
A Sparse Matrix Approach for Covering Large
Complex Networks by Cliques

Wali Mohammad Abdullah and Shahadat Hossain

University of Lethbridge, Lethbridge, Alberta, Canada
{w.abdullah,shahadat.hossain}@uleth.ca

Abstract. A classical NP-hard problem is the Minimum Edge Clique
Cover (minECC) problem, which is concerned with covering the edges
of a network (graph) with the minimum number of cliques. There are
many real-life applications of this problem, such as in food science, com-
putational biology, efficient representation of pairwise information, and
so on. Borrowing ideas from [8], we propose using a compact represen-
tation, the intersection representation, of network data and design an
efficient and scalable algorithm for minECC. Edges are considered for
inclusion in cliques in degree-based orders during the clique construction
step. The intersection representation of the input graph enabled effi-
cient computer implementation of the algorithm by utilizing an existing
sparse matrix package [11]. We present results from numerical experi-
ments on a representative set of real-world and synthetically constructed
benchmark graph instances. Our algorithm significantly outperforms the
current state-of-the-art heuristic algorithm of [4] in terms of the qual-
ity of the edge clique covers returned and running time performance on
the benchmark test instances. On some of the largest graph instances
whilst existing heuristics failed to terminate, our algorithm could finish
the computation within a reasonable amount of time.

Keywords: Adjacency Matrix · Clique Cover · Intersection Matrix ·
Ordering · Sparse Graph.

1 Introduction

The graph kernel operations, such as identification of and computation with
dense subgraphs, frequently arise in areas as diverse as sparse matrix determi-
nation and complex network analysis [14, 13]. In social networks, identification
of special interest groups or characterization of information propagation are ex-
amples of frequently performed network analytics tasks [23]. The Edge Clique
Cover problem (ECC) considered in this paper is concerned with finding a col-
lection of complete subgraphs or cliques such that every edge and every vertex
of the input graph is included in some clique. The computational challenge is
to find an ECC with the smallest number of cliques (minECC). The minECC
problem is computationally intractable or NP-hard [16].

Effective representation of network data is critical to meeting algorithmic
challenges for exactly or approximately solving intractable problems, especially

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

2 Abdullah et al.

when the instance sizes are large and sparse. In this paper, we use sparse matrix
data structures to enable compact representation of sparse network data based
on an existing sparse matrix framework [11] to design efficient algorithms for the
minECC problem.

Let G = (V,E) be an undirected connected graph, where V is the set of
vertices, and E is the set of edges. A clique is a subset of vertices such that every
pair of distinct vertices are connected by an edge in the induced subgraph. In
graph G, an edge clique cover of size k is a decomposition of set V into k subsets
C1, C2, . . . , Ck such that Ci, i = 1, 2, . . . , k induces a clique in G and each edge
{u, v} ∈ E is included in some Ci. A trivial clique cover with k = m, |E| = m
can be specified by the set of edges E with each edge being a clique. Finding a
clique cover with the minimum number of cliques (and many variants thereof)
is known to be an NP-hard problem [16].

In 1973, Bron and Kerbosch [2] proposed an algorithm to find all maximal
cliques of a given graph. That algorithm uses a branch-and-bound technique.
The algorithm is made more efficient by cutting off branches of the search
tree that will not lead to new cliques at a very early stage. Etsuji Tomita
et al. [22] presented a depth-first search algorithm for generating all maximal
cliques of an undirected graph, in which pruning methods are employed as in
the Bron–Kerbosch algorithm.

Many algorithms have been proposed in the literature to solve the ECC prob-
lem approximately. At the same time, there are only a few exact methods that
are usually limited to solving small instance sizes. A recent heuristics approach
is described by Conte et al. [4] to find an edge clique cover in O(m∆) time,
where m is the number of edges and ∆ is the highest degree of any vertex in the
graph.

