
A review of 3D point clouds parameterization methods  

Zaiping Zhu1, Andres Iglesias2,3, Lihua You1 and Jian Jun Zhang1 

1 The National Center for Computer Animation, Bournemouth University, UK 
2 Department of Applied Mathematics and Computational Sciences, University of Cantabria, 

Cantabria 39005, Spain 
3 Department of Information Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, 

274-8510 Funabashi, Japan 

Abstract. 3D point clouds parameterization is a very important research topic in 

the fields of computer graphics and computer vision, which has many applica-

tions such as texturing, remeshing and morphing, etc. Different from mesh pa-

rameterization, point clouds parameterization is a more challenging task in gen-

eral as there is normally no connectivity information between points. Due to this 

challenge, the papers on point clouds parameterization are not as many as those 

on mesh parameterization. To the best of our knowledge, there are no review 

papers about point clouds parameterization. In this paper, we present a survey of 

existing methods for parameterizing 3D point clouds. We start by introducing the 

applications and importance of point clouds parameterization before explaining 

some relevant concepts. According to the organization of the point clouds, we 

first divide point cloud parameterization methods into two groups: organized and 

unorganized ones. Since various methods for unorganized point cloud parame-

terization have been proposed, we further divide the group of unorganized point 

cloud parameterization methods into some subgroups based on the technique 

used for parameterization. The main ideas and properties of each method are dis-

cussed aiming to provide an overview of various methods and help with the se-

lection of different methods for various applications.    

Keywords: Parameterization, organized point clouds, unorganized point clouds, 

mesh reconstruction. 

1 Introduction 

3D point clouds parameterization, also called point clouds mapping, is the process of 

mapping a 3D point cloud onto a suitable (usually simpler) domain. It has many appli-

cations such as object classification, texture mapping and surface reconstruction [1–3]. 

In many situations, it is computationally expensive or difficult to work with 3D point 

clouds directly. Therefore, projecting them onto a lower-dimensional space without 

distorting their shape is necessary. Compared to mesh parameterization, 3D point 

clouds parameterization is more challenging in general because there is no connectivity 

information between points, which hinders the direct extension of well-established 

mesh parameterization algorithms to point cloud parameterization. There are some sur-

vey papers on mesh parameterization [4,5]. However, to the best of our knowledge, 
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there are no survey papers about point clouds parameterization. In this paper, we will 

review the methods of parameterizing point clouds. Notice there are also some works 

on 2D point clouds parameterization. Since 2D point clouds parameterization is differ-

ent from 3D point clouds parameterization in most cases, this paper will only focus on 

the methods of 3D point clouds parameterization.  

Some methods have been proposed to parameterize point clouds. In this paper, we 

roughly divide them into two main groups according to whether point clouds are orga-

nized or not. For each of the two groups, we further divide it into some subgroups based 

on the property of the mapping process and review each of the methods.  

2 Some concepts 

In this section, some concepts related to point clouds will be introduced to help readers 

understand the problem of point clouds parameterization. Since mesh parameterization 

has been well investigated in existing work and some ideas of mesh parameterization 

can be adopted by or adapted to point cloud parameterization, we will also introduce 

some concepts about mesh parameterization in this section.  

1) Organized and unorganized point clouds: Generally, point clouds can be di-

vided into organized and unorganized ones. Organized and unorganized point 

clouds are also called structured and unstructured point clouds, respectively. The 

division is determined by the way of storing point cloud data. For organized point 

clouds, the data are stored in a structured manner, while unorganized point cloud 

data are stored arbitrarily. Specifically, an organized point cloud is similar to a 2-

D matrix and its data are divided into rows and columns according to the spatial 

relationships between the points. Accordingly, the spatial layout represented by 

the 𝑥𝑦𝑧-coordinates of the points in a point cloud decides the memory layout of 

the organized point cloud. Contrary to organized point clouds, unorganized point 

clouds are just a collection of 3-D coordinates, each of which denotes a single 

point. 

2) Global and local parameterization: To parameterize point clouds, some meth-

ods map the whole point set of an underlying structure to a parameterization do-

main. In contrast, some other methods split the problem into several subproblems, 

each of which is called a local parameterization. The choice between global and 

local parameterization has impacts on mapping processes and results. Globally 

parameterizing the whole point set can guarantee the reconstructed mesh is a per-

fect manifold, meaning there are no seams, which may exist if the point cloud is 

partitioned and locally parameterized. However, processing the whole point cloud 

at the same time may be computationally expensive, especially for large struc-

tures.  

