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Abstract. Understanding player’s actions and activities in sports is cru-
cial to analyze player and team performance. Within Australian Rules
football, such data is typically captured manually by multiple (paid)
spectators working for sports data analytics companies. This data is
augmented with data from GPS tracking devices in player clothing. This
paper focuses on exploring the feasibility of action recognition in Aus-
tralian rules football through deep learning and use of 3-dimensional
Convolutional Neural Networks (3D CNNs). We identify several key ac-
tions that players perform: kick, pass, mark and contested mark, as well
as non-action events such as images of the crowd or players running with
the ball. We explore various state-of-the-art deep learning architectures
and developed a custom data set containing over 500 video clips tar-
geted specifically to Australian rules football. We fine-tune a variety of
models and achieve a top-1 accuracy of 77.45% using R2 + 1D ResNet-
152. We also consider team and player identification and tracking using
You Only Look Once (YOLO) and Simple Online and Realtime Track-
ing with a deep association metric (DeepSORT) algorithms. To the best
of our knowledge, this is the first paper to address the topic of action
recognition in Australian rules football.

Keywords: Action recognition · 3D CNN · Australian rules football.

1 Introduction

Action recognition has been explored by many researchers over the past decade.
The typical objective is to detect and recognize human actions in a range of
environments and scenarios. Action recognition, unlike object detection, needs to
consider both spatial and temporal information in order to make classifications.
In this paper we focus on using 3-dimensional Convolutional Neural Networks
(3D CNNs) to achieve action recognition for players in Australian rules football.

Australian rules football, commonly referred to as “footy” in Australia, is a
popular contact sport played between two 18-player teams on a large oval. The
premier league is the Australian Football League (AFL). The ultimate aim is to
kick the ball between 4 goal posts for a score (6 points if the ball goes through
the middle two posts) or a minor score (1 point if the ball goes through the one
of the inner/outer posts). This is achieved by players doing a range of actions
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to move the ball across the pitch. These include kicking, passing (punching the
ball), catching, running (up to 15 metres whilst carrying the ball) and tackling.

The understanding of player actions and player movements in sports are cru-
cial to analyse player and team performances. Counting the number of effective
actions that take place during a match is key to this. This paper focuses on de-
velopment of a machine learning application that is able to detect and recognize
player actions through the use of deep artificial neural networks.

2 Literature review

Prior to deep learning, approaches based on hand-engineered features for com-
puter vision tasks were the primary method used for action recognition. Im-
proved Dense Trajectories (IDT) [26] is representative of such approaches. This
achieved good accuracy and robustness, however hand engineering features is
limited. Deep learning architectures based on CNNs have achieved unparalleled
performance in the field of computer vision. Deep Video developed by Karpa-
thy et al. [17] was one of the first approaches to apply 2D CNNs for action
recognition tasks. This used pre-trained 2D CNNs applied to every frame of the
video and fusion techniques to learn spatio-temporal relationships. However, its
performance on the UCF-101 data set [20] was worse than IDT, indicating that
2D CNNs alone are sub-optimal for action recognition tasks since they do not
adequately capture spatio-temporal information.

Two-stream networks such as [19] add a stream of optical flow information
[11] as a representation of motion besides the conventional RGB stream. The
approach used two parallel streams that were combined with fusion based tech-
niques. This approach was based on 2D CNNs and achieved similar results to
IDT. This approach sparked a series of research efforts focused on improving two-
stream networks. This included works focused on improvement in fusion [6], and
use of recurrent neural networks including Long Short-Term Memory (LSTM)
[4,15]. Other methods include Temporal Segment Networks (TSN) [27] capable
of understanding long range video content by splitting a video into consecutive
temporal segments, and multi-stream networks that consider other contextual
information such as human poses, objects and audio in video. The framework of
two-stream networks was widely adopted by many researchers, however, a major
limitation of two-stream networks was that optical flows require pre-processing
and hence require considerable hand-engineering of features. Generating optical
flows for videos can be both computationally and storage demanding. This also
affected the scale of training data sets required.

