
How to sort them? A network for LEGO bricks
classification

Tomasz Boiński1[0000−0001−5928−5782], Konrad Zawora1

, and Julian Szymański1[2222−−3333−4444−5555]

Faculty of Electronics, Telecommunication and Informatics,
Gdańsk University of Technology,

11/12 Narutowicza Street, 80-233 Gdańsk, Poland
{tomboins}{julszyma}@pg.edu.pl

Abstract. LEGO bricks are highly popular due to the ability to build
almost any type of creation. This is possible thanks to availability of
multiple shapes and colors of the bricks. For the smooth build process
the bricks need to properly sorted and arranged. In our work we aim
at creating an automated LEGO bricks sorter. With over 3700 differ-
ent LEGO parts bricks classification has to be done with deep neural
networks. The question arises which model of the available should we
use? In this paper we try to answer this question. The paper presents a
comparison of 28 models used for image classification trained to classify
objects to high number of classes with potentially high level of similar-
ity. For that purpose a dataset consisting of 447 classes was prepared.
The paper presents brief description of analyzed models, the training
and comparison process and discusses the results obtained. Finally the
paper proposes an answer what network architecture should be used for
the problem of LEGO bricks classification and other similar problems.

Keywords: Image classification · LEGO · Neural Networks.

1 Introduction

LEGO bricks are highly popular among kids and adults. They can be used to
build vast array of, both very simple and very complex, constructions. This is
achieved by availability of multiple, sometimes very different, yet compatible
brick shapes. For the smooth build process the bricks need to properly sorted
and arranged - constant searching for proper bricks in a big pile of LEGO is
discouraging and limits creativity. Usually the sorting is done by shape. The
colors and decals can be easily distinguished even in a big pail of bricks [2].
Still, with over 3700 different LEGO parts [24] (and the number is constantly
growing) even disregarding the color makes the problem complex.

No solution for this problem was proposed so far. LEGO Group provides only
a simple sorting mechanism, based on the brick size, in form of the 2011 released,
now discontinued, LEGO Sort and Store item. Fan offered solutions usually rely
on optimization of the manual sorting process (e.g. [1]). Some fans tried to build

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_52

https://dx.doi.org/10.1007/978-3-031-08757-8_52


2 T. Boiński et al.

AI powered sorting machines [10,38] with some success. Independently from the
way of building the sorting machine, it requires a well-trained neural network
able to distinguish between different, often very similar bricks. The solution
should at least divide them into smaller number of categories aggregating bricks
similar in shape and usage, allowing further manual selection of proper bricks.
Thus LEGO oriented object classification solution is needed.

Problems like object detection, image segmentation, content-based image re-
trieval, or most commonly, object classification lie in domain of computer vision.
In the last case the given, previously detected object, is assigned a one or more
labels. The objects can have either one label assigned (multi-class classification)
or many labels assigned (multi-label classification).

Computer vision is an actively research sub-domain of machine learning. It
originated as far as in late 60ties of the 20-th century [27]. What was at the
beginning portrayed as a simple task, assigned to students in summer school,
currently remains a complex and not yet fully solved problem.

Across the recent years multiple deep neural network architectures emerged.
For their comparison a standardised approach was established - ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) competition [29]. During the com-
petition the models should classify objects to one of the 1000 classes based on
1.2 million of training images. The model accuracy is tested on 150000 images.
Two metrics are calculated – Top1 (the percentage of directly correctly clas-
sified images) and Top5 (the percentage of images that were classified among
the 5 with the highest probability). There are other commonly used datasets
like CIFAR-10 and CIFAR-100 [20], SIFT10M [8], Open Images Dataset [19,21],
Microsoft Common Objects in Context (COCO) [23]. As each dataset contains
photos from different categories, with different size etc., good standing with one
of the datasets does not guarantee the same results with the other. Furthermore
the datasets try to be very general whereas in some cases the images contain
similar objects. That is why further evaluation is still required.

In our research we undertook construction of AI-powered sorting machine [6]
treating LEGO recognition as multi-class classification. To search for the best
architecture that matches our scenario we decided to base our dataset in that
prepared for ILSVRC. This way we could speed up training process thanks to
transfer learning approach. As candidate architectures we selected the ones that
achieved the best results in the aforementioned competition.

The structure of this paper is as follows. In Section 2 a description of com-
pared network topologies is given. Later on, in Section 3, the used dataset is
presented. Further in Section 4 details how the training was done and the test-
ing methodology are presented. Section 5 discusses results obtained during the
tests. Finally, some conclusions are given.

2 Network topologies

In this paper we tested 28 network topologies from 7 families:

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_52

https://dx.doi.org/10.1007/978-3-031-08757-8_52


How to sort them? A network for LEGO bricks classification 3

– EfficientNet – EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3,
EfficientNetB4, EfficientNetB5, EfficientNetB6 and EfficientNetB7 variants,

– NASNet – NASNetMobile and NASNetLarge variants,
– ResNet – ResNet50, ResNet50V2, ResNet101, ResNet101V2, ResNet152 and

ResNet152V2 variants,
– MobileNet – MobileNet, MobileNetV2, MobileNetV3Large and MobileNetV3-

Small variants,
– Inception – InceptionV3, InceptionResNetV2 and Xception variants,
– DenseNet – DenseNet121, DenseNet169 and DenseNet201 variants,
– VGG – VGG16 and VGG19 variants.