In this paper, we use a compact representation of network data based on
sparse matrix data structures [11] and provide an improved algorithm motivated
by the works of Bron et al. [2], and E. Tomita et al. [22] for finding clique covers.
In [1], we used a similar compact representation of network data. In that paper,
we employ a “vertex-centric” approach where a vertex, in some judiciously chosen
order, together with its edges incident on a partially constructed clique cover, is
considered for inclusion in an existing clique. The preliminary implementation
produced smaller-sized clique covers when compared with the method of [9]
on a set of test instances. While the vertex-centric ECC algorithm frequently
produced smaller clique covers compared with other methods, the high memory
footprint of the method made it less scalable on very large problem instances.
In this paper, we propose an “edge-centric” minECC method. Our method is
characterized by a significantly reduced memory footprint and exhibits very
good scalability when applied to extremely large synthetic and real-life network
instances.

Our approach is based on the simple but critical observation that for a sparse
matrix A ∈ Rm×n, the row intersection graph of A is isomorphic to the adjacency
graph of AA⊤, and that the column intersection graph of A is isomorphic to the
adjacency graph of A⊤A [11]. Therefore, the subset of rows corresponding to

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

A Sparse Matrix Approach for Covering Large Complex Networks by Cliques 3

nonzero entries in column j induces a clique in the adjacency graph of AA⊤, and
the subset of columns corresponding to nonzero entries in row i induces a clique
in the adjacency graph of A⊤A. Note that matrices A⊤A and AA⊤ are most
likely dense even if matrix A is sparse. We exploit the close connection between
sparse matrices and graphs in the reverse direction. We show that given a graph
(or network), we can define a sparse matrix, intersection matrix, such that graph
algorithms of interest can be expressed in terms of the associated intersection
matrix. This structural reduction enables us to use the existing sparse matrix
computational framework to solve graph problems [11]. This duality between
graphs and sparse matrices has also been exploited where the graph algorithms
are expressed in the language of sparse linear algebra [14, 15]. However, they use
adjacency matrix representation which is different from our intersection matrix
representation.

The paper is organized as follows. In Section 2, we consider representations
of sparse graph data and introduce the notion of intersection representation and
cast the minECC problem as a matrix compression problem. Section 3 presents
the new edge-centric minECC algorithm. An important ingredient of our algo-
rithm is to select edges incident on the vertex being processed in specific orders.
The details of the implementation steps are described, followed by the presen-
tation of the ECC algorithm. The section ends with a discussion on the compu-
tational complexity of the algorithm. Section 4 contains results from elaborate
numerical experiments. We choose 5 different sets of network data consisting of
real-world network and synthetic instances. Finally, the paper is concluded in
Section 5.

2 Compact Representation and Edge Clique Cover

For efficient computer implementation of many important graph operations, rep-
resenting graphs using adjacency matrix or adjacency lists is inefficient. Adja-
cency matrix stored as a two-dimensional array is costly for sparse graphs, and
typical adjacency list implementations employ pointers where indirect access
leads to poor cache utilization [19]. The intersection matrix representation that
we propose below enables an efficient representation of pairwise information and
allows us to utilize the computational framework DSJM to implement the new
ECC algorithm.

2.1 Intersection Representation

We require some preliminary definitions. The adjacency graph associated with
a symmetric matrix A ∈ Rn×n is an undirected graph G = (V,E) in which for
each column or row k of A there is a vertex vk ∈ V and A(i, j) ̸= 0, i ̸= j if and
only if {vi, vj} ∈ E.

Let G = (V,E) be an undirected and connected graph without self-loops or
multiple edges between a pair of vertices. The adjacency matrix A(G) ≡ A ∈

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

4 Abdullah et al.

{0, 1}|V |×|V | associated with graph G is defined as,

A(i, j) =

{
1 if {vi, vj} ∈ E, i ̸= j
0 otherwise

We now introduce the intersection representation, an enabling and efficient
representation of pairwise information. The intersection representation of graph
G is a matrix X ∈ {0, 1}k×n in which for each vertex vj of G there is a column
j in X and {vi, vj} ∈ E if and only if there is a row l for which X(l, i) = 1
and X(l, j) = 1. A special case is obtained for k = m. Then, the rows of X can
be uniquely labeled by the edge list sorted by vertex labels. Therefore, matrix
X ∈ {0, 1}m×n can be viewed as an assignment to each vertex a subset of m
labels such that there is an edge between vertices i and j if and only if the
inner product of the columns i and j is 1. Since the input graph is unweighted,
the edges are simply ordered pairs and can be sorted in O(m) time. Unlike the
adjacency matrix, which is unique (up to fixed labeling of the vertices) for graph
G, there can be more than one intersection matrix representation associated
with graph G [1]. We exploit this flexibility to store a graph in a structured and
space-efficient form.

