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Abstract. Knowledge Graph (KG) completion aims to find the miss-
ing entities or relationships in a knowledge graph. Although many ap-
proaches have been proposed to construct complete KGs, graph embed-
ding methods have recently gained massive attention. These methods
performed well in transductive settings, where the entire collection of
entities must be known during training. However, it is still unclear how
effectively the embedding methods capture the relational semantics when
new entities are added to KGs over time. This paper proposes a method,
AGIL, for learning relational semantics in knowledge graphs to address
this issue. Given a pair of nodes in a knowledge graph, our proposed
method extracts a subgraph that contains common neighbors of the two
nodes. The subgraph nodes are then labeled based on their distance from
the two input nodes. Some heuristic features are computed and given
along with the adjacency matrix of the subgraph as input to a graph
neural network. The GNN predicts the likelihood of a relationship be-
tween the two nodes. We conducted experiments on five real datasets to
demonstrate the effectiveness of the proposed framework. The AGIL in
relation prediction outperforms the baselines both in the inductive and
transductive setting.
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1 Introduction

In recent years, significant progress has been made in the construction and de-
ployment of knowledge graphs (KGs) [29]. KGs represent structured relational
information in the form of subject-predicate-object (SPO) triples, e.g,⟨Justin
Trudeau, fatherOf,XavierJames⟩. Freebase [4], YAGO [23], DBPedia [1], Con-
ceptNet [22], and Never-ending language learning (NELL) [6] are a few promi-
nent examples of large KGs. Recently, KGs have gained widespread attention
because of their benefits in a variety of applications, including question answer-
ing [14], dialogue generation [13], information retrieval [30], entity linking [10]
and recommendation systems [37].

Despite their usefulness and popularity, KGs are often noisy and incom-
plete because it is challenging to incorporate all information in the real world,
and these data are typically dynamic and evolving, making it difficult to gen-
erate accurate and complete KGs [28]. Therefore, automating the construction
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of a complete KG is a tedious process. Various techniques have been proposed
for knowledge graph completion, such as the traditional Statistical Relational
Learning (SRL) methods and Knowledge graph embedding methods. Building
a complete KG is possible by predicting objects (known as link prediction) and
relations.

A relation or logical induction prediction problem discovers probabilistic log-
ical rules from a given KG. Induction can be learned in several ways such as from
examples [16] and from interpretations [7]. For example, let’s say, “the 23rd prime
minister of Canada, Justin Trudeau lives in Ottawa, and is married to Sophie
Trudeau.” The first-order logic of the above sentence would be LivesIn(Justin
Trudeau,Ottawa)∧MarriedTo(JustinTrudeau, SophieTrudeau). Therefore, a
logical rule can be derived based on the concept that a married couple lives to-
gether (generally); LivesIn(X,Y ) ∧ MarriedTo(X,Z) → LivesIn(Z, Y ). This
rule can be used to find the relation or possible hypothesis LivesIn(SophieTrudeau,
Ottawa). Here, the known logical rules have been generalized to derive a new
rule or relationship which is true most of the time. Additionally, this rule pre-
dicts the relation for the entities which did not exist when KGs were trained.
In reality, KGs evolve with time and new entities will join. Most of the exist-
ing embedding-based methods are highly successful in predicting the relations
if the entities were seen when KGs were trained, which is transductive reason-
ing. Generalizing relational semantics is a challenging task and important to see
the relationships in unseen entities, which is inductive reasoning. However, these
embedding methods have some limitations in explicitly capturing the relational
semantics when new entities are added to KGs over time.

