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Abstract. Photoplethysmography (PPG) is a non-invasive optical tech-
nique, applied in clinical settings to measure arterial oxygen saturation.
Using modern technology, PPG signals can be measured by wearable de-
vices. This paper presents a novel procedure to study the dynamics of
biomedical signals. The procedure uses features of a wavelet scattering
transform to classify signal segments as either chaotic or non-chaotic. To
this end, the paper also defines a chaos measure. Classification is made
using a model trained on a dataset consisting of signals generated by
systems with known characteristics. Using an example PPG signal, this
paper demonstrates the usefulness of the wavelet scattering transform for
the analysis of biomedical signals, and shows the importance of correctly
preparing the training set.
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1 Introduction

Photoplethysmography (PPG) is an non-invasive optical measurement technique.
By using a light source to illuminate skin tissue, either the transmitted or re-
flected light intensity is collected by a photodetector to record the photoplethys-
mogram. Traditionally, PPG signals have been recorded using red or near infra-
red light. In recent years, green light has been used for wearable devices, such
as wristbands and smartwatches, to provide highly usable and accessible daily
health monitoring [12, 8, 10, 16, 31]. As such, a proper understanding of green
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light PPG is of critical importance. Recorded light intensity variations have tra-
ditionally been associated with blood volume pulsations in the microvascular
bed of the tissue. The tissue penetration depth of green light is approximately
530 nm. The source of the chaotic properties of PPG is unclear. Such properties
could originate in the upper layers of the skin, due to changes in capillary density
caused by arterial transmural pressure, or in deeper layers, due to changes in
vessel blood volume [27].

Despite uncertainty concerning the mechanisms of PPG, the technique is
generally accepted to provide valuable clinical information about the cardiovas-
cular system. PPG signals are used to monitor pulse rate, heart rate, oxygen
saturation, blood pressure, and blood vessel stiffness [28, 15, 17, 13, 2, 22, 23, 21,
7]. Unfortunately, such signals are often corrupted by noise, motion artifacts,
and missing data.

Biological signals contain deterministic and stochastic components, both of
which contribute to the underlying dynamics of the physiological system. All bi-
ological signals contribute information on the underlying physiological processes.
Therefore, by studying such signals, the physiological systems that generate them
can be better understood.

In early studies, PPG as well as ECG (electrocardiogram) and HRV (heart
rate variability) were claimed to be chaotic mostly based on the results of time-
delay reconstructed trajectory, correlation dimension and largest Lyapunov ex-
ponent [29]. Subsequently, with the development of nonlinear time series analysis
methods for real-world data, further evidence of the chaotic nature of such bio-
logical signals has emerged. However, many tools that were previously thought
to provide clear evidence of chaotic motion have been found to be sensitive
to noise and prone to producing misleading results. Thus, controversy remains
concerning the topic of chaos in biological signals [11, 26, 27].

Sviridova and Sakai [26] applied nonlinear time series analysis methods to
PPG signals to identify the unique characteristics of the underlying dynamical
system. Such methods included time delay embedding, largest Lyapunov ex-
ponent, deterministic nonlinear prediction, Poincaré section, the Wayland test,
and the method of surrogate data. Results demonstrated that PPG dynamics
are consistent with the definition of chaotic motion, and the chaotic properties
were somewhat similar to Rössler’s single band chaos with induced dynamical
noise.

A more recent approach to signal analysis is the use of machine learning or
deep learning methods. Such methods can generalize knowledge acquired from a
training dataset, and apply it to the analysis of a testing dataset. Boullé et al.
[3] used a deep neural network to classify univariate time series’ generated by
discrete and continuous dynamical systems based on the presence of chaotic be-
havior. The study suggests that deep learning techniques can be used to classify
time series’ obtained by real-life applications into chaotic or non-chaotic.

De Pedro-Carracedo et al. [9] found that the dynamics of a PPG signal were
predominantly quasi-periodic over a small timescale (5000 data points at 250
Hz). Over a longer timescale (600000 data points at 250 Hz), more diverse and
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complex dynamics were observed, but the signal did not display chaotic behav-
ior. This analysis used a deep neural network to classify the PPG signals. The
following dynamics classes were defined: periodic, quasi-periodic, non-periodic,
chaotic, and random. Unfortunately, the dataset used to train the network con-
tained only one system for each class. Given that chaotic systems are difficult
to generalize [6], this is not sufficient to accurately classify the dynamics of the
real-life signal.