Let X ∈ {0, 1}m×n be the intersection matrix as defined above associated
with a graph G = (V,E). Consider the product B = X⊤X.

Theorem 1. The adjacency graph of matrix B is isomorphic to graph G. [1]

Theorem 1 establishes the desired connection between a graph and its sparse
matrix representation. The following result follows directly from Theorem 1.

Corollary 1. The diagonal entry B(i, i) where B = X⊤X and X is the inter-
section matrix of graph G, is the degree d(vi) of vertex vi ∈ V, i = 1, . . . , n of
graph G = (V,E). [1]

Intersection matrix X defined above represents an edge clique cover of car-
dinality m for graph G. Each edge {vi, vj} constitutes a clique of size 2. In
the intersection matrix X, edge el = {vi, vj} is represented by row l with
X(l, i) = X(l, j) = 1 and other entries in the row being zero. In general, column
indices j′ in row l where X(l, j′) = 1 constitutes a clique on vertices vj′ of graph
G. Thus the minECC problem can be cast as a matrix compression problem.

minECC Matrix Problem.GivenX ∈ {0, 1}m×n determineX ′ ∈ {0, 1}k×n

with k minimized such that the intersection graphs of X and X ′ are isomorphic.

3 An Edge-Centric minECC Algorithm

The algorithm that we propose for the ECC problem is motivated by the maximal
clique algorithm due to Bron et al. [2], and E. Tomita et al. [22]. For ease of
presentation, we discuss the algorithm in graph-theoretic terms. However, our
computer implementation uses a sparse matrix framework of DSJM [11], and all
computations are expressed in terms of intersection matrices.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

A Sparse Matrix Approach for Covering Large Complex Networks by Cliques 5

3.1 Selection of Uncovered Edges

An edge {u, v} ∈ E is said to be covered if both of its incident vertices have been
included in some clique; otherwise the edge is uncovered. In our algorithm, we
select an uncovered edge {u, v} and try to construct a maximal clique, C, con-
taining the edge. The algorithm selects vertices and edges in a prespecified order
during the clique construction process. Note that it may or may not be possible
to include additional uncovered edges while building a clique after selecting an
uncovered edge. This subsection will give details on how the algorithm selects
an uncovered edge.

Vertex Ordering. We recall that d(v) denotes the degree of vertex v in graph
G = (V,E). Let V ertex Order be a list of vertices of graph G using one of the
ordering schemes below.

– Largest-Degree Order (LDO) (see [12]): Order the vertices such that
{d(vi), i = 1, . . . , n} is nonincreasing.

– Degeneracy Order (DGO) (see [7, 21]): Let V ′ ⊆ V be a subset of
vertices of G. The subgraph induced by V ′ is denoted by G[V ′]. Assume the
vertices V ′ = {vn, vn−1, . . . , vi+1} have already been ordered. The ith vertex
in DGO is an unordered vertex u such that d(u) is minimum in G[V \ V ′]
where, G[V \ V ′] is the graph obtained from G by removing the vertices of
set V ′ from V .

– Incidence-Degree Order (IDO) (see [3]): Assume that the first k −
1 vertices {v1 . . . , vk−1} in incidence-degree order have been determined.
Choose vk from among the unordered vertices that has maximum degree in
the subgraph induced by {v1, . . . , vk}.

Edge Ordering. After the vertices have been ordered using one of the above
schemes, the algorithm proceeds to choose a vertex in that specific order, which
has at least one uncovered incident edge. If there is more than one uncovered
edge incident on the vertex being processed, the order in which the edges are
processed (i.e., to include in a clique) is as follows. Place all the edges {u, v}
before {p, q} in an ordered edge list, Edge Order, such that vertex u or vertex
v is ordered before vertices p and q in V ertex Order list.

Fig. 1. An example of an undirected graph.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

6 Abdullah et al.

Figure 1 shows an undirected graph. {4, 3, 5, 6, 7, 1, 2} would be the list with
LDO. The edge list induced by the V ertex Order will have the following form.

