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Abstract. Convolutional neural networks (CNNs) are among the most
commonly investigated models in computer vision. Deep CNNs yield high
computational performance, but their common issue is a large size. For
solving this problem, it is necessary to find effective compression meth-
ods which can effectively reduce the size of the network, keeping the
accuracy on a similar level. This study provides important insights into
the field of CNNs compression, introducing a novel low-rank compres-
sion method based on tensor-train decomposition on a permuted kernel
weight tensor with automatic rank determination. The proposed method
is easy to implement, and it allows us to fine-tune neural networks from
decomposed factors instead of learning them from scratch. The results
of this study examined on various CNN architectures and two datasets
demonstrated that the proposed method outperforms other CNNs com-
pression methods with respect to parameter and FLOPS compression at
a low drop in the classification accuracy.

Keywords: Neural network compression · Convolutional neural net-
work · Tensor decomposition · Tensor train decomposition.

1 Introduction

The area of convolutional neural networks (CNNs) has attracted growing atten-
tion in the field of computer vision for achieving one of the best results in tasks
such as image classification [11], segmentation [27] or object detection [26].

However, achieving better results of CNNs is mostly done by designing deeper
neural networks, which translates into larger architectures requiring more space
and more computing power. Because most of the deep neural networks are over-
parametrized [5], there exists a possibility of compressing them without reducing
the quality of the network significantly. The neural network compression meth-
ods can be classified into weight sharing, pruning, knowledge distillation, quan-
tization and low-rank approximations [22,1,16]. The weight sharing method is
the simplest form of compressing a neural network size, in which the weights of
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the neural network are shared between layers. From this approach, clustering-
based weight sharing can be distinguished, in which the clustering is performed
on weights, and at the end clustered weights are merged into new compressed
weights. In the pruning approach, the redundant connections between neurons
are removed, which results in a lower number of parameters and FLOPs. In most
cases, the fine-tuning is necessary to recover the original accuracy of the network
and often pruning/fine-tuning is alternately repeated in loop to gain larger com-
pression. Quantization is another approach to compress neural network weights.
In this method, the neural network weights are represented in a lower-precision
format, the most popular is INT8, but the most extreme quantization is based
on binary weights. On the other hand, knowledge distillation methods learn a
small (student) network from a large one (teacher) using supervision. In short,
a student network mimics a teacher network and leverages the knowledge of the
teacher, achieving a similar or higher accuracy.

Besides the aforementioned methods, it is possible to compress the neural
network using dimensionality reduction techniques such as matrix/tensor decom-
positions [24] in which the neural network weights are represented in a low-rank
format. The low-rank compression methods can be divided into direct decompo-
sition and tensorization. Direct decomposition methods use the factors obtained
from the decomposition as new approximated weights, perform all operations on
them, and are simple in implementation because they use basic convolutional
neural network blocks from deep learning frameworks. The most popular two
approaches of using the direct tensor decomposition to compress convolutional
layers are the Tucker-2 [15] and CP [18] decomposition. The CP decomposition
transforms the original weight tensor into a pipeline of two 1 × 1 convolutions
and two depthwise separable convolutions, and the Tucker-2 into two 1× 1 con-
volutions and one standard convolution, which is the same as the Bottleneck
block in ResNet networks. Recently, Hameed et al. [9] proposed a new direct
tensor decomposition method in which the Kronecker product decomposition is
generalized to be applied to compress CNN weights. On the other hand, in the
tensorization approach, the original weight tensor is tensorized into a higher-
order tensor format and new weights are initialized randomly. In this approach,
the decomposition algorithm is not used, and therefore the pretrained infor-
mation from the baseline network is lost. By using tensorization, the achieved
compression is relatively high, but the quality of the compressed network is sig-
nificantly worse than the baseline model. The first tensorization approach to
CNN compression was proposed by Garipov et al. [8], in which the tensor-train
(TT) format was used to matricized weight tensor. The input feature maps ten-
sor was reshaped into a matrix, and the convolution operation was performed
as a sequence of tensor contractions. Garipov et al. also proposed a naive direct
TT compression method in which the weight tensor was directly decomposed.
All the decomposed cores were kept in memory, but during the convolution op-
eration, the TT cores were reshaped into the original weight tensor, and the
initialization was performed randomly. Among other methods of tensorization,
one can mention the tensor ring format [21] or hierarchical Tucker format [31].
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In this study, we propose a novel direct low-rank neural network compression
method using direct tensor-train decomposition on the permuted kernel weight
tensor with automatic rank determination. This method will be referred to as
TTPWT. In our approach, each original convolutional layer is replaced and ini-
tialized with a sequence of four layers obtained from the decomposed factors, and
the original convolution is approximated with four smaller convolutions, which is
profitable both with respect to computational and storage complexity. The pro-
posed compression method was applied to four neural networks: TT-conv-CNN
[8], VGGnet [28], ResNet-56 [11] and ResNet-110 [11]. The experiments run on
the CIFAR-10 and CIFAR-100 datasets showed that the TTPWT considerably
outperforms many state-of-the-art compression methods with respect to param-
eter and FLOPS compression at a low drop in the classification accuracy.