De Pedro-Carracedo et al. [20] applied a modified 0–1 test to the same PPG
time series’ as the above study. They also found that the majority of PPG
signals displayed quasi-periodic behavior across a small timescale, and that as the
timescale increased the dynamics became more complex, due to the introduction
of additional cardiac rhythm modulation factors. Under specific physiological
conditions, such as stress, illness, or physical activity, a transition from quasi-
periodicity to chaos can be possible. This phenomenon provides the motivation
for measuring the presence of chaos within PPG signals under various conditions.

The objective of this study is to analyze the dynamics of PPG signals during
different everyday activities. We propose a novel approach to classify signals
using features of a wavelet scattering transform (WST) and a support vector
machine (SVM) classifier. This approach was simplified by defining only two
classes of signals: chaotic and non-chaotic. Compared to previous research, the
training data was prepared in greater detail, and included noise, which was
omitted in previous works.

Wavelet analysis provides a unifying framework for the description of many
time series phenomena [25]. Introduced by Mallat [18], WST has a similar archi-
tecture to convolutional neural network. Despite requiring no parameter learning,
WST performs strongly, particularly in constrained classification tasks. WST is a
cascade of complex wavelet transforms and modulus non-linearities. At a chosen
scale, averaging filters provide invariance to shifts and deformations within sig-
nals [1]. Hence, WST can be applied accurately and efficiently to small datasets,
whereas convolutional neural network require a large amount of training data.
Consequently, WST features possess translation invariance, deformation, stabil-
ity, and high-frequency information [4]. As such, WST is highly suitable feature
extractors for non-linear and non-stationary signals, and has been widely used
in audio, music, and image classification.

Moreover, WST is often used to analyze time series’, including biomedical
signals. By inputting WST features to an SVM classifier, electroencephalography
signals were correctly classified as belonging to alcoholic or non-alcoholic patients
[5]. In addition, a WST was used to classify heart beats based on ECG signals,
with an accuracy of 98.8–99.6%. Jean Effil and Rajeswari [14] used a WST and
a deep learning long short-term memory algorithm to accurately estimate blood
pressure from PPG signals.
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2 Materials and methods

2.1 The Wavelet Scattering Transform

The wavelet transform is convolutions with dilated wavelets. For 2D transfor-
mations, the wavelets are also rotated. Being localized waveforms, wavelets are
stable to deformations, unlike Fourier sinusoidal waves. A scattering transform
creates nonlinear invariants using wavelet coefficients with modulus and averag-
ing pooling functions. Such transforms yield representations that are time-shift
invariant, robust to noise, and stable to time-warping deformations. These at-
tributes are highly useful for many classification tasks, and wavelet transforms
are the most common method applied to limited datasets. Andén and Mallat [1]
provide a brief overview of the key properties of scattering transforms, including
stability to time-warping deformation and energy conservation, and describe a
fast computational algorithm.

The WST consists of three cascading stages. In the first stage, the signal
x undergoes decomposition and convolution with a dilated mother wavelet ψ of
center frequency λ, giving x∗ψλ. Following this, the convolved signal is subjected
to a nonlinear modulus operator, which typically increases the signal frequency
and can compensate for the loss of information due to down sampling. Finally,
a time-average/low-pass filter in the form of a scaling function ϕ is applied to
the absolute convolved signal, giving |x ∗ ψλ| ∗ ϕ.

The zero-order scattering coefficients S0 describe the local translation invari-
ance of the signal:

S0 = x ∗ ϕ.

At each level, the averaging operation causes the high-frequency parts of the
convolved signal to be lost. These parts can be recovered via the convolution of
the signal with the wavelet in the following level.

The first-order scattering coefficients S1 are therefore defined as the average
absolute amplitudes of wavelet coefficients for any scale 1 ≤ j ≤ J , over a
half-overlapping time window of size 2j :

S1 = |x ∗ ψλ1 | ∗ ϕ.

The second-order scattering coefficients S2 are calculated by repeating the above
steps:

S2 = ||x ∗ ψλ1 | ∗ ψλ2 | ∗ ϕ.

The higher order wavelet scattering coefficients can be calculated by iterating
the above process.

The scattering coefficients for each level of the wavelet scattering transform
are obtained by processing the defined constant-Q filter bank, where Q is the
number of wavelets per octave. Each level can have a filter bank with different
Q parameters.