3D CNNs can be thought of as a natural way to understand video content.
Since video is a series of consecutive frames of images, a 3-dimensional convo-
lutional filter can be applied to both the spatial and temporal domain. Initial
research was explored by [13] in 2012, then in 2015 by Tran et al. [22] who
proposed a 3D neural network architecture called C3D using 3 × 3 × 3 con-
volutional kernels. They demonstrated that 3D CNNs were better at learning
spatio-temporal features than 2D CNNs. The introduction of C3D marked the
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start of a new chapter in action recognition. 3D CNNs were shown to be suited to
extracting and learning spatio-temporal features from video - a core demand for
real-time action recognition. However C3D were difficult to train with the train-
ing process usually taking weeks on large data sets, due to the cost incurred in
training with an overwhelming number of parameters in the full 3D architecture.

In 2017, Carreira et al. [2] proposed Inflated 3D ConvNets (I3D), which
utilized transfer learning and outperformed all other models using the UCF-101
data set. I3D avoided the necessity for training from scratch by using some well-
developed 2D CNN architectures that were pre-trained on large scale data sets
such as the ImageNet [3]. I3D added an additional temporal dimension, where
the model weights were used. The proposed I3D model was implemented for
both the two-stream and single stream approach. Weights from an Inception-V1
model [12] pre-trained on ImageNet were used and trained on the Kinetics-400
data set [18]. This was subsequently fine-tuned on the UCF-101 data set to
achieve a top-1 accuracy of 95.1% with RGB stream only. I3D demonstrated
that 3D CNNs could benefit from the weights of 2D CNNs pre-trained on large
scale data. This has since become a popular strategy adopted by many that has
sparked a model benchmark standard based on the Kinetics-400 data.

Tran et al. [24] proposed the R2+1D architecture in 2018. This focused on
factorizing spatio-temporal 3D convolutions into 2D spatial convolutional blocks
and 1D temporal convolutional blocks. This decomposition provided simplicity
for model optimization and improved the efficiency of training, while also en-
hancing the model’s ability to represent complex functions by increasing the
number of non-linearities through adding Rectified Linear Unit activation func-
tions (ReLU) between the 2D and 1D blocks. The R2+1D model used the Deep
Residual Network (ResNet) [10] architecture as the backbone and achieved sim-
ilar performances to I3D on data sets such as Kinetics-400 and UCF-101.

Non-local blocks proposed by Wang et al. in 2018 [28] introduced a new
form of operational building block that was able to capture long range temporal
features similar to the self attention mechanism [25]. This was compatible to
most architectures with minimal effort. The authors implemented their model
by adding non-local blocks into the I3D architecture and achieved consistent
improvement of performance over the original model using several data sets.
In 2019 Tran et al. [23] proposed Channel Separated Networks (CSN) which
focused on factorizing 3D CNNs by separating channel-wide interactions and
spatio-temporal interactions by introducing regularization measures into the ar-
chitecture to improve the overall accuracy. CSN are regarded as an efficient and
lightweight architecture, where the model interaction-reduced channel-separated
network (ir-CSN) using a ResNet-152 backbone reported a top-1 accuracy of
79.2% on the Kinetics-400 data set.

Feichtenhofer et al. [5] proposed the SlowFast networks framework. This con-
sisted of a fast and a slow stream. The fast stream was used for extracting tem-
poral motion features at a high frame rate, whilst the slow stream was used for
extracting spatial features at a low frame rate. These two streams were later fused
by lateral connections, commonly seen in two-stream network models. However,
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the architecture of SlowFast networks was fundamentally different to two-stream
networks since it was based on streams of different temporal frame rates and not
two separate streams of spatial and temporal features. The SlowFast network
provided a generic and efficient framework that could be applied to various
spatio-temporal architectures. Furthermore, the fast stream was lightweight as
the channel capacity was greatly reduced by only focusing on temporal features.
The proposed network used ResNet architecture as the backbone and achieved
a better performance than I3D and R2+1D on the Kinetics-400 data set.