The remainder of this paper is organized as follows. Section 2 presents the
notation and the preliminaries to fundamental mathematical operations on ten-
sors. It also contains a short description of the TT decomposition method. The
proposed TT-based compression model is presented in Section 3. Numerical ex-
periments performed using various CNN architectures tested on the CIFAR-10
and CIFAR-100 datasets are presented and discussed in Section 4. The final
section provides concluding statements.

2 Preliminary

Notation: Multi-way arrays, matrices, vectors, and scalars are denoted by calli-
graphic uppercase letters (e.g., X ), boldface uppercase letters (e.g., X), lower-
case boldface letters (e.g., x), and unbolded letters (e.g., x), respectively. Multi-
way arrays will be equivalently referred to as tensors. We used Kolda’s notation
[17] for standard mathematical operations on tensors.

Mode-n unfolding: The mode-n unfolding of the N -order tensor X ∈
RI1×...×IN rearranges its entries by placing its mode-n fibers as the columns
of matrix X(n) = [xin,j ] ∈ RIn×

∏
p ̸=n Ip for n ∈ {1, . . . , N}, where j = 1 +∑N

k=1
k ̸=n

(ik − 1)jk with jk =
∏k−1

m=1
m ̸=n

Im, and in = 1, . . . , In.

Mode-{n} canonical matricization: This matricization reshapes tensor

X into matrix X<n> ∈ R
∏n

p=1 Ip×
∏N

r=n+1 Ir by mapping tensor element xi1,...,iN

to matrix element xi,j , where i = 1 +
∑n

p=1(ip − 1)
∏p−1

m=1 Im and j = 1 +∑N
r>n(ir − 1)

∏r−1
m=n+1 Im. The mode-n unfolding is a particular case of the

mode-{n} canonical matricization.
Mode-n product (also known as the tensor-matrix product): The mode-n

product of tensor X ∈ RI1×...×IN with matrix U ∈ RJ×In is defined by

Z = X ×n U , (1)

where Z = [zi1,...,in−1,j,in+1,...,iN ] ∈ RI1×...×In−1×J×In+1×...×IN , and

zi1,...,in−1,j,in+1,...,iN =

In∑
in=1

xi1,i2,...,iNuj,in .
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Tensor contraction: The tensor contraction of tensor X = [xi1,...,iN ] ∈
RI1×...×IN across its n-th mode with tensor Y = [yj1,...,jM ] ∈ RJ1×...×JM across
its m-th mode, provided that In = Jm, gives tensor Z = X ×m

n Y whose entries
are given by:

zi1,...,in−1,in+1,...,iN ,j1,...,jm−1,jm+1,...,jM =

=

In∑
in=1

xi1,...,in−1,in,in+1,...,iN yj1,...,jm−1,in,jm+1,...,jM . (2)

For the matrices: A ×1
2 B = AB. The contraction: ×1

N will be denoted by the
symbol •. Thus: X • Y = X ×1

N Y.
Kruskal convolution: Let X = [xi1,i2,c] ∈ RI1×I2×C be any activation

tensor in any convolutional layer with C input channels, W = [wt,c,d1,d2 ] ∈
RT×C×D1×D2 be the kernel weight tensor, ∆ be the stride, and P be the zero-
padding size. The Kruskal convolution maps input tensor X to output tensor