During implementation we used the MATLAB (version R2021b) waveletScat-
tering function. The two-layer WST was obtained using Gabor wavelet. For the
first and second levelsQ1 = 8 andQ2 = 1 respectively. The transform is invariant
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to translations up to the invariance scale, which is set to half of the signal length
in the default implementation. The scaling function determines the duration of
the invariant in time. Moreover, the invariance scale affects the spacing of the
wavelet center frequencies in the filter banks. The output Rpaths×windows×signals

is a feature tensor. This tensor was reshaped into a matrix which is compatible
with the SVM classifier. The columns and rows of the matrix correspond to scat-
tering paths and scattering time windows respectively. This results in a feature
matrix of signals · windows rows and paths− 1 columns.

The zero-order scattering coefficients are not used. Given that multiple scat-
tering windows are obtained for each signal, repeated labels were created that
corresponded to the labels (0, 1). Following this, normalization was applied.
Scattering coefficients of order greater than 0 were normalized by their parents
along the scattering path. Using the defined parameters for the N input signals
(runs), each composed of 1000 samples, this procedure produced a 102× 8×N
WST feature tensor, which was then transformed into a N · 8× 101 matrix.

2.2 Classification model

The testing and training datasets were created using 13 dynamical systems (five
chaotic and eight non-chaotic) of first, second, or third order. Table 1 shows
the training set characteristics. Each system was provided with 1000 created
test files, each of which contained 1000 samples. Augmentation was applied by
randomizing the initial conditions, defined by the x0 vector, according to the
formula [2 · rand()−1] ·x0, where rand() generates pseudorandom numbers that
are uniformly distributed in the interval (0, 1). The chaotic systems are repre-
sented by driven or autonomous dissipative flows. Previously described as A.4.5,
A.5.1, A.5.2, A.5.13, and A.5.15 [24], we describe these flows as CHA_1,CHA_2,
CHA_3, CHA_4, and CHA_5, respectively. The non-chaotic systems were di-
vided into the following classes: i) periodic, including the OSC_1, OSC_2,
DOSC_1, and IOSC systems; ii) quasi-periodic, including QPS_1 and QPS_2;
and iii) non-periodic, including DS_1 and DS_2. The quasi-periodic systems
are described by the general function

x = f(t) = A1 · sin(ω1 · t+ φ1) +A2 · sin(ω2 · t+ φ2),

where the ratio ω1/ω2 is irrational.
Based on previous PPG signal analysis, we made the following experimental

design choices:

– A signal with a length of 1000 samples was obtained from each system using
1000 runs with different initial parameters. Each dimension of the multi-
dimensional systems was treated separately. This corresponded to analysis
using windows with a short time horizon of 31.2 s for the 32 Hz PPG signal.

– We used SVM classification with a radial basis kernel similar to that pro-
posed by Buriro et al. [5]. The classification is made based on WST features.

– Two classes were defined for the classification task: chaotic (class 1) and
non-chaotic (class 0). The decision to use just two classes, and therefore fold
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periodic, quasi-periodic, and non-periodic behavior into the same class, was
made to test the thesis that PPG signals are never chaotic [9]. In further
work, a larger number of more distinct classes will be used.

– Sviridova and Sakai [26] show that PPG signals display some similarity to
Rössler’s chaos with induced dynamical noise. As such, we used Rössler’s
system as one of the signals with chaotic behavior, as shown in Figure 1.
Furthermore, all signals with additive white Gaussian noise were added to
the whole set.

The accuracy of the trained models was checked by 10-fold cross-validation.
To investigate the properties of the training set, the following models were

trained:

– Model01 was trained without output signals from Rössler’s system (CHA_3).
Using 10-fold cross-validation, accuracy was validated as 100%. Testing us-
ing Rössler’s system signal showed 32% accuracy. Based on the model, it is
impossible to effectively classify the signals produced by chaotic systems. It
is therefore important to include the signals from CHA_3 within the training
set.

– Model02 was trained without the quasi-periodic systems QPS_1 and QPS_2.
Using 10-fold cross-validation, accuracy was validated as 100%. Testing us-
ing QPS_1 and QPS_2 showed 78.5% accuracy. On this basis, we determine
that quasi-periodic systems are easier to correctly classify.