Edge Order =
{
{4, 3}, {4, 5}, {4, 6}, {4, 7}, {3, 1}, {3, 2}, {5, 6}, {5, 7}, {6, 7}, {1, 2}

}

Edge Selection. We select an edge to {u, v} ∈ E to include in a new clique if {u, v}
is uncovered and ordered before all uncovered edges in Edge Order. The clique that
gets constructed with edge {u, v} may cover other uncovered edges that are further
down the list.

We consider three variants of edge selection for our algorithm, denoted by L, D,
and I.

– L: In this variant, the set of vertices are ordered using the Largest-Degree Ordering
(LDO) scheme. We select a vertex u in that order and then return all the uncovered
edges of the form {u, v}.

– D: All the vertices are ordered using Degeneracy Ordering (DGO) scheme. Select a
vertex u in that order, and then return all the uncovered edges of the form {u, v}.

– I: Finally, this variant orders the set of vertices using the Incidence-Degree Ordering
(IDO) scheme. We select a vertex u in that order and return all the uncovered edges
{u, v}.

3.2 The Algorithm

Let EP = {e1, . . . , ei−1} be the set of edges that have been assigned to one or more
cliques {C1, . . . , Ck−1} and let ei = {vj , vj′} be the edge currently being processed
according to the ordered edge list. Denote by

W = {vl | {vj , vl}, {vj′ , vl} ∈ E}

the set of common neighbors of vj and vj′ .
The complete algorithm is presented below.

EO-ECC (Edge Order)
Input: Edge Order, set of edges in a predefined order using schemes L, D, or I

1: k ← 0 ▷ Number of cliques
2: for index = 1 to m do ▷ m is the number of edges
3: {u, v} ← Edge Order[index]
4: if {u, v} is uncovered then
5: W ← FindCommonNeighbors(u, v)
6: if W = ∅ then
7: k ++
8: Ck ← {u, v}
9: Mark {u, v} as covered
10: else
11: k ++
12: Ck ← {u, v}
13: Mark {u, v} as covered
14: while W ̸= ∅ do
15: let t be a vertex in W
16: W ←W \ t

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

A Sparse Matrix Approach for Covering Large Complex Networks by Cliques 7

17: if {t, s} ∈ E for each s ∈ Ck then
18: Mark {t, s} as covered
19: Ck ← Ck ∪ {t}
20: FindCommonNeighbors(W,FindNeighbors(t))

21: return C1, C2, ..., Ck

3.3 Discussion

In this subsection, we analyze algorithm EO-ECC to derive it’s asymptotic running
time. The two kernel operations used in the algorithm are “FindCommonNeighbors”
and “FindNeighbors.” The FindCommonNeighbors operation merges two sorted lists
(of integers) and computes the intersection of the lists. The list (of vertices) that this
operation returns after each call has at least one fewer vertices. Thus, to construct a
clique Ci, the total cost would be (ρi(ρi−1)

2
), where |Ci| = ρi. Let, C = {C1, C2, . . . , Ck}

be a clique cover returned by the algorithm EO-ECC. Then the total cost of calling
FindCommonNeighbors for the algorithm would be O(

∑k
i=1

ρi(ρi−1)
2

). The operation
FindNeighbors in algorithm EO-ECC computes the neighbors set of vertex v ∈ V [12].
In line 20, FindNeighbors operation is used to compute the neighbors of a vertex. Since
an uncovered edge gets covered only once, the total cost of FindNeighbors operation
is at most O(m). Thus, the overall running time of algorithm EO-ECC is O(m +∑k

i=1
ρi(ρi−1)

2
). The following result follows immediately from the above running time

expression.

Theorem 2. If the input graph G is triangle-free, then the algorithm EO-ECC runs
in O(m) time.

4 Numerical Testing

In this section, we provide results from numerical experiments on selected test in-
stances. 10th Discrete Mathematics and Theoretical Computer Science (DIMACS10)
instances and Stanford Network Analysis Platform (SNAP) instances are obtained from
the University of Florida Sparse Matrix Collection [5]. (SNAP) is a collection of more
than 50 large network datasets containing large number of nodes and edges includ-
ing social networks, web graphs, road networks, internet networks, citation networks,
collaboration networks, and communication networks [17]. We also experiment with
synthetic graph instances. We generated 182 Erdös-Rényi and Small-World instances
using the Stanford Network Analysis Project (SNAP) [18] instance generator. The
number of edges of these generated graphs is varied from 800 to 72 million.