Y = [yĩ1 ,̃i2,t] ∈ RĨ1×Ĩ2×T by the following linear mapping:

yĩ1 ,̃i2,t = xi1,i2,c ⋆ wt,c,d1,d2 =

C∑
c=1

D∑
d1=1

D∑
d2=1

wt,c,d1,d2xi1(d1),i2(d2),c, (3)

where i1(d1) = (̃i1 − 1)∆ + i1 − P and i2(d2) = (̃i2 − 1)∆ + i2 − P .
1 × 1 convolution: If D = 1, ∆ = 1, and P = 0, then W ∈ RT×C×1×1,

and the Kruskal convolution comes down to the 1 × 1 convolution: yi1,i2,t =∑C
c=1 wt,cxi1,i2,c. Using the notation of the mode-n product in (1), the 1 × 1

convolution takes the form:

Y = X ×3 W , (4)

where W = [wtc] ∈ RT×C .
Tensor train (TT) decomposition: The TT model [23] decomposes tensor

X = [xi1,...,iN ] ∈ RI1×...×IN to a chain of smaller (3-way) core tensors that are
connected by the tensor contraction with operator •. It can be formulated as
follows:

X = X (1) • X (2) • . . . • X (N), (5)

where X (n) is the n-th core tensor of size Rn−1 × In ×Rn for n = 1, . . . , N . The
number {R0, . . . , RN} determine the TT ranks. Assuming R0 = RN = 1, we

have X (1) = X(1) ∈ RI1×R1 and X (N) = X(N) ∈ RRN−1×IN , i.e. the first and
the last core tensors become matrices. Model (5) can be expressed equivalently
as:

xi1,...,iN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑

rN−1=1

x
(1)
i1,r1

x
(2)
r1,i2,r2

· · ·x(N−1)
rN−2,iN−1,rN−1

x
(N)
rN−1,iN

, (6)
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where ∀n : X (n) = [x
(n)
rn−1,in,rn

] ∈ RRn−1×In×Rn .
Assuming I1 = . . . = IN = I and R1 = . . . = RN = R, the storage complexi-

ties of the CANDECOM/PARAFAC (CP) [2,10], Tucker [29], and TT decompo-
sition models can be approximated by O(NIR), O(NIR+RN ), and O(NIR2).
It is thus obvious that the CP model has the lowest storage complexity, but
its flexibility in adapting to the observed data is very low, especially for ten-
sors that have strongly unbalanced modes. Unfortunately, this is the case in
the discussed problem because two modes of the decomposed tensor have small
dimensions, but the other modes are large. Hence, it is difficult to select the op-
timal rank. The Tucker decomposition relaxes these problems considerably, but
its storage complexity grows up exponentially with the size of the core tensor,
which is also not favorable in our case because the ranks for large modes are
usually pretty large. The TT model assures the best trade-off between the CP
and Tucker decompositions, alleviating the curse of dimensionality and yielding
a flexible decomposition with multiple TT ranks. Hence, these advantages of the
TT model motivate this study.

3 Proposed Method

We assume that each convolutional layer has C input and T output channels,
and the size of the filter is D × D. Hence, it can be represented by the kernel
weight tensor W = [wt,c,d1,d2 ] ∈ RT×C×D×D. The input data is represented by
activation tensor X = [xi1,i2,c] ∈ RI1×I2×C that consists of C activation maps –
each has the resolution of I1 × I2 pixels. Each layer performs a linear mapping

of tensor X to output activation tensor Y = [yĩ1 ,̃i2,t] ∈ RĨ1×Ĩ2×T , where the
mapping is determined by the Kruskal convolution in (3). Each output activation
map has the resolution of Ĩ1 × Ĩ2 pixels, and there are T output channels.

3.1 Model

To reduce the number of parameters and FLOPS in each convolutional layer,
the kernel weight tensor W is decomposed with the TT model.