Another similar framework was the Temporal Pyramid Network (TPN) pro-
posed by Yang et al. [30]. This used a pyramid structure for processing frames
at multiple feature levels to capture the variation in speed for different actions
- so called visual tempos. TPN had the ability to use various 3D or 2D archi-
tectures as the backbone, where the set of hierarchical features extracted by the
backbone undergoes down-sampling with a spatial module and a temporal rate
module for processing features rich in both visual tempos and spatial informa-
tion. These could then be aggregated by an information flow process. TPN used
a ResNet-101 backbone and achieved better performance in Kinetics-400 over
the SlowFast network.

3 Australian Rules Football Data Set

A well-defined and high-quality data set is crucial for action recognition tasks.
This should contain enough samples for deep neural networks to extract motion
patterns, and offer enough variance for different scenarios and camera positions
for performance analysis. No such data set exists for AFL, hence we construct
our own action recognition data set for AFL games. In this process, we referred to
some well-known data sets for video content understanding including Youtube-
8M [1], UCF 101 [20], Kinetics-400 [18], SoccerNet [8] and others. All the training
and testing videos used here were retrieved from YouTube.

As AFL games are popular in Australia, there are more than enough videos on
YouTube, including real match recordings, training session recordings, tutorial
guides etc. However, manually creating and labelling data from video content
(individual frames) is a challenging and time-consuming task. In order to feed
enough frames and information for temporal feature extraction into deep learning
models, we set the standard that each video clip should be at least 16 frames in
length and it should be not a long-distance shot with low resolution of action
tasks.

Players in an AFL match are highly mobile hence actions only exist for
a very limited amount of time and are often interfered with by other players
through tackles. As a result, actions sometime may end up in failure. This brings
significant challenges to the construction process of the data set, e.g. judging the
actual completeness of actions. This work focuses on recognizing the patterns
and features of attempted actions, and pays less attention to whether the action
has been completed or not. All action clips within the data set have a high level
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of observable features, where the actual completeness of those actions was less
of a concern.

In AFL games, some actions like marks (catching the ball kicked by a player
on the same team) have a specific condition that needs to be met. According
to AFL rules, a mark is only valid when a player takes control of the ball for
a sufficient amount of time, in which the ball has been kicked from at least
15 meters away and does not touch the ground and has not been touched by
another player. We aim to identify specific action patterns based only on the
camera images and as such we do not consider the precision of whether the
kicker was 15 metres away. Marks can be separated into marks and contested
marks, where the latter is when multiple players attempt to catch (or knock the
ball away) at the same time.

The videos from YouTube comprise many meaningless frames. We clip videos
from longer videos and label them into five different classes:

(1) Kick: This class refers to the action whereby a player kicks the ball.
The ball could come from various sources: the player himself holding the ball in
front and dropping/kicking it, or kicking it directly off the ground.

(2) Mark: A player catches a kicked ball for sufficient time to be judged to
be in control of the ball and without the ball being touched/interfered with by
another player.

(3) Contested mark: Contested mark, is a special form of mark. This
refers to the action that one player is trying to catch the ball and one or more
opponents are either also trying to catch the ball at the same time or they are
trying to punch the ball away.

(4) Pass: A player passes (punches) the ball to another player in the same
team.

(5) Non-Action: This class includes players running, crowds cheering etc.
This class is used to control the model performance as during the match there
are many non-action frames. Without this class, the model would always try to
classify video content into the previous four classes.

The details of each class in the data set are shown in Table 1, and example
of each action class is shown in Figure 1. Compared to other classes, the non-
action class has a relatively low number of instances in the data set. The reason
is that this class spans many different scenes, and too many instances in this
class would drive the attention of the model away from key features of the four
key action classes.