This paper proposes an Augmenting Graph Inductive Learning (AGIL) frame-
work to learn relational semantics in a given KG, and predict relations (s, ?, o).
Since much of the existing machine learning methods suffer from scalability is-
sues, recently, PLACN [17] and GraIL [25] applied subgraph-based methods in
link prediction and relation prediction, respectively, to overcome this problem.
GraIL used a Graph Neural Network (GNN) based relations prediction method
to learn relational semantics even if the entities were unseen during training.
However, GraIL operated strictly on subgraphs and utilized no additional infor-
mation. PLACN, on the other hand, successfully used local features as additional
information for link prediction. So, our proposed model exploits both PLACN
and GraIL to derive AGIL, which includes three primary steps. First, the sub-
graph is extracted with common neighbors of the target link between nodes i and
j. The common neighbors in the enclosed subgraph are collected till k number
of hops. Then the subgraph is labeled using the Double-Radius Node Labeling
[35] method. In the final steps, the heuristic features of nodes for the entire sub-
graph are extracted and fed into GNN along with the adjacency matrix of the
subgraph, which aggregates the feature vectors into a scoring function for the
prediction.

Our Contribution: The followings are the summary of our contributions:

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_60

https://dx.doi.org/10.1007/978-3-031-08757-8_60


Augmenting Graph Inductive Learning Model With Topographical Features 3

1. We propose an Augmenting Graph Inductive Learning (AGIL) framework
based on common neighbors-based subgraphs for relations prediction in both
transductive and inductive settings.

2. We extract heuristic features of nodes from the entire subgraph and model
a new prediction framework based on Graph Neural Networks (GNN);

The rest of the paper is organized as follows. Section 2 discusses related
existing work. Our framework is presented in Section 3. Following that, Section
4 presents the experimental setup and the corresponding results. Finally, Section
5 concludes the research idea of this paper with directions for future work.

2 Related Work

Multiple methods have been proposed to construct a complete knowledge graph.
Graph Embedding is one of the most broadly used solutions for Knowledge-
Graph Completion challenges. Translation-based approach [5], [24], [5] Bilinear-
based approach [33], [27] and Neural-Network-based approach [8], [2] are well-
known graph embedding approaches.

Traditional approaches on the KG embedding methods are in a transductive
manner. They require all entities during training. However, many real-world
KGs are ever-evolving by adding new entities and relationships. Several induc-
tive KG embedding approaches are proposed to address the issue of emergent
entities. Graph2Gauss [3] is an approach to generalize to unseen nodes efficiently
on large-scale attributed graphs using node features. Then Hamilton et.al. [11]
proposed a generic inductive framework, GraphSAGE, that efficiently generates
node embeddings for previously unseen data in a graph by leveraging node fea-
ture information. Node features are, however, not available in many KGs. In
addition to these inductive embedding methods, DRUM [18], NeuralLP [34],
and RuleN [15] are few models which learn logical rule and predict relations in
KGs.

Recently, GraIL [25] was proposed to generalize inductive relation based on
subgraph reasoning. Since GraIL shows comparatively better performance than
the state-of-the-art methods, we consider extending it. Additionally, SEAL [35],
PLACN [17] and DLP-LES [21] are few recent approaches that successfully ex-
tracted subgraphs from a given networks and applied heuristic features to train
the model. Motivated by their high performance, we incorporate these heuristic
features with our model.

3 Problem Definition and Proposed Approach:

Given a KG, G = ⟨V,E,R⟩ is a directed graph, where V is the set of vertices, E
is the set of edges and R represents the set of relations. The edges in E connect
two vertices to form triplets (h, r, t), where h is a head entity in V , t is a tail
entity in E and r is a relation in R, i.e., E = {(h, r, t)|h ∈ V, r ∈ R, t ∈ V }.
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In a given KG, there is a high chance of missing relations (h, ?, t), head
entity (?, r, t) and tail entity (h, r, ?). Knowledge graph completion in a given
KG, G is defined as the task of predicting missing triplets, E′ = {(h, r, t)|h ∈
V, r ∈ R, t ∈ V, (h, r, t) /∈ E} in both transductive and inductive settings. In the
transductive setting, the entities in a test triple are considered to be in the set of
training entities. Predicting missing triplets in the transductive setting is defined
as E′′ = {(h, r, t)|h ∈ V, r ∈ R, t ∈ V, (h, r, t) /∈ E}. In the inductive setting, the
entities in a test triple are never seen in the set of training entities. Predicting
missing triplets in the inductive setting is defined as E′′′ = {(h, r, t)|h ∈ V ′ or t ∈
V ′, r ∈ R, (h, r, t) /∈ E}, where V ′ ∩ V = ∅ and V ′ ̸= ∅.