Remark 1. Note that if W ∈ RT×C×D×D is decomposed according to (5), ranks
R2 and R3 cannot be greater than D2 and D, respectively. This restriction limits
the flexibility of compression only to rank R1. Furthermore, the 3D core tensor
capturing the second mode of W could not be processed with a simple 1 × 1
convolution. Thus, we propose to apply the circular permutation to W with one
left shift lag. Thus:

W̃ = circular permutation (W,−1) ∈ RC×D×D×T . (7)

Applying the TT decomposition to W̃ = [w̃c,d1,d2,t], we have:

w̃c,d1,d2,t =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

w̃(1)
c,r1w̃

(2)
r1,d1,r2

w̃
(3)
r2,d2,r3

w̃
(4)
r3,t. (8)
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Inserting model (8) to mapping (3) and rearranging the summands, we get:

yĩ1 ,̃i2,t =

C∑
c=1

D∑
d1=1

D∑
d2=1

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

w̃(1)
c,r1w̃

(2)
r1,d1,r2

w̃
(3)
r2,d2,r3

w̃
(4)
r3,txi1(d1),i2(d2),c

=

R3∑
r3=1

w̃
(4)
r3,t

[
D∑

d2=1

R2∑
r2=1

w̃
(3)
r2,d2,r3

D∑
d1=1

R1∑
r1=1

w̃
(2)
r1,d1,r2

×


C∑

c=1

w̃(1)
c,r1xi1(d1),i2(d2),c︸ ︷︷ ︸
1 × 1 conv.




=

R3∑
r3=1

w̃
(4)
r3,t


D∑

d2=1

R2∑
r2=1

w̃
(3)
r2,d2,r3


D∑

d1=1

R1∑
r1=1

w̃
(2)
r1,d1,r2

zi1(d1),i2(d2),r1︸ ︷︷ ︸
D1 × 1 conv.




=

R3∑
r3=1

w̃
(4)
r3,t


D∑

d2=1

R2∑
r2=1

w̃
(3)
r2,d2,r3

z
(V )

ĩ1,i2(d2),r2︸ ︷︷ ︸
1 × D2 conv.

 =

R3∑
r3=1

w̃
(4)
r3,tz

(V,H)

ĩ1 ,̃i2,r3︸ ︷︷ ︸
1 × 1 conv.

(9)

It can be easy to note that zi1,i2,r1 in (9) can be computed with the 1 × 1
convolution. According to (4), we have:

Z = X ×3 W̃
(1)T ∈ RI1×I2×R1 , (10)

where W̃
(1)

= [w̃
(1)
c,r1 ] ∈ RC×R1 . Physically, to perform operation (10), the first

sublayer with the 1×1 convolutions in the analyzed convolutional layer is created.
The activation tensor Z computed in the first sub-layer is then provided to

the second convolutional sublayer represented by W̃ = [w̃
(2)
r1,d1,r2

] ∈ RR1×D×R2 ,
which is much smaller than W, and this sublayer computes the 1D convolutions
along the 1-st mode (vertically):

z
(V )

ĩ1,i2(d2),r2
=

D∑
d1=1

R1∑
r1=1

w̃
(2)
r1,d1,r2

zi1(d1),i2(d2),r1 (11)

As a result, we get the second-sublayer output activation tensor

Z(V ) = [z
(V )

ĩ1,i2(d2),r2
] ∈ RĨ1×I2×R2 .

Next, the third 1D convolutional sublayer is created to compute the 1D convolu-
tions along the horizontal direction. The output activation tensor obtained from
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this sublayer has the form: Z(V,H) = [z
(V,H)

ĩ1 ,̃i2,r3
] ∈ RĨ1×Ĩ2×R3 . Finally, the fourth

sublayer is created, which performs 1 × 1 convolutions according to the model:

Y = Z(V,H) ×3 W̃
(4)T ∈ RĨ1×Ĩ2×T , (12)

where W̃
(4)

= [w̃
(4)
r3,t] ∈ RR3×T .

3.2 TT decomposition algorithm

The TT decomposition of W̃ in (7) can be obtained by using sequential SVD-
based projections. In the first step, TSVD with a given precision δ1 is applied
to W̃ unfolded with respect to its first-mode. Thus:

W̃ (1) = UΣV T + E1, (13)

under the assumption the truncation error satisfies the condition ||E1||F ≤ δ1.

