-dimensional
Gaussian vorticity �led snapshot set.
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Fig. 5. Original and recovered snapshots following POD-based NIROM. The reduction
was speci�ed to retain 99.99% information from the original snapshots. The reduction
decreased the dimension from 256-by-256 to 292 POD coe�cients.

3.3 Prediction using GAN and AAE

Single time level prediction: In this section, we apply the PredGAN algo-
rithm to a sample trajectory to predict a single time level forward. Following the
training of a WGAN-GP and an AAE with 7 time levels from sample trajectories,
we proceed to predict a single step forward in the test set using the PredGAN
and PredAAE algorithms. In this application, the �rst 6 time levels (t=0 to
t=25) are considered known while the 7th time level (t=30) is the predicted
time step. Results of the single time level prediction can be found in Fig.3.3.
A sample trajectory (Fig. 3.3a) serves as the input to the generative models
(WGAN-GP and AAE). Snapshots of each generative model shows output fol-
lowing convergence of the loss between generated sample and known solution
(Fig. 3.3bc). The second row visualizes the mismatch between the magnitude
and location of the true data (in blue) and generated prediction (in orange).
The vertical axis represents the magnitude of the vortices while the horizontal
axis is a one-dimensional projection of the two-dimensional domain. Given these
results, AAE is shown to have a better performance both for predicting forward
and matching known solutions with samples generated from a random input
latent vector.

Multiple time levels prediction: The results from predicting multiple time
levels, shown in Fig. 3.3, follows a similar pattern as that of the single time
level prediction. Following results for the single time level prediction (t=30), we
proceed to predict multiple time levels from t=35 to t=45. It is worth mentioning
that this data was not present in the training set. The �rst row of snapshots (Fig.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_61

https://dx.doi.org/10.1007/978-3-031-08757-8_61


Generative Networks Applied to Model Fluid Flows 11

Fig. 6. Prediction of one time level (t=30) using WGAN-GP(b) and AAE(c) on a
sample trajectory from train dataset.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_61

https://dx.doi.org/10.1007/978-3-031-08757-8_61


12 M. Jolaade et al.

Fig. 7.Multiple time level prediction (t=35 to t=45) using WGAN-GP(b) and AAE(c)
on a sample trajectory.
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3.3a.) shows the true snapshot of the trajectory at times t=35 to t=45. This is
the known/given solution form the high �delity simulation. Fig. 3.3b. shows
predicted output for these time levels using the same WGAN-GP. Here, we see
that while the the WGAN-GP is able to predict the spatio-temporal distribution,
the prediction ability reduces with forward time. The AAE (Fig. 3.3c), however,
shows no such sign.

4 Discussion and Conclusion

The use of machine learning techniques for �uid modelling problems is very
promising. The low cost, speedup and relative accuracy provided by machine
learning tools, specially generative models, are attractive features in the study
of forward modelling. In this project, an exploratory study is done to under-
stand the capabilities of two generative models - generative adversarial network
(GAN) and adversarial autoencoder (AAE) - for predicting the evolution in
time of a highly nonlinear turbulent �uid �ow. We use the capabilities of the
generative models within a non-intrusive reduced order model framework. The
results demonstrate that both generative models are capable of predicting the
evolution of the vortice positions in time, although the AAE has generate more
accurate predictions than the WGAN-GP. Furthermore, with the event of mode
collapse, we conclude that a `vanilla' DCGAN may be insu�cient for the turbu-
lent �ow prediction. We also show that the WGAN-GP and AAE can generalise
and generate solutions not present in the training set.
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