The experiments were performed using a PC with 3.4GHz Intel Xeon CPU, with
8 GB RAM running Linux. The implementation language was C++ and the code was
compiled using −O2 optimization flag with a g++ version 4.4.7 compiler. We employed
the High-Performance Computing system (Graham cluster) at Compute Canada for
large instances that could not be handled by the PC.

In what follows, we refer to the vertex-centric ECC algorithm from [1] as Vertex
Ordered Edge Clique Cover (VO-ECC). We also refer to the ECC algorithm due to
Conte et al. as (Conte-Method). Finally, the edge-centric minECC algorithm of this
paper is identified as Edge Ordered Edge Clique Cover (EO-ECC). EO-ECC has three
variants associated with the three different edge ordering schemes D, L, and I. They
are: EO-ECC-D, EO-ECC-L, and EO-ECC-I respectively. In these results, m denotes the

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

8 Abdullah et al.

number of edges, n denotes the number of vertices of the graph; |C| denotes the number
of cliques in the cover, and t is the time in seconds to get the cover. In the presented
tables, the smallest cardinality clique cover is marked in bold.

Table 1. Test Results (Number of cliques) for SNAP instances.

Graph |C|
Name m n VO-ECC using [1] Conte-Method using [4] EO-ECC

p2p-Gnutella04 39994 10878 38474 38491 38449
p2p-Gnutella24 65369 26518 63726 63725 63689
p2p-Gnutella25 54705 22687 53368 53367 53347
p2p-Gnutella30 88328 36682 85823 85822 85717
ca-GrQc 14496 5242 3777 3753 3717
as-735 13895 7716 8985 8938 10130
Wiki-Vote 103689 8297 42914 39393 51145
Oregon-1 23409 11492 15631 15491 15527
ca-HepTh 25998 9877 9663 9270 9162

Table 1 displays the size of clique covers returned by three algorithms: the edge-
centric algorithm (EO-ECC), the vertex-centric algorithm (VO-ECC) discussed in [1] and
algorithm (Conte-Method) discussed in [4]. Conte-Method randomly selects an edge and
attempts to build a clique around the selected edge. As the table illustrates, EO-ECC
produces smaller cardinality edge clique cover than VO-ECC except for two instances.
On the other hand, it outperforms Conte-Method on six out of nine instances.

Table 2. Test Results (number of cliques) for DIMACS10 matrices.

Graph Number of cliques

Name m n Conte-Method EO-ECC-D EO-ECC-L EO-ECC-I

chesapeake 170 39 75 76 75 76
delaunay n10 3056 1024 1250 1233 1275 1241
delaunay n11 6127 2048 2485 2449 2544 2481
delaunay n12 12264 4096 4993 4906 5095 4939
delaunay n13 24547 8192 9989 9881 10211 9920
delaunay n14 49122 16384 19974 19672 20435 19855
delaunay n15 98274 32768 39923 39501 40876 39782
delaunay n16 196575 65536 79933 78792 81528 79445
delaunay n17 393176 131072 159900 157792 163321 158851
delaunay n18 786396 262144 319776 315684 326741 317987
com-DBLP 1049866 317080 238854 237713 237685 237685
belgium osm 1549970 1441295 1545183 1545183 1545183 1545183
delaunay n19 1572823 524288 639349 631354 653383 635877
delaunay n20 3145686 1048576 1279101 1262843 1307080 1271229
delaunay n21 6291408 2097152 2557828 2525301 2613106 2542333

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

A Sparse Matrix Approach for Covering Large Complex Networks by Cliques 9

Test results for the selected test instances from group DIMACS10 are reported in
Table 2. For comparison, we show the results of Conte-Method, EO-ECC-D, EO-ECC-L,
and EO-ECC-I. On twelve out of fifteen instances, EO-ECC-D gives the least number
of cliques to cover all the edges of the given graph. On the graph named com-DBLP

EO-ECC-L and EO-ECC-I produce smaller cardinality covers. Overall, EO-ECC emerges
as the clear winner over Conte-Method in terms of the size of the clique covers.