Matrix W̃
(1) ∈ RC×R1 is created from U that contains the first R1 left singular

vectors (associated with the most significant singular values) of W̃ (1). Note that
rank R1 is determined by a given threshold δ1 for the truncation error. In the

second step, W̃
(2) ∈ RR1I2×R2 is created from the first R2 left singular vectors

of the matrix obtained by reshaping matrix ΣV T using the mode-2 canonical
matricization. In this step, ||E2||F ≤ δ2 and the core tensor is obtained by

reshaping W̃
(2)

accordingly. The similar procedure is applied in the third step,
where W̃(3) ∈ RR2×I3×R3 is created from the first R3 singular vectors, and

W̃
(4) ∈ RR3×T is created from the scaled right singular vectors. Oseledets [23]

Algorithm 1 TT-SVD

Input : W ∈ RT×C×D×D – input kernel weight tensor, τ - threshold
Output: {W(1), ...,W(4)} - estimated core tensors

Compute W̃ ∈ RC×D×D×T with (7) and set R0 = 1 and N = 4,
M = W̃ (1) = unfolding(W̃, 1); // Unfolding

for n = 1, . . . , N − 1 do

Compute:
[
Ũ , S̃, Ṽ , Rn

]
= TSVDδ(M , τ); // TSVD

W̃(n) = reshape(Ũ , [Rn−1, In, Rn])

M = reshape(S̃Ṽ
T
, [RnIn+1,

∏N
p=n+2 Ip]); // Canonical

matricization

end

W̃(4) = reshape(M , [RN−1, IN , 1])

showed that ||W̃ − W̃(1) • . . . • W̃(N)||F ≤
√∑N−1

n=1 δ2n. Assuming δ = δ1 = . . . =
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δN−1, then the truncation threshold can be set to δ = ϵ√
N−1

||W̃||F , where ϵ > 0

is a prescribed relative error.
In our approach, the optimal rank of TSVD for matrix M ∈ RP×R in each

step was computed by using the energy-threshold criterion. Thus:

R∗ = arg min
j

{∑j
i=1 σ

2
i∑I

i=1 σ
2
i

> τ

}
, (14)

where Q = min{P,Q}, σi is the i-th singular value of M , and τ = ϵ√
N−1

is

a given threshold. The energy captured by i components (singular vectors) is
expressed in the nominator of (14), the total energy is presented in the denomi-
nator.

Due to the low-rank approximation, the TT model always assures the com-
pression [25], i.e.

Rn ≤ min


n∏

i=1

Ii,

N∏
j=n+1

Ij

 , for n = 1, . . . , N − 1. (15)

The complete sequential routine is presented in Algorithm 1. Function TSVDδ
performs the δ-truncated SVD at a given threshold δ, where the optimal rank
R∗ is computed by the energy-based criterion (14).

3.3 Implementation

The procedure for training/fine-tuning networks was implemented in the deep
learning framework PyTorch and the tensor-train decomposition in Matlab.
The convolutional kernel is the main component of the convolutional layer,
which is represented as the 4-th order tensor (top block, Figure 1). After us-
ing permutation, the weight tensor can be decomposed into four factors, in-
cluding two matrices and two 3-rd order tensors. All the factors are used as
new weights in a sequence of four sublayers (Tensor-Train model, Figure 1).
Because the basic class of convolutional layer in PyTorch accepts only 4-th
order tensor as weights, it is necessary to add extra two dimensions to ma-

trices: W̃
(1) ∈ RC×R1 → W̃(1) ∈ RR1×C×1×1 (Figure 1, sublayer Conv2D.1),

W̃
(4) ∈ RR3×T → W̃(4) ∈ RT×R3×1×1 (Figure 1, sublayer Conv2D.4) and extra

one dimension to 3-rd order tensors W̃(2) ∈ RR1×D×R2 → W̃(2) ∈ RR2×R1×D×1

(Figure 1, sublayer Conv2D.2), W̃(3) ∈ RR3×D×R2 → W̃(3) ∈ RR3×R2×1×D

(Figure 1, sublayer Conv2D.3) and permute the modes accordingly.