There are several challenges when using a data set for action recognition.
Some actions share the same proportion of representations. One example is mark-
ing and passing the ball. In a video clip of relatively long distance passing, if
the camera does not capture the whole passing process, e.g. it starts from some-
where in the middle, the representing features of this action might be similar to
a mark action, i.e. someone catches the ball. The data set could also be modified
by combing two classes of mark and contested mark, as sometimes it is hard to
identify a mark compared to a contested mark. If a player is trying to catch the
ball, and in the background an opponent is also trying to catch the ball, but
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Class # of instances
Training Testing Total

kick 158 20 178
contested mark 94 20 114

mark 61 20 81
pass 83 21 104

non-action 66 21 87

Total 462 102 564

Table 1: Number of Instances of Each Class

Fig. 1: Kick, Contested Mark, Mark, Completed Pass

they do have not any physical contact at any time from one angle it may be
considered as a mark. From a different camera angle, where there appears to be
some degree of physical contact, it might seem more like a contested mark.
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4 Implementation and Discussion of Results

Given the complexity and diversity of the architectures mentioned above, we
use the Gluon CV toolkit [9]. This provides a Pytorch model implementation,
and importantly, the ability to train custom data sets. In order to fully utilize
the benefit of transfer learning and to compensate for the limited amount of
data, we used models pre-trained on largely scaled action recognition data sets
such as the Kinetics-400, and then fine-tune those models using the custom AFL
data set. The final implementation involves a slightly modified version of Gluon
CV which includes a few algorithmic alterations and some minor bug fixes. The
architectures and pre-trained models we used along with their specifications and
top-1 accuracy on Kinetics-400 are listed below in Table 2 [31]. Here R2+1D
ResNet-50 model was calculated using a 112 × 112 × 3 × 16 input data size,
R2+1D ResNet-152 model was calculated using a 112× 112× 3× 32 input data
size, and all other models were calculated based on a 224 × 224 × 3 × 32 input
data size.

Model Pre-trained #Mil parameters GFLOPS Accuracy (%)

I3D ResNet-50 ImageNet 28.863 33.275 74.87

I3D ResNet-101 Non-
Local

ImageNet 61.780 66.326 75.81

I3D SlowFast
ResNet-101

ImageNet 60.359 342.696 78.57

R2+1D ResNet-50 - 53.950 65.543 74.92

SlowFast-8x8
ResNet-101

- 62.827 96.794 76.95

TPN ResNet-101 - 99.705 374.048 79.70

R2+1D ResNet-152*
[7]

IG65M 118.227 252.900 81.34

irCSN ResNet-152*
[7]

IG65M 29.704 74.758 83.18

Table 2: Model Specifications

All model architectures are in 3D. I3D and I3D SlowFast models were based
on inflated 2D ResNet pre-trained on ImageNet. irCSN and R2+1D ResNet-152
were pre-trained on IG-65M, and all other models were trained from scratch. All
models used the Kinetics-400 data set for training [9].

The final training dataset was randomly split into training and validation
data sets in the ratio of 70% and 30% respectively. A sub-clip of 16 frames was
evenly sampled from each video clip at a regular interval depending on the clip’s
length. The number of input frames was selected as most actions happen in a
short time period. If the sampled frames were less than 16, replacements would
be randomly selected from the rest of the frames. The sampled frames would
then be processed by standard data augmentation techniques, where it would
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be first resized to a resolution of 340 × 256, while R2+1D resized the frames
to 171 × 128,. The frames were then subject to a random resize with bi-linear
interpolation and a random crop size 224 × 224. The crop size for R2+1D was
112×112. Following this, the frames were randomly flipped along the horizontal
axis with a probability of 0.5, and normalized with means of (0.485, 0.456, 0406)
and standard deviations of (0.229, 0.224, 0.225) with respect to each channel.