Besides DIMACS10 selected instances, we compare these algorithms on 182 gener-
ated instances where the number of edges is varied from 800 to 7.2× 107. Using SNAP
tool [18], we generated 72 “Small-world” and 110 “Erdös-Rényi” graphs. EO-ECC pro-
duces smaller (on 47.3%instances) or equal (on 52.7% instances) cardinality clique
covers compared with Conte-Method.

Rodrigues [20] used different graph instances to evaluate their edge clique cover
algorithms. The well-known instances to evaluate edge clique cover problem are from
the application “compact letter display” [10]. On thirteen out of fourteen instances,
Conte-Method [4] gives optimum results. Both Rodrigues’s algorithm and our EO-ECC
give optimum results for all the instances.

The performance comparison between Conte-Method and EO-ECC is shown in Figure
2. We compare the time required to find edge clique cover for the given graph.

Fig. 2. Ratio between the time used by and EO-ECC for each graph, as a function of
the number of the edges (y-axis is in log-scale).

We use fifteen DIMACS10 instances and 182 Erdos-Renyi and Small-World in-
stances. In the figure, a cross mark represents the ratio between the time needed by
and EO-ECC, as a function of the number of the edges. The green line at height 100

means that Conte-Method took the same time as EO-ECC to process the corresponding
graph, and a cross mark at height 101 means that Conte-Method was ten times slower.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

10 Abdullah et al.

As the figure clearly demonstrates, EO-ECC is always faster than Conte-Method, and
more than 40 times faster on some of the test instances.

Table 3. Graph processing rate (number of edges processed per sec).

Group Total instances Largest rate Smallest rate Average rate

DIMACS10 15 2.7E6 3.0E5 1.7E6
SNAP 9 2.5E6 6.2E4 1.5E6
Erdos-Renyi 110 2.0E6 1.2E5 8.9E5
Small World 72 1.7E6 4.3E5 1.1E6

The graph processing rate is one of the quality assessment metrics for an algorithm.
We report the processing rate of our algorithm for a selection of real-world (DIMACS10,
SNAP) and synthetically generated (Erdös-Rényi, Small World) graphs in Table 3.
Table 3 shows the largest rate, the smallest rate, and the average rate for each set of
graph instances. On DIMACS10 instances, the algorithm performs the best, while on
Erdös-Rényi instances, the algorithm is not as efficient. This can be explained by the
structural properties of graphs. Real-life and Small World synthetic instances display a
power-law degree distribution resulting in a large proportion of vertices with very small
degrees. Thus, the set intersection operation in our algorithm can be very efficient on
those types of graphs.

Fig. 3. Runtime to find clique cover using EO-ECC.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

A Sparse Matrix Approach for Covering Large Complex Networks by Cliques 11

Finally, in Figure 3, we demonstrate the superior scalability of our algorithm. The
figure plots the time used to compute clique covers by EO-ECC, where the time is a
function of the number of edges in the graph. We report the time in microseconds. A
dot (x, y) states that the graph has x edges, and the algorithm spent y microseconds
to finish the computation. The figure also displays the line y = x for comparison with
the actual running time. On each of the four sets of test instances, the running time
shows a linear relationship with the number of edges, demonstrating that the running
time of EO-ECC is linear in practice.

5 Conclusion

In this work, we have proposed a compact representation of network data. The edge
clique cover problem is recast as a sparse matrix determination problem. The notion of
intersection matrix provides a unified framework that facilitates the compact represen-
tation of graph data and efficient implementation of graph algorithms. The adjacency
matrix representation of a graph can potentially have many nonzero entries since it
is the product of an intersection matrix with its transpose. We have compared our
results concerning the clique cover size and runtime with the current state-of-the-art
algorithm for minECC [4]. Our algorithm achieves significantly smaller clique covers
on the vast majority of the test instances and never returns a clique cover that is larger
than the Conte-Method [4]. It is also significantly faster than the Conte-Method. EO-ECC
algorithm runs in linear time, which allowed us to process extremely large graphs, both
real-life and generated instances. Finally, our algorithm is highly scalable on large prob-
lem instances, while the algorithm of Conte-Method does not terminate on instances
containing 7× 107 or more edges within a reasonable amount of time.