3.4 Computational complexity

The space and time complexity of the convolution is defined as O(CTD2) and
O(CTD2I1I2). By applying the tensor-train decomposition, the time and space
complexity is bounded by O(CR1 + R2D(R1 + R3) + R3T ) and O(R1I1I2 +
R2D(R1I1I2+R3Ĩ1I2)+R3T Ĩ1Ĩ2) respectively, where I1 and I2 define the height
and width of the input image, respectively, and Ĩ1 and Ĩ2 define the reduced
height and width after convolution.
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Fig. 1. Visual representation of how the decomposed factors are used as new weights in
PyTorch framework (output channels × input channels × filter height × filter width)
for the compressed convolutional layer in the TT model.

4 Results

We evaluated our method on two datasets (CIFAR-10 and CIFAR-100). Each
consists of 60,000 examples, including 50,000 in the training dataset, and 10,000
in the validation dataset with 10 and 100 classes respectively. To evaluate effec-
tiveness of our method on networks of various sizes, we selected the following
networks: TT-conv-CNN [8], VGGnet [28], ResNet-56 [11] and ResNet-110 [11].
The networks cover the range of models with a medium to a large number of
parameters and FLOPS. The total number of FLOPS and the parameters of the
mentioned networks are listed in Table 1. The compression experiments were
performed with the following scheme:

energy threshold selection −→ baseline CNN compression −→ fine-tuning.

All the convolutional layers were compressed in each neural network except for
the first one whose size is small. All the baseline networks were trained accord-
ing to the source guidelines. TT-conv-CNN was trained for 100 epochs using
stochastic gradient descent (SGD) with a momentum of 0.9, the weight decay
was set to 0, the initial learning rate was set to 0.1, and it was decreased by a
factor of 0.1 after every 20 epochs. For the fine-tuning process, all the hyperpa-
rameters remained the same. VGGnet, ResNet-56, and ResNet-110 were trained
for 200 epochs using the SGD with a momentum of 0.9, the weight decay was
set to 10−4, the initial learning rate was set to 0.1, and it was decreased by a
factor of 0.1 after 80 and 120 epochs for VGGnet, and after 100 and 150 for
ResNets. In the fine-tuning step, the learning rate was lowered to 0.01 and the
weight decay was increased to 10−3 for the VGGnet, and the hyperparameters
were unchanged for ResNet-56 and ResNet-110.

To evaluate the network compression and performance, we used two metrics,
such as the parameter compression ratio (PCR) that is defined as ⇓Param =

Param(baseline network)
Param(compressed network) , and the FLOPS compression ratio (FCR) defined as
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⇓FLOPS = FLOPS(baseline network)
FLOPS(compressed network) . The quality of the network was evaluated

with the drop in the classification accuracy of the compressed network with
respect to the baseline network, i.e. ∆Acc = Acc compressed − Acc baseline. The
error rate is often shown alongside with the accuracy in the literature. However,
the error rate may be misleading since we fine-tune the neural networks from
decomposed factors. Hence, the accuracy is sufficient to be shown for better
interpretability of results. The values of PCR or FCR are not provided in all the
papers, which we refer to as the reference results. Hence, the unavailable data
are marked with the ”—” sign in the tables.

Table 1. Total number of FLOPs and parameters for baseline networks.

Network Params FLOPS

TT-conv-CNN 558K 105M
ResNet-56 853K 125M
ResNet-110 1.73M 255M
VGGnet 20M 399M

4.1 CIFAR-10

TT-conv-CNN : Table 2 shows the results obtained for the TT-conv-CNN
compression. We compared our method with the tensorized tensor-train version
of the matricized weight tensor (TT-conv), direct tensorized tensor-train weight
tensor (TT-conv (naive)), and the weight sharing method – Deep k-Means [32].
As we can see, our method outperforms both TT-based methods proposed by
Garipov et al. in terms of PCR, FCR, and the drop in accuracy is at a much
lower level. Compared with Deep k-Means, our method achieved better accuracy
with higher compression.