3) Topological shapes: Topological shapes can be grouped based on the number of 

holes they own. Shapes with no holes such as spheres and bowls are treated as 

genus-0 shapes. Similarly, genus-1, genus-2 and genus-3 shapes have one, two 

and three holes in them, respectively, and so on.  
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4) Bijective function: also called bijection, invertible function, or one-to-one corre-

spondence, pairs each element in one set exactly to one element in the other set, 

and vice versa.  

5) Isometric, conformal, and equiareal mappings: Suppose 𝑓 is a bijective func-

tion between a mesh 𝑆 or a point cloud and a mapping domain 𝑆∗, then 𝑓 is iso-

metric (length preserving) if the length of any arcs on 𝑆 is preserved on 𝑆∗; 𝑓 is 

conformal (angle preserving) if the angle of intersection of every pair of intersect-

ing arcs on 𝑆 is preserved on 𝑆∗; 𝑓 is equiareal (area preserving) if the area of an 

area element on 𝑆 is preserved on 𝑆∗. Isometric mappings are equiareal and con-

formal. Any mappings that are equiareal and conformal are isometric mapping.  

3 Parameterization methods of organized point clouds  

To parameterize an organized point cloud, many methods iteratively obtain a topolog-

ically identical 2D triangulation from the underlying 3D triangulation of the point 

cloud, and the 2D triangulation determines the parameter values of the vertices in the 

domain plane. Depending on the ways of transforming from 3D to 2D, there are several 

methods, including Harmonic parameterization [6], Floater’s barycentric mappings [7] 

and the most Isometric parameterization [3]. For Harmonic parameterization in [6], the 

arc length is regarded as the parameter value of a spline curve, which is used to mini-

mize the integral of the squared curvature with respect to the arc length for fairing the 

spline curve. With regard to barycentric mappings in [7], a shape-preserving parame-

terization method is applied for smooth surface fitting; the parameterization that is 

equivalent to a planar triangulation can be obtained by solving a linear system based on 

the convex combination. In [3], Hormann and Greiner propose a method to parameter-

ize triangulated point clouds globally, the way of parameterizing inner point set is the 

same as that of parameterizing boundary point set. However, they ignore the problem 

of parameterizing triangulated point clouds with holes.  

Energy function has also been defined to minimize the metric distortion in the trans-

formation process from 3D to 2D. The methods described in [7, 8] follow the shared 

approach, which firstly parameterizes the boundary points, and then minimizes the fol-

lowing edge-based energy function for the parameterization of inner points [3]: 

𝐸 =  
1

2
 ∑ 𝑐𝑖𝑗  ||𝑃𝑖 − 𝑃𝑗||2                                     (1) 

where 𝑐𝑖𝑗  is the edge coefficient that can be chosen in various ways, 𝑃𝑖  and 𝑃𝑗 are two 

points at the same edge.  

In order to reconstruct a tensor product B-spline surface from scattered 3D data with 

specified topology, choosing a suitable way to parameterize the points is crucial in the 

reconstruction process. The method adopted by Greiner and Hormann in [8] is called 

the spring model. With this method, the edge of the 3D triangulation is replaced by a 

spring. Then the boundary points are mapped first onto a plane and stay unchanged. 

Next, the inner points are mapped onto this plane by minimizing the spring energy. The 

procedure is repeated to improve the parameters until certain conditions are satisfied.  
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The above methods are mainly applicable to structured point clouds. They are not 

efficient when the number of points increases, and are likely to fail when holes and 

concave sections exist in the point clouds.  

4 Parameterization methods of unorganized point clouds  

In comparison with the parameterization of organized point clouds, many more meth-

ods have been proposed to parameterize unorganized point clouds. Table 1 lists these 

methods and gives the information about the category, parameter domain, local or 

global parameterization, topology, applications and publication year. 