In this section a brief introduction to each family and variant is given, por-
traying its strengths and rationale behind the used architecture.

EfficientNet architecture was defined in 2019 [37]. The model aims at efficient
scaling of convolutional deep neural networks. The authors distinguished three
dimensions of scaling: depth scaling, width scaling and resolution scaling. Depth
scaling is the most commonly used approach, as it allows increase in number
and complexity of detected features by increasing the number of convolutions.
However, with increasing network depth, the training process gets longer and a
problem of vanishing gradient can be observed [13]. Width scaling relies on in-
crease of number of channels in each convolution. It is commonly used in shallow
networks, where width scaling increased both training speed and classification
quality [39]. Resolution scaling allows potential extraction of additional features.
With all three scaling approaches there is a point of diminishing returns, beyond
which additional computational overhead is not being compensated by better ac-
curacy. EfficientNet uses so-called compound scaling, where all three parameters
are equally scaled using φ parameter.

The base model here is similar to MnasNet [36] and MobileNetV2 [30]. Each
model in this family differs by the φ parameter value (starting with φ = 0).

Care needs to be taken when using the model in TensorFlow framework [31],
as zero-padding is used for convolutions with resolutions that cannot be divided
by 8. The number of channels also needs to be divisible by 8. The real compound
scaling parameters applied when using TensorFlow are thus different.

ResNet50 was proposed in 2015 [11], as a solution to vanishing and exploding
gradient problems. Thanks to so-called residual connections, it allows training
of very deep networks (over 1000 convolutional layers). Residual connections
perform elementwise addition of identity function between convolution blocks.
This improves gradient flow, by skipping non-linear activation functions usually
placed in convolutional blocks.

In 2016 a revision of the original model was proposed (called ResNet V2) [12].
The whole family of this model (in both ResNet and ResNet V2 revisions)
achieves very high results in ILSVR competition reaching 74.9%-78% accuracy
in Top1 and 92.1%-94.2% accuracy in Top5 categories.

DenseNet was defined in 2016 [16]. Similarly as in ResNet, the aim is to solve
the vanishing gradient by shortening its flow path. DenseNet uses so-called dense
blocks to achieve it. The dense block consists of 1x1 and 3x3 blocks and output

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_52

https://dx.doi.org/10.1007/978-3-031-08757-8_52


4 T. Boiński et al.

of every block within it is connected with input of every next block. Each layer
within a dense block has thus direct access to its output which limits the flow
path. DenseNet has also low width of the convolutional layers. Each variant of
DenseNet architecture differs in terms of size of the last two dense blocks.

In 2018 DenseNet achieved the highest score in ILSVR competition Top1
category reaching accuracy of 75% for DenseNet-121, 76.2% for DenseNet-169,
77.42% for DenseNet-201 and 77.85% for DenseNet-264 77.85%.

Inception architecture was defined in 2014 [34] with Inception v1/GoogLeNet.
The aim was to reduce the risk of overfitting and eliminate the problems with
gradient flow. A special Inception block was proposed - it is composed of three
layers with different filters (1x1, 3x3 and 5x5). This led to high calculation com-
plexity so a reduction was introduced that limited the number of entry channels.
9 Inception v1 blocks were combined as GoogLeNet architecture.

Inception v2 and v3 were defined in 2015 [35]. They increased performance,
limiting information loss and computational complexity. Inception v3 achieves
77.9% accuracy in ILSVR competition Top1 category and 93.7% in Top5.

In 2016 Inception v4, InceptionResNetV1 and InceptionResNetV2 architec-
tures were proposed [33]. The main goal was simplification and unification of the
Inception models. ResNet residual connections were also included in the model.
The best results were obtained by InceptionResNetV2 model. In Top1 category
of the ILSVRC competition it achieved accuracy of 80.3% and in Top5 95.3%.

In 2017 an extension to Inception V3, by replacing the inception block with
so-called extreme inception, was defined [7]. The original block was modified
so that for each 1x1 convolution output corresponds one 3x3 convolution. This
architecture, called Xception, proved to be easier to define and modify in software
frameworks than the original Inception model.

Xception achieved better results in ILSVR competition than the original
Inception v3 model. For Top1 category the accuracy was 79% and for Top5
94.5%. It also had less parameters (22.86 million vs 23.63 million).

NASNet model was defined in 2017 [41]. It was created thanks to Google
AI’s AutoML [28] and Neural Architecture Search [40]. The creation of optimal
network architecture is treated here as reinforcement learning problem, with the
final network accuracy as a reward. This induced a very high computational cost,
so the search space had to be narrowed considerably. Based on the analysis of
other models the authors first defined a general architecture, which composed of
only 2 blocks - normal cell and reduction cell.