VGGnet : The VGGnet network is a modified VGG-19 neural network adopted
for CIFAR datasets. It is the largest neural network analyzed in this study,
with 20M of parameters and 399M of FLOPS. Compression of VGGnet using
our method was compared with the following pruning approaches: DCP [35],
Random-DCP [35], WM+ [35], CP [14] and PFEC [19]. The results given in
Table 3 demonstrate that our method outperforms all the compared approaches
in terms of PCR and FCR. Our compressed network achieved a positive drop
(gain) in the accuracy compared to the baseline network, and only DCP obtained
a higher gain but with worse parameter compression. Moreover, TTPWT reduces
FLOPS nearly 2.35 times more than DCP.
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Table 2. Results of the TT-conv-CNN [8] compression on the CIFAR-10 validation
dataset. Different rows of the TT-conv and TT-conv (naive) mean different ranks. The
value in parentheses denotes the energy threshold.

Method ∆Acc ⇓Param ⇓FLOPS

TT-conv-1 [8] −0.80 2.02 —
TT-conv-2 [8] −1.50 2.53 —
TT-conv-3 [8] −1.40 3.23 —
TT-conv-4 [8] −2.00 4.02 —

TT-conv-1 (naive) [8] −2.40 2.02 —
TT-conv-2 (naive) [8] −3.10 2.90 —

Deep k-Means [32] +0.05 2.00 —

TTPWT (0.6) +0.14 3.06 2.95
TTPWT (0.5) −0.25 5.03 4.73

Table 3. Results of VGGnet compression on the CIFAR-10 validation dataset. The
value in parentheses denotes the energy threshold.

Method ∆Acc ⇓Param ⇓FLOPS

DCP [35] +0.31 1.93 2.00
Random-DCP [35] +0.03 1.93 2.00
WM+ [35] −0.10 1.93 2.00
CP [14,35] −0.32 1.93 2.00
PFEC [19,35] +0.15 2.78 1.52
TTPWT (0.6) +0.15 3.03 4.71

4.2 CIFAR-100

ResNet-56 : ResNet-56 was the first network evaluated by us on the CIFAR-
100 dataset. We compared the obtained results of our method with pruning
approaches. As pruning competitors, we chose the following methods: SFP [12],
FPGM [13], DMPP [20], CCPrune [4], FPC [3], and FPDC[36]. As can be seen
in Table 4 our method achieved the largest FCR and PCR, and the lowest
accuracy drop. It is interesting that TTPWT reduces FLOPS twice as much as
SFP, FPGM and CCPrune.

ResNet-110 : As the second network, we selected ResNet-110 that is one
of the largest ResNet networks developed for CIFAR datasets. Similar to the
previous results, ResNet-110 was compared with different pruning approaches
[30,36,33,34,7,13,12,6]. As shown in Table 5, it is clear that TTPWT achieved
the lowest drop in accuracy and the largest PCR and FCR over all the compared
methods.
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Table 4. Results of ResNet-56 compression on the CIFAR-100 validation dataset. The
value in parentheses denotes the energy threshold.

Method ∆Acc ⇓Param ⇓FLOPS

SFP [12,20] −2.61 3.20 2.11
FPGM [13,20] −1.75 3.30 2.11
CCPrune [4] −0.63 1.69 2.94
FPDC [36] −1.43 1.93 1.99
TTPWT (0.55) −0.50 3.93 4.19

Table 5. Results of ResNet-110 compression on the CIFAR-100 validation dataset.
The value in parentheses denotes the energy threshold.

Method ∆Acc ⇓Param ⇓FLOPS

OED [30] −3.83 2.31 3.23
FPDC [36] −0.61 1.93 3.24
PKPSMIO [33] −0.14 3.40 3.24
PKP [34] −0.61 2.42 2.37
TAS [7] −1.90 — 2.11
FPGM [13,7] −1.59 — 2.10
SFP [12,7] −2.86 — 2.10
LCCL [6,7] −2.01 — 1.46
TTPWT (0.55) −0.03 3.96 4.21

5 Conclusions

This study proposes a new approach to low-rank compression of CNNs. The
proposed method is based the tensor train decomposition of a permuted weight
tensor with automatic rank determination. The original convolution is approx-
imated with a pipeline of four smaller convolutions, which allows us to signifi-
cantly reduce a number of parameters and FLOPS at the cost of a low drop in
accuracy. The results obtained on two datasets using four networks of different
sizes confirm that our method outperforms the other neural network compression
methods presented in this study. Further research is needed to investigate the
compression of larger CNNs on the ImageNet dataset and to extend the current
approach for higher order convolutional neural networks, including 3D CNNs.
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