– Model03 was trained on signals without additional noise. Using 10-fold cross-
validation, accuracy was validated as 100%. Testing using signals with ad-
ditive Gaussian noise with a signal to noise ratio of 7dB showed 94.03%
accuracy. Although the analytical methods for the assessment of chaotic be-
havior are highly sensitive to noise, the prepared model is not, and even
noisy signals can be classified with high accuracy.

– Model01N and Model02N are variants of models Model01 and Model02 re-
spectively, trained additionally with noisy signals.

– ModelAll was trained using all signals, both with and without additive Gaus-
sian noise, with a signal to noise ratio of 7dB. Using 10-fold cross-validation,
accuracy was validated as 99.88%.

2.3 PPG dataset

The dataset used in this work is the public available PPG dataset for motion
compensation and heart rate estimation in daily life activities (PPG-DaLiA3)
[21]. Given that the database contains a reference ECG measurement, it is often
used to test heart rate estimation algorithms [31]. The dataset contains a total
of 36 hours of recording for 15 study participants undertaking eight different
types of physical everyday life activities: working, sitting, walking, eating lunch,
driving, cycling, playing football, and climbing stairs. The sensor data was ob-
tained from commercially available devices. In our case, the 64 Hz PPG signals
3 https://ubicomp.eti.uni-siegen.de/home/datasets/sensors19/, accessed July 2021
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Fig. 1: 3D signals and a phase portrait of the Rössler system (CHA_3).

Table 1: The training set characteristics.
Name and symbol Class Dimension Short description
Ueda oscillator CHA_1 chaotic (class 1) 2 driven dissipative flow
Lorenz attractor CHA_2 chaotic (class 1) 3 autonomous dissipative flow
Rössler attractor CHA_3 chaotic (class 1) 3 autonomous dissipative flow
Halvorsen’s cyclically symmetric attractor CHA_4 chaotic (class 1) 3 autonomous dissipative flow
Rucklidge attractor CHA_5 chaotic (class 1) 3 autonomous dissipative flow
Undamped oscillator 1 OSC_1 periodic (class 0) 2 slow oscillations with constant amplitude
Undamped oscillator 2 OSC_2 periodic (class 0) 2 fast oscillations with constant amplitude
Damped oscillator 1 DOSC_1 periodic (class 0) 2 fast oscillations with decreasing amplitude
Oscillator with increasing amplitude of oscillations IOSC periodic (class 0) 2 oscillations with growing amplitude
Damped system 1 DS_1 non-periodic (class 0) 3 slow fading signals
Damped system 2 DS_2 non-periodic (class 0) 3 fast fading signals
Quasi-periodic system 1 QPS_1 quasi-periodic (class 0) 1 irrational ratio: ω1/ω2 = π

Quasi-periodic system 2 QPS_2 quasi-periodic (class 0) 1 irrational ratio: ω1/ω2 = (1 +
√
5)/2

16 000 000 samples 0 all samples of signals with non-chaotic behavior
16 000 000 samples 1 all samples of signals with chaotic behavior

which we used for testing the trained models were recorded by the wrist-worn
Empatica E4 device.

The base frequency of the PPG signals was adjusted to match the training
set. We counted the number of signal zero crossings within a given time interval
when using the CHA_5 system. We were required to increase the frequency of
zero crossings by a factor of two, giving a final PPG signal frequency of 32 Hz.

3 Results

The PPG signal was split into 1000 samples (31.2 s) segments, following fitting
and resampling. For each segment, the WST features were obtained. As part
of the analysis, the signal was split into W = 8 scattering windows of 125
samples each. A classification result was generated for each scattering window.
The overall classification of a segment is the ratio of the number of windows
classified as having chaotic behavior (class 1), to the total number of windows.
Hence, a segment that contains eight chaotic windows represents a fully chaotic
segment of signal. Within the overall signal, we define the chaotic measure to be
the ratio of chaotic windows to total number of windows. Tests were conducted
for all models, as shown in Table 2. Figures 2 and 3 present the PPG signal and
the value of the chaotic measure for each segment.
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Table 2: Results for all tested models—the ratio of windows classified as chaotic
to the total number of windows within the PPG signal. The highest values for
each model have been marked.
Participant Model01 Model01N Model02 Model02N Model03 ModelAll