Our primary objective is to predict the relation between two nodes. We em-
ploy Graph Neural Network (GNN) [19] to learn the knowledge graph’s structural
semantics. The proposed model has the following steps;

1. Subgraph extraction.

2. Node labeling.

3. Feature matrix construction.

4. Scoring the subgraph using GNN.

3.1 Subgraph Extraction

For each triple in the knowledge graph, the subgraph is extracted with the goal of
isolating the connecting nodes between the two target nodes u and v. We wish
to isolate only the nodes which are found along every possible path between
the head and tail of the knowledge triple, referred to as the target nodes of the
subgraph. A few approaches in the existing literature [35, 17] have been proposed
for subgraph extraction from a given graph. AGIL extracts subgraphs using
common neighbors of any targeted nodes u and v because sufficient information
of entire nodes of subgraphs can be taken for the training process [17]. Moreover,
having additional information about the shared neighbours of both nodes u and
v allows to determine the future existence of a relationship between them. We
set a number k for the number of hops to collect the nodes in the subgraph,
which can be defined as given below.

Definition 1. Subgraph: For a given knowledge graph G = ⟨V,E,R⟩, let Γk(x)
be the neighbors of x within k hops. The subgraph of a target link between nodes
u and v is given by the function S : V 2 → 2V , the function that returns the set
of common neighbor nodes connecting u and v,

S =

k⋃
i=1

(Γi(u) ∩ Γi(v)); for some m > 1 (1)

where {u, v} ∈ V ′, V ′ ⊆ V and V ′ is a set of common neighbors for the targeted
nodes, and |V ′| = ∅.
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3.2 Subgraph Node Labeling

Generally, GNN takes both feature matrix X and adjacency matrix A as input,
(A,X). To construct a feature matrix X of a subgraph, the position of nodes
are really important to maintain the consistency of the structural information.
GNN learns the existence of target links for prediction. So, we exploit the Double-
Radius Node Labeling method, which was proposed by SEAL [35] to label the
subgraphs.

Each label is a 2-tuple. The first element is the distance from the first target
node, the second element is the distance from the second. The target node labels
are always (0, 1) and (1, 0). Figure 1 is an example of a subgraph for target nodes
⟨University, ?, ComputerScience⟩, and the labeled subgraph.

Fig. 1. (a) Subgraph of target nodes. (b)Labeled Subgraph.

3.3 Feature Matrix Construction

The GraIL [25] graph neural network architecture considers only the structural
node feature X for predicting triplets of a given KG. However, we believe that
in addition to the structural node feature, incorporating explicit features of the
subgraph to the feature matrix X send additional information to the graph neu-
ral network training model. Since a knowledge graph does not always have any
explicit feature information about a node, we decided to use the topological
feature of the subgraph to see the importance of topological features in rela-
tion prediction. We belive that topological heuristics are useful in knowledge
graph completion because entities are less likely to form relationships with enti-
ties that are farther away. Similarly with social networks, people tend to create
new relationships with people that are closer to them. The motivation to ap-
ply topological heuristics to knowledge graphs was inspired by research in social
networks. Our model uses the proximity measures taken from the topology as a
heuristic in link prediction.

The specific heuristics used in this research were chosen to give a precise
measurement of the notion of proximity of entities within the knowledge graph.
In research done by Liben-Nowell and Kleinberg [12] with neighbour-based prox-
imity measures, it was found that predictions outperformed chance by factors of
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40 to 50, which led the authors to concluded that topology does indeed contain
latent information which can be used to predict missing or future relationships.

We chose to use multiple proximity measurements as each has their own
characteristics. AGIL uses the following five simple heuristics as used in PLACN
model. Here Γ (v) and Γ (u) specify the set of neighbors within k hops for nodes
v and u respectively.