The training process used stochastic gradient descent (SGD) as the optimizer,
with custom values of learning rate, momentum and weight decay, which were
specific to each model. The value of learning rate plays a very important role
in the model training process, where the correct learning rates will allow the
algorithms to converge, whereas the wrong learning rates will result in the model
not generalizing at all. Since we fine-tune pre-trained models, the initial learning
rate was set much lower than the original model. The common values of the
learning rate were 0.01 and 0.001, with a momentum of 0.9, a weight decay of
1e−5, and learning rate policy set to either step or cosine, depending on each
model’s architecture and level of complexity. Cross entropy loss was used for the
model criterion with class weights taken into consideration since the training
data set was imbalanced between the different classes. The number of epochs
was set at 30 with an early stopping technique used to prevent over-fitting. The
epoch with the lowest validation loss was saved as the best weight.

The top-1 accuracy on the testing data set for the fine-tuned models is shown
in Table 3.

Model Accuracy (%)

I3D ResNet-50 56.86

I3D ResNet-101 Non-Local 61.77

SlowFast-8x8 ResNet-101 69.61

TPN ResNet-101 70.59

I3D SlowFast ResNet-101 71.57

R2+1D ResNet-50 72.55

irCSN ResNet-152 74.51

R2+1D ResNet-152 77.45

Table 3: Top-1 Accuracy on the AFL test data set

As seen, the best performing model was the R2+1D ResNet-152 model pre-
trained on the (very large) IG65M dataset. This achieved a top-1 accuracy of
77.45%. The final classification of action recognition results are shown in Ta-
ble 4. As seen, the classification for marks had the lowest recall of 0.55, while
contested marks had a recall of 0.85. This is possibly due to marks and contested
marks being difficult to distinguish in some circumstances due to the presence of
other players in the background. The classification for non-action has the lowest
precision of 0.57 and the lowest f1 score of 0.65. The reason for this is that the
non-action class is very broad and contains many sub-classes, such as scenes
of audiences and players running and cheering. Splitting the class into multiple
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distinct classes in the future may improve the non-action accuracy. Among all
classes, the classification of kicks has the highest f1-score at 0.89, since a kick
has arguably the most distinct and recognizable features.

Action Precision Recall F1-score

Kick 1.00 0.80 0.89

Contested mark 0.74 0.85 0.79

Mark 0.85 0.55 0.67

Pass 0.86 0.90 0.88

Non-action 0.57 0.76 0.65

Table 4: Final Classification Results

The results for the top-1 accuracy of the AFL testing data set are gener-
ally consistent with the model performance using the Kinetics-400 dataset, how-
ever the R2+1D ResNet-50 model achieved some noteworthy improvements. The
model I3D ResNet-50 performed poorly with a top-1 accuracy of 56.86%, whilst
the model I3D ResNet-101 Non-Local only achieved an accuracy of 61.77%. It
might be inferred that the inflated 2D ResNets (I3D) are limited in their abil-
ity to capture spatio-temporal features, while R2+1D is more capable in this
regard as it utilizes the factorization of the 3D ResNet architecture. It was also
found that non-local blocks may not be suitable for Australian rules football, as
they are designed to capture long range temporal features. Actions in AFL are
relatively fast and diverse which results in the model under-performing.

It was found that the performance of models generally depends on their back-
bone architecture. The complexity of the ResNet architecture is closely related
to the prediction accuracy, hence it could be argued that the more complex the
architecture is, the more likely the model will generalize and make the right
predictions. Comparing ResNet-50 with ResNet-152, there is a significant differ-
ence in complexity and number of parameters, which could be one reason for
the relatively large performance difference. Another major factor to consider is
that both R2+1D ResNet-152 and irCSN used IG65M for model pre-training
and hence benefit from the very largely scaled data set. It is also interesting to
note that R2+1D uses a 112 × 112 resolution input after data augmentation,
whilst the rest of the models use a 224× 224 input. Despite this R2+1D is still
able to produce some of the best results overall.