S01 0.27 0.07 0.25 0.14 0.26 0.11
S02 0.29 0.12 0.28 0.15 0.29 0.15
S03 0.22 0.07 0.17 0.12 0.19 0.09
S04 0.30 0.16 0.28 0.20 0.29 0.19
S05 0.56 0.33 0.53 0.34 0.54 0.33
S06 0.26 0.11 0.21 0.14 0.23 0.13
S07 0.42 0.13 0.36 0.20 0.40 0.17
S08 0.23 0.11 0.22 0.14 0.23 0.13
S09 0.27 0.14 0.26 0.18 0.26 0.18
S10 0.23 0.10 0.22 0.12 0.22 0.13
S11 0.47 0.25 0.44 0.28 0.46 0.26
S12 0.20 0.07 0.16 0.11 0.17 0.09
S13 0.50 0.22 0.44 0.26 0.47 0.24
S14 0.22 0.06 0.16 0.11 0.17 0.08
S15 0.18 0.06 0.14 0.10 0.16 0.08

Fig. 2: Chaos measure values when using ModelAll, for each 1000 sample segment
for the S06 participant.
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Fig. 3: Chaos measure values when using ModelAll, for each 1000 sample segment
for a fragment of the PPG signal of the S07 participant.

Fig. 4: Chaos measure values for each participant.
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Fig. 5: Average chaos measure values for each activity.

The results show that those models trained without additional noise—Model01,
Model02, and Model03—display high chaotic measure values (see Figure 4). The
differences between each of these models are not significant. This confirms that
noise is present within the data, and is highly relevant to its evaluation.

Those models that were trained with additional noise—Model01N, Model02N,
and ModelAll—display greater differences in the chaotic measure. Model01N
produced the lowest values of chaotic measure, meaning that fewer segments
were classified as exhibiting chaotic behavior. Hence, the PPG signals display
some similarity to the Rössler system. Model02N produced the highest values of
chaotic measure, showing that a model trained without quasi-periodic functions
classifies such behavior as chaotic. Moreover, the inclusion of such a class of
functions was justified. ModelAll produces results between those of Model01N
and Model02N.

The highest values of chaotic measure, independent of the model used, were
obtained from the PPG signal of participant S05. Interestingly, this participant
reported the greatest errors in heart rate estimation using deep neural networks.
The mean heart rate was significantly higher than for all other participants [31,
21].

Figure 5 shows that the greatest values of chaotic measure are obtained dur-
ing the cycling, soccer, driving, and walking activities. The values differ between
activities, indicating that the measure is influenced by movement or changes in
heart rate as a result of physical activity, stress, or the general condition and
health of the participant. The relationship is not well defined, as the participants
had the highest heart rate when climbing stairs and cycling. Further analysis of
this phenomenon is required.

The calculations were performed on the computer with the following pa-
rameters: Windows 10, Intel(R) Core(TM) i7-7700HQ CPU 2.80GHz, 32GB,
Matlab R2021b. The biggest differences in training and classification times are
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between the models based signals without noise and with additional noisy sig-
nals. The average time of determining WST features for models Model_01,
Model_02, Model_03 is 14.55956667 s (std 0.996971916), the training time is
19.45903333 s (std 2.239389959), and the average classification time of one win-
dow is 0.000109 s (std 0.000061). Taking into account the models Model_01N,
Model_02N, Model_All the average times are as follows: WST features calcula-
tions - 42.526825 s (std 4.489965561), training - 289.576025 s (std 21.05237103),
classifications - 0.000435 s (std 0.000044).

4 Conclusions

The results show that signal classification based on system features requires
careful preparation of the training set. Chaotic systems create signals that are
difficult to predict. Therefore, insufficient data within the training set may cause
misclassification. The noise within real measured signals must also be accounted
for.

Furthermore, a WST can be used to successfully determine signal features for
the purpose of classification. Given that such wavelet analysis is well understood,
parameters can be chosen straightforwardly. Moreover, the training model is
supposed to be much faster than the use of deep learning methods, which is
worth future investigation.

The analysis showed that PPG signals display chaotic features over short
time spans. The measure of chaos is dependent upon the activity performed.
Given that wearable devices are easily available and are increasingly used for
medical diagnosis [30, 19], understanding this phenomenon is highly important
and the topic requires further detailed analysis.

The aim of this study was to demonstrate the usefulness of WST for the
analysis of biomedical signals, and to show the importance of correctly preparing
the training set. Interest in the classification of real signals by deep learning
methods is increasing; such methods may lead to erroneous conclusions if the
training sets are inadequately prepared.
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