Table 1. methods to parameterize unorganized point clouds 

Methods Category 

Param-

eter do-

main 

Lo-

cal/global 

parame-

terization 

Topology Applications Year 

“Simplicial” 

surface [10]  

Base sur-

faces-based 

methods 

Base 

surfaces 

/ 
Arbitrary 

topology 

Surface re-

construction  
1992 

Manually 

define [9] 
Global / 

Least square 

fitting of B-

spline curves 

and surfaces 

1995 

Minimizing 

quadratic 

function 

[11] 

/ / 

B-spline 

curves and 

surfaces ap-

proximation 

2002 

Recursive 

DBS [12] 

Global/lo-

cal 
Disk 

Efficient pa-

rameteriza-

tion  

2005 

Recursive 

subdivision 

technique 

[13] 

Global/lo-

cal 

Disk 

(With hole 

is ok) 

Parameteriz-

ing point 

clouds 

2007 

Floater 

meshless 

parameteri-

zation [14-

17] 

Meshless 

parameteri-

zation 

Plane Global Disk 
Surface re-

construction 
2000 

Meshless 

parameteri-

zation for 

spherical to-

pology [18] 

Planes Local Genus-0 
Surface re-

construction 
2002 

As-rigid-as-

possible 

meshless 

parameteri-

zation [19] 

Plane Global Disk 

Denoising 

and parame-

terizing point 

clouds, mesh 

reconstruc-

tion 

2010 
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Meshless 

quadrangu-

lation by 

global pa-

rameteriza-

tion [20] 

Plane Global 
Arbitrary 

genus 

Meshless 

quadrangula-

tion 

2011 

Spherical 

embedding 

[23] 

Spherical 

mapping 

Sphere Global Genus-0 

Mesh recon-

struction 2004 

3D point 

clouds pa-

rameteriza-

tion algo-

rithm [22] 

Sphere Global 

Relatively 

simple 

models 

Parameteriz-

ing point 

clouds 

2008 

Spherical 

conformal 

parameteri-

zation [21] 

Sphere Global Genus-0 
Mesh recon-

struction 
2016 

Discrete 

one-forms 

[24] 
Adapt from 

mesh pa-

rameteriza-

tion 

Planes Local Genus-1 
Mesh recon-

struction 
2006 

Periodic 

global pa-

rameteriza-

tion [25] 

Plane Global 
Arbitrary 

genus 

Direct quad-

dominant 

meshing of 

point cloud 

2011 

PDE & 

SOM [26] 

Neural net-

works-based 

methods 

Adap-

tive base 

surface 

Global 

Complex 

sculptured 

surfaces 

Surface re-

construction 
2001 

Adaptive se-

quential 

learning 

RBFnet-

works [27] 

/ Global Freeform 

Point-cloud 

surface pa-

rameteriza-

tion 

2013 

Residual 

neural net-

work [28] 

/ Local 
Fixed de-

gree curve 

Polynomial 

curve fitting 
2021 

A new pa-

rameteriza-

tion method 

[29] 

Other 

/ / / 

NURBS sur-

face interpo-

lation 

2000 

Pointshop 

3D [31] 
/ / / 

Point-based 

surface edit-

ing 

2002 

Free-bound-

ary confor-

mal parame-

terization 

[30] 

/ 
Global/lo-

cal 
/ 

Parameteriz-

ing point 

clouds for 

meshing 

2022 
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According to the property of the mapping process, we divide the parameterization 

methods of unorganized point clouds into base surfaces-based methods, meshless pa-

rameterization, spherical mapping, methods adapted from mesh parameterization, neu-

ral networks-based methods, and other methods.   

4.1 Base surfaces-based methods 

For parameterization of unorganized point clouds, base surfaces, which approximate 

the underlying structure of point clouds, have been widely applied to parameterize point 

clouds. Base surfaces can be a plane, a Coons patch, or a cylinder [2]. The parameter 

values of each point in a point cloud can be obtained by projecting the point cloud onto 

a base surface. The projection direction can either be perpendicular to the surface or 

based on a determined projection vector. According to [9], a base surface should own 

the following properties:  

a) Unique local mapping: The uniqueness implies that any two different points on 

the underlying surface should be mapped onto two different locations on the map-

ping domain.  

b) Smoothness and closeness of base surface: This indicates that a base surface 

should be as smooth and simple as possible, while still approximating the under-

lying surface as much as possible. The balance between these properties should 

be carefully considered.  

c) Parameterization of base surface: This implies that how we parameterize a base 

surface has a direct effect on the parameterization of the fitting surface. We can 

choose a more suitable way to parameterize a base surface by referring to the un-

derlying structure of the fitting surface.  

To get access to such base surfaces, some approaches have been proposed. For ex-

ample, Hoppe et al. [10] propose a method to produce so-called “simplicial” surfaces. 