Common Neighbors (CN) counts how many neighbours any two vertices v
and u have in common.

CNu,v = |Γk(v) ∩ Γk(u)| (2)

Jaccard Coefficient (JC) produces the normalized form of CN.

JCu,v =
|Γk(v) ∩ Γk(u)|
|Γk(v) ∪ Γk(u)|

(3)

Adamic-Adar (AA) is a modified version of JC, which gives a higher priority
to the common neighbors with lower degree.

AAu,v =
∑

w∈|Γk(v)∪Γk(u)|

1

log|Γk(w)|
(4)

Preferential Attachment (PA) The idea behind PA is that a node with a
higher degree has a better probability of forming new connections.

PAu,v = |Γk(v).Γk(u)| (5)

Resource Allocation (RA) is much more similar to AA, but gives higher
priority to low-degree common neighbors.

RAu,v =
∑

w∈|Γk(i)∪Γk(j)|

1

|Γk(w)|
(6)

Let f : V 2 → R5 be the function which returns the set of above five heuristic
features for the pair of nodes u, v. So, f(u, v) returns a vector of five components,
each holding the CN, JC, AA, PA, and RA Value. Let S be the set of nodes
in the enclosing subgraph of target nodes u and v, and {u, v} ∈ S and S ⊆ V .
Then for every node i ∈ S, we can evaluate the heuristic features of x and each
of x’s neighbors y ∈ Γ (x) using f(x, y).

Here, we discuss how we calculate the feature vector of node x. Let Px be
the matrix whose columns are label of nodes in S and rows are five feature
vectors, i.e, Px = [R0, R1, . . . , Rn], where Ry = f(x, y) ∀y ∈ S and n = |S|. The
matrix Px contains all five heuristic features of every possible pair of nodes in
the subgraph. The number of rows and columns of Px are 5 and |S| respectively.
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Example 1 Consider a subgraph S = {u, v, w, x, y, z}, and u and v are the
target nodes of the subgraph S, then

Px =


CNu CNv CNw 0 CNy CNz

AAu AAv AAw 0 AAy AAz

JCu JCv JCw 0 JCy JCz

RAu RAv RAw 0 RAy RAz

PAu PAv PAw 0 PAy PAz


5×n

Where the column for x is zero, because it is pointless to compare x’s topology
to itself.

Since the size of Px depends on the size of the subgraph, |S|, which is variable,
this is not suitable for scaling in training on when the node degree of the graph
is very high. A very large feature vector can cause critical performance issues in
the model. This is where the Fixed Sized Subgraph and Variable Sized Subgraph
models diverge. Each take a different approach in deriving a feature vector Fx

from the topology matrix Px.
PLACN uses a constant value k, which is the absolute maximum size a sub-

graph may reach. k is derived in a way to be large enough for most node pairs.
The value of k is a function of the number of edges and nodes in the complete
graph.

k ≈
⌈
2|E|
|V |

(
1 +

2|E|
|V |(|V | − 1)

)⌉
(7)

The theoretical analysis of GraIL determined that any logical rule R derived
from the topology of a knowledge graph uniquely corresponds to a set of nodes
connected through a sequence of relations, and that GraIL can learn this rule if
the nodes and relations are present in the graph neural network.

To examine the differences between fixed and variable size sub graph, we
constructed our feature matrix and sent it to GNN.

Topology Information in Variable Sized Subgraphs: In order to have
a feature vector of constant size, we take a statistical analysis of each heuristic
feature, across all of the nodes in the subgraph. For each heuristic featureR ∈ R5,
we can take the mean, median, standard deviation, minimum, maximum and
variance across all of the nodes in the subgraph. In other words, we can apply
the statistical functions to the rows of the topology matrix Px.