SlowFast and TPN networks both model visual tempos in video clips. When
incorporating I3D into SlowFast network, the model I3D SlowFast ResNet-101
performed evidently better than the other I3D models, indicating that the Slow-
Fast networks are capable at better extracting spatio-temporal features and that
modelling visual tempos improves the overall model performance. However, Slow-
Fast is a more strict framework that limits the number of frames of different
streams, whilst TPN is more flexible due to its pyramid structure. As a result,
TPN ResNet-101 performed slightly better than SlowFast ResNet-101.
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There are several important limitations to the presented models. Firstly,
incomplete actions will likely be classified as actions. As shown in Figure 2(a),
an incomplete contested mark has been classified as a contested mark. This is due
to the incomplete action sharing a lot of similar features to a completed action.
The model does not always possess the ability to recognise whether the ball has
been cleanly caught (or not). Secondly, the model tends to perform poorly in
complex scenes and environments. From Figure 2(b), it can be seen that there
are many players present in the background and a player is tackling another
player who has the ball. In this case, the model mis-classifies the scenario into a
pass as it is similar to the scenarios of pass in the training data set.

(a) Incomplete contested mark (b) Realistic complex environment

Fig. 2: Mis-classified actions

5 Team Identification and Associated Limitations

Many action events depend on distinguishing teams, e.g. a completed pass re-
quires the ball to be passed by a player within the same team. Team identification
is thus important to any Australian football model. In this work, we utilize the
You-Only-Look-Once (YOLO) v5 [14] framework and the DeepSORT algorithm
[29] to identify and track multiple objects at the same time. The implementa-
tion of this module inputs raw frames to be classified, filters and then keeps
player location information in each frame. The DeepSORT algorithm is capable
of tracking object movement across different frames, and assign unique IDs to
team players.

As with many team sports, AFL players wear team jerseys with colors rep-
resenting their team. In this way, audiences are able to identify (distinguish)
players from the two teams. We apply color distribution extractors to images to
extract the differences in player jersey colors. The distribution can then be used
as an input to construct a high-dimensional features such as KMeans clustering
[16] to cluster players into groups. A screenshot of the results of the application
is shown in Figure 3.

The performance of this module is limited by the resolution of the video.
With a higher resolution, the jersey color of players in the foreground is clear but
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Fig. 3: Team Identification Classification Example

those in the far background is less clear. Another challenge faced is rapid camera
movement and viewpoint changes. In real matches, sudden viewpoint changes
from long-distance views to close-up views (and vice versa) happens continually.
Ideally (from the model perspective) there would be a single camera angle - akin
to what a spectator sees in a game, but this never happens in reality when games
are shown on television. These continuous viewpoint changes make it challenging
to track a specific player’s movement. Nevertheless, the team identification is
able to distinguish the teams within a few milliseconds. The performance of the
system also greatly depends on teams wearing clearly identifiable jerseys. This
is always the case however so does not limit the model. If players get especially
muddy for example this might be an issue, but this is a rarity in Australia.

6 Conclusions and Future Work

This paper explored the feasibility of action recognition for Australian rules foot-
ball using 3D CNN architectures. Various action recognition models including
state-of-the-art models pre-trained on large-scale data sets were utilised. We fine-
tune those models on a newly developed AFL data set, and reported a 77.45%
top-1 accuracy for the best performing model R2+1D ResNet-152. A smoothing
strategy allowed the algorithm to localize the frame range for actions in long
video segments. We also developed a team identification solution and an action
recognition application that showed both the potential and viability of applying
real time end-to-end action recognition to AFL matches.

There are many future extensions to the work. The team identification frame-
work opens up further improvements on action recognition in AFL matches
for specific teams. Actions such as pass and contested mark require additional
team information in order to be classified correctly. Moreover, the use of atten-
tion mechanisms in machine learning and use of transformers such as Bidirec-
tional Encoder Representations from Transformers (BERT) [21] has the ability
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to model contextual information with mechanisms for self attention. This could
be useful in scenes that contain multiple players and allow to achieve a higher
prediction accuracy.

Examples of the application of the models and the source code are available
at: https://youtu.be/I7490fyuiK8 and https://github.com/stephenkl/Research-
project respectively. This research was undertaken using the LIEF HPC-GPGPU
Facility hosted at the University of Melbourne. This Facility was established with
the assistance of LIEF Grant LE170100200.
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