They first define a function to estimate the signed geometric distance to the underlying 

surface of the point clouds, then a contouring algorithm is applied to approximate the 

underlying surface by a “simplicial” surface. Their method is capable of reconstructing 

a surface with or without boundary from an unorganized point set. However, there is 

no formal guarantee that the reconstructed result is correct and the space required to 

store the reconstruction is relatively large. In [9], users can also manually define some 

section curves and four boundary curves to get a base surface of a point cloud, as some 

characteristic curves approximating the underlying structure of the point cloud are suf-

ficient in defining a base surface. But it is also necessary to take advantage of the inte-

rior characteristic curves when the geometry is complex, even though just four corner 

points can be used to create a base surface in some cases. A base surface can also be 

obtained by iteratively minimizing a quadratic objective function [11]. With this 

method, a linear system of equations is solved in each step. To parameterize unstruc-

tured point clouds, Dynamic Base Surfaces (DBS) are also proposed by Azariadis [2]. 

As its name implies, a BDS is gradually improved regarding its approximation to the 

underlying structure of a point cloud, and the parameter value of each point in the point 

cloud is obtained by projecting it orthogonally to the DBS. Different from existing 

methods, no restrictions are required for the density and the homogeneity of point 

clouds. The limitation of this method is that it is only applicable to the point clouds 

where a closed boundary consisting of four curves exists. Azariadis and Sapidis [12] 
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present a method to parameterize a point cloud globally and/or locally using recursive 

dynamic base surfaces. Their method can handle arbitrary point clouds of disk topol-

ogy. Figure 1 shows the local parameterization of one subset of several point clouds 

using this method. The same authors [13] extend the DBS concept and use a recursive 

subdivision method to improve the accuracy of point clouds parameterization, espe-

cially for some small regions of the point clouds, where the approximation error by the 

DBS is not acceptable. They divide such regions into smaller parts and the points on 

these parts are approximated by 𝑐0 composite surface based on recursive DBS subdivi-

sion to increase the approximation error, then to make the point clouds parameterization 

more accurately.   

 
(a)                                               (b)                     (c) 

Fig. 1. Local parameterization of: (a) “bunny” point cloud, (b)  “horse” point cloud, and (c) 

“human” point cloud. [12]. 

4.2 Meshless parameterization 

Meshless parameterization, first proposed by Floater and Reimers in [14], is also a 

widely used method to parameterize and mesh point clouds. As shown in Figure 2, the 

main idea of meshless parameterization is to map the points in a point cloud onto a 

plane, where the mapping points are triangulated using an appropriate triangulation 

method, and then the original point cloud is meshed with the same triangulation edge 

structure as the mapping points. In order to make sure the reconstructed mesh has high 

quality, the mapping points should preserve the local structure of the original point 

clouds as much as possible. Therefore, the shape distortion ought to be minimized in 

the parameterization process. This is formulated as the problem of solving a sparse 

linear system [14, 15]. Since the mapping does not depend on the topological structure 

of point clouds, this method is called meshless parameterization. After the projection, 

the corresponding triangulation of the point clouds before mapping can be obtained by 

triangulating the projecting points in the planar parameter domain. This method has 

some limitations. First of all, solving a large linear system using their method is not 

efficient. Secondly, the reconstructed 3D triangles may distort and intersect each other 

due to the artificial convex boundary, which is also a problem when there are concave 

holes and the convex combination is not well defined along the concave parts of the 

hole boundary. To improve the efficiency of solving the linear system more efficiently, 

Volodine et al. [16] show that it can be done by an appropriate reordering of the matrix, 
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which enables the linear system to be solved efficiently by deploying a direct sparse 

solver. To overcome the second problem, the same authors [17] extend the method to 

avoid distortion in the vicinity of concave boundaries by inserting virtual points to the 

concave neighbourhood, which can make sure the convex combination mapping is al-

ways defined. The methods described in [17] are only applicable to disk shape point 

clouds. To make the method presented in [17] more general, Hormann and Reimers 

[18] present an algorithm that can handle genus-0 topology as well by dividing the 

problem of triangulating point clouds into subproblems, each of which can be solved 

using the method in [17]. To improve the reconstructed result, Zhang et al. [19] apply 

an “as-rigid-as-possible” meshless parameterization method to parameterize a disk to-

pology point cloud onto a plane while denoising the point cloud. Since their method 

can preserve local distances in the point cloud, a more regular 3D mesh can be obtained. 