Let Fx = Stat(Px), where Stat(Px) replaces each row of Px with ⟨Mean(r),
Median(r), V ariance(r), Min(r),Max(r), Std(r)⟩, So the resulting feature ma-
trix has 30 elements,

Fx =


Mean(CN) Med(CN) V ar(CN) Min(CN) Max(CN) STD(CN)
Mean(AA) Med(AA) V ar(AA) Min(AA) Max(AA) STD(AA)
Mean(JC) Med(JC) V ar(JC) Min(JC) Max(JC) STD(JC)
Mean(RA) Med(RA) V ar(RA) Min(RA) Max(RA) STD(RA)
Mean(PA) Med(PA) V ar(PA) Min(PA) Max(PA) STD(PA)


5×6
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Therefore, Fx sees the rows of Px replaced by the statistical results which
are rows of fixed size 5, since we consider five heuristic values and columns of
fixed size 6 since there are 6 statistical functions. Fx will always have a total of
30 elements, suitable to be encoded into a node x’s feature vector for training
in the Graph Neural Network. We simply list all 30 elements as components of
the final feature vector.
Topology Information in Fixed Sized Subgraphs: As PLACN used in it’s
architecture, the topological feature matrix Px of subgraphs is fixed for a given
KG. The columns correspond to the fixed subgraph size and the rows correspond
to each heuristic function. Therefore the size of Px is always 5 × |S|. Thus, for
fixed sized subgraphs, we can directly encode Px,

Fx = Px (8)

In practice, this has led to very large vectors, when the fixed size of the
subgraphs is large.

3.4 Scoring subgraph using GNN

This section explains the importance of GNN in our framework.

GNN Message Passing: In a GNN, a hidden embedding hk
u for each node

u ∈ V is updated on each message-passing iteration based on information gath-
ered from u’s graph neighbor Γ (u). In other terms, the representation of the
node u is iteratively updated by aggregating its neighbors’ representations [32].
So basically, GNN works based on two functions: Aggregation function passes
information from Γ (u) to u, and update function update features of u based on
the information to form an embedded representation.

In AGIL model, each enclosed subgraph has a network of k-hop neighborhood
nodes. So, after aggregating for k iteration, the kth layer of GNN is represented
as,

mk
u = AGGREGATEk({hk−1

v : v ∈ Γ (u)} (9)

hk
u = UPDATEk(hk−1

u ,mk
u) (10)

where hk
u is the feature vector of node u at kth iteration, Initially, h0

u = Xu, and
mk

u is the message aggregated from Γ (u) at kth iteration.
In equation 9, there are various approaches proposed for message AGGRE-

GATE function. Motivated by these architectures, GraIL adopts the method
proposed by [20]. The following function defines the message aggregated func-
tion in a relational multi-graph:

hk
u = σ

(∑
r∈R

∑
v∈Γ r

i

αrruvuW
k−1
r hk−1

v +W k−1
0 hk−1

u

)
(11)

where k is the current layer of the neural network, u is the node being aggregated,
R is the set of relationship types, αrruvu is the attention value for layer k, r is
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WN18RR FB15k-237 NELL-995
# R # V # E # R # V # E # R # V # E

v1
train 9 2746 6678 183 2000 5226 14 10915 5540
ind-test 9 992 1991 146 1500 2404 14 225 1034

v2
train 10 6954 18968 203 3000 12085 88 2564 10109
ind-test 10 2923 4863 176 2000 5092 79 4937 5521

v3
train 11 12078 32150 218 4000 22394 142 4647 20117
ind-test 11 5084 7470 187 3000 9137 122 4921 9668

v4
train 9 3861 9842 222 5000 33916 77 2092 9289
ind-test 9 7208 15157 204 3500 14554 61 3294 8520

Table 1. The statistical information of datasets for inductive setting, where R, V and
E are relations, vertices and edges respectively.