This significantly reduced the time needed to find the optimal model. Still,
the training time remained very long. However, the model achieved good results.
For ILSVRC Top 1 category it reached accuracy of 74.4% and 82.5% for smaller
NASNetMobile variant, and larger NASNetLarge variant respectively.

MobileNet model was defined in 2017 [15]. It was designed to allow fast
inference on mobile and embedded devices. The authors of this solution point
out that after a certain level of network complexity, the increase in inference
time is much bigger than the increase in accuracy, making the potential gain
computationally unprofitable. To further increase the performance of inference,

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_52

https://dx.doi.org/10.1007/978-3-031-08757-8_52


How to sort them? A network for LEGO bricks classification 5

authors defined a special convolution, called depthwise separable convolution.
It separates the operation into two phases - filtering and combination. This
approach allowed up to 9 times lower computational complexity with only a 1%
lower accuracy [15] (for ILSVRC Top 1 category).

Few versions of MobileNet architecture were proposed, each introducing us-
age of different approaches (like residual connections) or different numbers of
channels. The original MobileNet model achieved for Top1 category of ILSVRC
competition the accuracy equal to 70.6%. MobileNetV2 [30] achieved 72.0% with
around 20% lower number of parameters and 47% lower computational cost. Mo-
bileNetV3 [14] introduced 2 versions - Small with 2.5 million parameters and
Large with 5.4 million parameters. The accuracy for Top 1 category of ILSVRC
competition was 75.2% for MobileNetV3Large and 67.4% for MobileNetV3Small.

VGG is one of the oldest architectures, was defined in 2014 [32]. Different
variants of this model vary by the number of trainable layers. For Top 1 category
of ILSVRC competition, VGG16 and VGG19 reach accuracy of 71.3%. For Top5
category, VGG16 reaches accuracy of 90.1%, whereas VGG19 of 90%.

As we can see, all of the aforementioned models achieved very good result
in the ILSVRC competition. At the time of their publication they gained the
highest score and usually became the state of the art. As mentioned in Section 1
it doesn’t always translate to the same results for other datasets.

3 The dataset

During the training we used custom dataset containing both real photos and
renders of LEGO bricks, belonging to 447 classes. The bricks were taken from
authors personal collection of over 150 LEGO sets and represents the most com-
monly available brick shapes. The whole dataset consists of 620082 images, where
52601 were real photos and 567481 were life-like renders. The renders were cre-
ated using Blender tool [9] based on 3D models from LDraw library [17].

The renders were used to speed up data gathering. We created a script that
randomly selected a brick type, color and alignment simulating its move on
a conveyor belt below a fixed positioned camera. Thanks to Blender and its
extension called ImportLDraw [26] we managed to generate realistic images of
LEGO bricks. Sample renders, after being cropped, can be seen in Fig. 1.

Real photos were created to increase the representativeness of the training
set. For that we created a dedicated Android app allowing quick tagging and au-
tomatic cropping of LEGO bricks on pictures taken with phone camera. Sample
real photos can be seen in Figure 2.

The full set of rendered images (before cropping) and real photos are publicly
available – [5] and [3] respectively. The complete dataset is also available [4].

Before the training the dataset was prepared so that all networks would be
trained on the same images. The images need to be standardised in terms of size
and proportions. As some of the bricks are long and narrow (e.g. brick 3002),
we decided to scale the longer edge to the desired size, and the shorter edge
proportionally (otherwise we could loose some information). Then, the image

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_52

https://dx.doi.org/10.1007/978-3-031-08757-8_52


6 T. Boiński et al.

Fig. 1. Sample renders for brick number 3003

Fig. 2. Sample real photos of brick number 3003

canvas was extended to form a square and was filled with white background.
Next, all images were augmented using imgaug library [18]. The transformation
included the following operations applied with 50% probability:

– scaling to randomly selected size (80%-120% of the original size),
– random rotation between � 45◦ and 45◦,
– random shift by up to 20%,
– random transformation into a trapezoid with an angle of up to 16◦.

Next, 5 randomly selected operations were applied, from the following list:

– Gaussian, median or averaged blur with a random intensity,
– sharpening filter with random blending factor and brightness,
– emboss filter with random blend factor and brightness,
– superimpose the contours detected by the edge detection filter, with a prob-

ability of 50%,
– Gaussian noise of random intensity,
– dropout of random pixels or a group of pixels,
– inversion of every image channel, with probability of 5%
– addition of a random value to each pixel,
– random brightness change of the image,
– random contrast change of the image,

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_52

https://dx.doi.org/10.1007/978-3-031-08757-8_52


https://dx.doi.org/10.1007/978-3-031-08757-8_52


https://dx.doi.org/10.1007/978-3-031-08757-8_52


https://dx.doi.org/10.1007/978-3-031-08757-8_52


https://dx.doi.org/10.1007/978-3-031-08757-8_52


https://dx.doi.org/10.1007/978-3-031-08757-8_52


https://dx.doi.org/10.1007/978-3-031-08757-8_52


https://dx.doi.org/10.1007/978-3-031-08757-8_52


https://dx.doi.org/10.1007/978-3-031-08757-8_52