Li et al. [20] present a meshless global parameterization method to parameterize point 

clouds and use the obtained parameterization to mesh the point clouds automatically.  

   
(a)                                                      (b)

 
(c)                                                     (d) 

Fig. 2. (a) Point set. (b) meshless parameterization. (c) Delaunay triangulation of the mapping 

points. (d) surface triangulation [15].  

4.3 Spherical mapping 

When the underlying structure of the point clouds is closed, which means there are no 

boundaries of the structure, “spherical mapping” is normally applied to parameterize 
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the point clouds. The reason why “spherical mapping” is applied under such conditions 

can be partly explained by the uniform theorem [21], which states that every genus-0 

closed surface is conformally equivalent to 𝑆2. Thus, mapping from a genus-0 surface 

to the unit sphere is natural. The same idea is also applied to genus-0 point clouds. One 

such example is shown in Figure 3. The problem of forming a spherical mapping given 

a point cloud model P can be formulated as [22]: 

𝑠 =  𝑜 +  𝑟𝑠
𝑝−𝑜

||𝑝−𝑜||
                                     (2) 

where 𝑠 are the spherical mapping points, 𝑝 is the original point set, 𝑜 is the centre of 

the original point set and 𝑟𝑠 represents the largest distance between the original point 

set and the centre with the radius of the sphere.  

Spherical parameterization is mostly used to mesh point clouds. For example, 

Zwicker and Gotsman [23] present a method to reconstruct a manifold genus-0 mesh 

from a 3D point cloud by using spherical embedding of a k-nearest neighbourhood 

graph of a point cloud. Then the embedded points are triangulated and the reconstructed 

mesh structure is used to mesh the original point cloud. The main advantage of this 

method is that it can guarantee a closed manifold genus-0 mesh, even the input point 

cloud is noisy. However, its drawbacks are that pre-processing and post-processing may 

be required for the input point clouds and the output mesh, respectively. In [21], Choi 

et al. extend a state-of-the-art spherical conformal parameterization algorithm used to 

parameterize genus-0 meshes to the case of point clouds, which are achieved by using 

an improved approximation of the Laplace-Beltrami operator on the point cloud and a 

scheme named the north-south reiteration for the meshing of point clouds. The reason 

why they apply the method of spherical conformal parameterization method to recon-

struct meshes from point clouds is mainly that directly triangulating a point cloud is 

challenging, especially for complex geometry, which can be achieved more easily with 

the aid of spherical conformal parameterization. Specifically, instead of directly trian-

gulating a point cloud, the points on the unit sphere after mapping are triangulated using 

the spherical Delaunay triangulation algorithm. Then triangulation of the original point 

cloud can be obtained from the triangulation on the spherical point cloud as these two 

point clouds have a one-to-one correspondence.  

    
(a)                                   (b) 

Fig. 3. (a) A bulldog point cloud. (b)  the spherical conformal parameterization of the bulldog 

point cloud [21]. 
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4.4 Methods adapted from mesh parameterization 

There are also some methods that are adapted from parameterizing meshes to parame-

terizing point clouds. For example, Tewari et al. modify the harmonic one-form method 

used in parameterizing manifold meshes to parameterize genus-1 point clouds that are 

sampled from such meshes [24]. They locally parameterize the subsets of a point cloud 

and the way they parameterize the point cloud can guarantee the consistency between 

the pieces. Even though the reconstructed results using their method are not much better 

than other reconstruction techniques, their method presents some new tools to the sur-

face reconstruction problem and is very simple to implement. Li et al. [25] present a 

new method to reconstruct quad-dominant mesh from unorganized point clouds using 

the adapted periodic global parameterization method, which is modified from the peri-

odic global parameterization method that is used to parameterize a triangle mesh. The 

local Delaunay triangulation is used to design the parameterization of the point cloud. 

Their method can be used to deal with noisy point clouds without global connectivity. 

But it suffers from close-by structures because topological errors may be raised from 

the local Delaunay triangulation method by connecting two nearby surfaces.  