any relationship , rt is a target relationship between nodes v and u, W k
r is the

transformation matrix for r and layer k, and hk
v is the feature vector of the node

v.
The GNN uses an aggregation function to distribute features of nodes into

their neighbors, for each layer of the neural network. The aggregation function
used by GraIL uses the node’s labels as the feature vector. We append the el-
ements of the feature matrix Fx to the h vector used in formulation 11. The
feature vector h in the GraIL model uses only the node labels (L1, L2), for ex-
ample (1, 0), or (25.75). However, the node structured information (i.e, node
labels) are limited information for training GNN. Therefore, we extend the fea-
ture vector with the 30 elements from Fx. So, in AGIL model, the feature vector
h for node x would incorporate the statistical analysis of heuristic features as
below;
⟨L1, L2,Mean(CN),Med(CN), V ar(CN),Min(CN),Max(CN), STD(CN),
Mean(AA),Med(AA), V ar(AA),Min(AA),Max(AA), STD(AA),Mean(JC),
Med(JC), V ar(JC),Min(JC),Max(JC), STD(JC),Mean(RA),Med(RA),
V ar(RA),Min(RA),Max(RA), STD(RA),Mean(PA),Med(PA), V ar(PA),
Min(PA),Max(PA), STD(PA)⟩.

At each layer, the graph neural network continuously combines feature vec-
tors of nodes with the aggregates of their 1-hop neighborhoods.

4 Experiments

We perform experiments to demonstrate the efficiency and effectiveness of our
framework, AGIL. Experiments are carried out on benchmark datasets, WN18RR
[9], FB15k-237 [26], and NELL-995 [31] which were originally developed for trans-
ductive settings. To conduct inductive relation prediction, we use 4 versions of
inductive datasets and 2 versions of transductive datasets, which are prepared
by the GraIL authors and identical to the data used in their experiments. They
constructed fully-inductive benchmark datasets by sampling disjoint subgraphs
from the KGs. These datasets consist of two set of graphs: Train-graph and
Ind-test-graph. Table 1 represents the statistical information on how benchmark
datasets are split for inductive setting.
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All the experiments are performed on a Intel(R) Core(TM) i7-3770 CPU
computer @3.40GHZ speed and 24 GB of RAM.

WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 86.02 83.78 62.90 82.06 69.64 76.55 73.95 75.74 64.66 83.61 87.58 85.69
DRUM 86.02 84.05 63.20 82.06 69.71 76.44 74.03 76.20 59.86 83.99 87.71 85.94
RuleN 90.26 89.01 76.46 85.75 75.24 88.70 91.24 91.79 84.99 88.40 87.20 80.52
GraIL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50
AGIL (F-Subgraph) 96.38 95.77 89.28 95.66 73.5 84.56 76.4 NA 90.56 93.7 94.18 NA
AGIL (V-Subgraph) 94.76 94.92 86.46 93.65 87.42 91.20 93.44 93.52 91.21 96.84 97.04 95.42

Table 2. Inductive Setting Experimental Result (AUC-PR)

4.1 Inductive Relation Prediction

We test our model, AGIL on inductive datasets to determine if it can generalise
relations when the entities aren’t visible during GNN training. AGIL is trained
on Train-graph and tested on Ind-test-graph.

To evaluate the performance, we compare AGIL against the following state-
of-the-art methods.

1. NeuralLP [34]: an end-to-end differentiable model for inductive relation pre-
diction.

2. DRUM [18]: a scalable and differentiable approach for mining first-order
logical rules from KG.

3. RuleN [15]: statistical rule mining method, and the current state-of-the-art
in inductive relation prediction on KGs.

4. GraIL [25]: inductive relation prediction by subgraph reasoning, and highly
similar to AGIL.

We use the original source code by the authors for the implementation of above
methods, NeuralLP1, DRUM2, RuleN3 and GraIL4. For AGIL framework, the
implementation is built upon the Python code base provided by [25] in their
GraIL implementation. It uses the Deep Graph Learning library to implement
a graph neural network.

Results and Discussion: The performance of the experimental setup for
AGIL is represented in Table 2 against baseline methods. The Precision Recall
Area Under Curve (AUC-PR) is used to evaluate the model’s accuracy. The
AGIL model is tested based on fixed sized subgraph (F-Subgraph) as proposed
in PLACN, and variable sized subgraph (V-Subgraph). We observed that the
model with fixed sized subgraph fails to perform better in some dataset such
as v4-FB15k-237 and v4-NELL-995. The poor performance might be due to the
absence of critical nodes and relations in the subgraph with fixed size neigh-
bours. But, AGIL model with variable sized subgraph outperforms most of the

1 https://github.com/fanyangxyz/Neural-LP
2 https://github.com/alisadeghian/DRUM
3 https://web.informatik.uni-mannheim.de/RuleN/
4 https://github.com/kkteru/grail
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standard baseline methods. In the NELL-995 dataset, the improvement is most
significant compared to the other datasets. In WN18RR dataset, AGIL performs
significantly better when we use fixed sized subgraph extraction. This indicates
that for any knowledge graph of realistic size, fixed sized subgraphs are not
always suitable for Inductive Graph Neural Network models.

If k value is sufficiently large enough, it may include all connecting paths. The
recommended calculation to derive k by PLACN was shown to be too low for
certain data sets, such as FB15k-237. If a knowledge graph has a high number
of cycles, there may be many alternative paths between target nodes. Due to
the truncation of the subgraph size to k, only a subset of possible paths will be
analyzed by the neural network. Therefore, only a subset of the possible inductive
rules will be learned by the GNN. When those inductive rules are applied to link
prediction, they fail to produce accurate results. Both AGIL and GraIL provide
a limiting factor to prevent excessively large subgraphs. It limits the number of
hops from each node to a maximum, in all experiments, this maximum was 3
hops.

Moreover, GraIL outperforms on v4 of FB15k-237. However, the performance
of AGIL is still close to GraIL on this dataset.

4.2 Transductive Relation Prediction

Most existing embedding based KG completion methods consider transductive
setting for the prediction. Basically, all the existing KGs including WN18RR,
FB15k-237, and NELL-995 are originally developed for the transductive setting.
We test AGIL on transductive setting to determine it can predict the links
accurately. We then compare AGIL against GraIL and RuleN.

WN18RR FB15k-237 NELL-995
v1 v2 v1 v2 v1 v2

RuleN 81.79 83.97 87.07 92.49 80.16 87.87
GraIL 89.00 90.66 88.97 93.78 83.95 92.73
AGIL 92.77 92.80 90.03 95.56 92.44 93.84

Table 3. Transductive Setting Experimental Result (AUC-PR)

Results and Discussion: The experimental results on transductive setting
is represented in Table 3, which compares AGIL with GraIL and state-of-the-
art method RuleN. In all the cases, AGIL outperforms the other two methods.
For the time being, we could not compare AGIL with other embedded-based
methods. We will compare this in the future.

During the experiments it was shown that use of feature vectors would cause
the model to overfit the training data, and loose some generality when applied
to the test triples. To resolve this, we utilized the NodeNorm function [36] to
normalize the feature vector. This gives the effect of making each feature vector
have the save variance. Zhou et.al [36] have observed that GNNs perform poorly
when the variance of features of nodes is very high. The normalization replaces
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each component in the feature vector with the difference from the mean divided
by the variance.
The code is available in the GitHub link:
https://anonymous.4open.science/r/agil2021/README.md.

5 Conclusions

This paper examines an augmenting graph inductive learning framework based
on GNN, named AGIL. Since many real-world KGs evolve with time, training
very large networks with GNN is a challenging task. Therefore, we used a com-
mon neighbor-based subgraph to solve the scalability issue. Although AGIL is
highly similar to the recently proposed model GraIL, AGIL incorporates topo-
logical heuristic features as additional information when GNN trains. Experi-
mentally, we can see that the additional feature information gives better accu-
racy in both transductive and inductive settings. We also proved experimentally
that fixed-sized subgraphs are not always suitable for Inductive Graph Neural
Network models. Overall, our model, AGIL, outperforms most of the baseline
methods. In the future, we are planning to examine the importance of individual
topological features for the relation prediction.
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