4.5 Neural networks-based methods 

With the rapid development of neural network techniques, they have been applied to 

three main tasks of point cloud processing, i. e., 3D shape classification, 3D object 

detection and tracking, and 3D point cloud segmentation [26]. Besides their applica-

tions in the three main tasks, some researchers have investigated neural network-based 

point cloud parameterization. For example, Barhak and Fischer [27] adopt a self-organ-

izing map (SOM) for the parameterization of small sets of clean points with low-fre-

quency spatial variations, which can be used to reconstruct smooth surfaces. There are 

mainly two steps in the parameterization process: In the first step, Partial Differential 

Equation (PDE) and SOM are applied where the former technique can yield a paramet-

ric grid without self-intersection and the latter one makes sure all the sampled points 

have an impact on the grid, which guarantees the uniformity and smoothness of the 

reconstructed surface. In the second step, an adaptively modified 3D base surface is 

created for point clouds parameterization. Meng et al. [28] proposed a method to pa-

rameterize larger, noisy and unoriented point clouds by using adaptive sequential learn-

ing RBFnetworks. The network adopts a dynamic structure by adaptive learning and 

the neurons are adjustable regarding their locations, widths and weights, thus making 

it more powerful compared to other methods that apply RBFs at determined locations 

and scales. What is more, multi-level parameterization and multiple level-of-details 

(LODs) can be achieved in two ways. When multiple LODs meshes are required, pa-

rameterizing the point clouds with the best resolution and the points and surfaces can 

be computed at degrading sampling level to get the required LODs. In the second case 

where only one downgraded LOD is required, downgraded parameterization can be 

applied to obtain the result. Scholz and Juttler [29] apply residual deep neural networks 

to parameterize point clouds for polynomial curve fitting. Since the network approxi-

mates the function that assigns a suitable parameter value to a sequence of data points, 

optimal curve reconstruction from point clouds can be obtained. However, their method 

is only applicable to a small number of sample points and the proposed neural networks 
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do not consider discrete surface point data. Figure 4 shows the layout of their proposed 

residual neural network. 

 
(a)                                            (b) 

Fig. 4. (a) The layout of a building block. (b)  the layout of the whole residual neural network 

[29]. 

4.6 Other methods  

Some other methods cannot be easily grouped. Therefore, we refer to them as other 

methods in this subsection and review them below.  

As Ma and Kruth discuss in [9], three methods are usually adopted to parameterize 

digitized points for performing least squares fitting of B-spline curves and surfaces. 

These three methods are uniform parameters, cumulative chord length parameters and 

centripetal parameterization parameters. Since all these methods assume that the points 

are scattered in a special pattern, like chain points for curves and grid points for sur-

faces, these methods are very likely to fail when the points are irregularly spaced. To 

address this issue, Ma and Kruth [9] propose a simple technique, which parameterizes 

the irregularly spaced points by projecting them onto a base surface and obtaining their 

parameters from the parameters of the projected points. Jung and Kim [30] propose a 

new method to parameterize data points for NURBS surface interpolation, which is 

more powerful than the existing point clouds parameterization methods. With this 

method, the parameter value at the maximum of each rational B-spline basis function 

is treated as the parameter value of the corresponding data point. The empirical results 

show that their method outperforms the other methods as aforementioned in [10] re-

garding interpolation surfaces. In addition, many works consider mapping them onto a 

simple domain with a fixed boundary shape such as a sphere, a circle or a rectangle. 

However, some undesirable distortion may occur during the parameterization process 

due to the fixed boundary shape. To overcome such a problem, Choi et al. [31] develop 

a free-boundary conformal parameterization technique to parameterize disk-shape 
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point clouds, which leads to high quality of the reconstructed mesh. By free boundary, 

it means that the positions of only two boundary points are fixed, and the left boundary 

points are parameterized to a suitable location automatically based on the structure of 

the original point clouds. To make the parameterization of point clouds more flexible, 

Zwicker et al. [32] present a system in which interactively parameterizing point clouds 

can be done. During the mapping process, an objective function is applied to minimize 

distortions automatically. Furthermore, the user can adjust the mapping intuitively at 

the same time.  

5 Conclusion 

In this paper, we have reviewed various methods used to parameterize 3D point clouds. 

These methods are grouped into organized point parameterization and unorganized 

point cloud parameterization ones and unorganized point cloud parameterization meth-

ods are further divided into some subgroups according to the property of the point 

clouds and the mapping technique. We discussed each of these methods.  

It should be pointed out that there is no “best” parameterization method applicable 

to all point clouds, as one method may succeed in parameterizing some point clouds 

but fail in parameterizing other point clouds. Therefore, for a given point cloud, it is 

necessary to choose a suitable method to parameterize the 3D point cloud according to 

the desirable properties of low distortion and high computing efficiency in parameter-

izing the point cloud.   
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