A less well-studied but related problem, known as the Assignment Minimum Edge
Clique Cover arising in computational statistics, is to minimize the number of indi-
vidual assignments of vertices to cliques It is not always possible to find assignment-
minimum clique coverings by searching through those that are edge-clique-minimum.
Ennis et al. [6] presented a post-processing method with an existing ECC algorithm
to solve this problem. However, their backtracking algorithm becomes costly for large
graphs, especially when they have many maximal cliques. Our edge-centric method can
be easily adapted, via a post-processing step, to assignment minimum cover calculation.
This research is currently being carried out. Results from preliminary computational
experiments with a new linear-time post-processing scheme are favourable.

Acknowledgments This research was supported in part by NSERC Discovery
Grant (Individual), and the AITF Graduate Student Scholarship. A part of our compu-
tations were performed on Compute Canada HPC system (http://www.computecanada.ca),
and we gratefully acknowledge their support.

References

1. Abdullah, W.M., Hossain, S., Khan, M.A.: Covering large complex networks by
cliques—a sparse matrix approach. In: Kilgour, D.M., Kunze, H., Makarov, R.,
Melnik, R., Wang, X. (eds.) Recent Developments in Mathematical, Statistical and
Computational Sciences. pp. 117–127. Springer International Publishing, Cham
(2021)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

12 Abdullah et al.

2. Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of
an undirected graph. Commun. ACM 16(9), 575–577 (Sep 1973).
https://doi.org/10.1145/362342.362367, https://doi.org/10.1145/362342.362367

3. Coleman, T.F., Moré, J.J.: Estimation of sparse jacobian matrices and graph col-
oring blems. SIAM journal on Numerical Analysis 20(1), 187–209 (1983)

4. Conte, A., Grossi, R., Marino, A.: Large-scale clique cover of real-world networks.
Information and Computation 270, 104464 (2020)

5. Davis, T., Hu, Y.: Suitesparse matrix collection. https://sparse.tamu.edu/, ac-
cessed: 2019-10-02

6. Ennis, J., Ennis, D.: Efficient Representation of Pairwise Sensory Information.
IFPress 15(3), 3–4 (2012)

7. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world
graphs. In: International Symposium on Experimental Algorithms. pp. 364–375.
Springer (2011)

8. Erdös, P., Goodman, A.W., Pósa, L.: The representation of a graph by set inter-
sections. Canadian Journal of Mathematics 18, 106–112 (1966)

9. Gramm, J., Guo, J., Huffner, F., Niedermeier, R.: Data reduction, Exact and
Heuristic Algorithms for Clique Cover. Proceedings of the Eighth Workshop on
Algorithm Engineering and Experiments (ALENEX), SIAM pp. 86–94 (2006)

10. Gramm, J., Guo, J., Huffner, F., Niedermeier, R., Piepho, H., Schmid, R.: Algo-
rithms for Compact Letter Displays: Comparison and Evaluation. Computational
Statistics & Data Analysis 52, 725–736 (2007)

11. Hasan, M., Hossain, S., Khan, A.I., Mithila, N.H., Suny, A.H.: DSJM: A Software
Toolkit for Direct Determination of Sparse Jacobian Matrices. In: G.M. Greuel,
T. Koch, P. Paule, A. Sommese and Editors. ICMS2016. Springer International
Publishing Switzerland pp. 425–434 (2016)

12. Hossain, S., Khan, A.I.: Exact Coloring of Sparse Matrices. In: D.M. Kilgour et
al. (eds.) Recent Advances in Mathematical and Statistical Methods. Springer
Proceedings in Mathematics and Statistics, Springer Nature Switzerland AG 259,
23–36 (2018)

13. Hossain, S., Suny, A.H.: Determination of Large Sparse Derivative Matrices: Struc-
tural: Orthogonality and Structural Degeneracy. In: B. Randerath, H. Roglin, B.
Peis, O. Schaudt, R. Schrader, F. Vallentin and V. Weil. 15th Cologne-Twente
Workshop on Graphs & Combinatorial Optimization, Cologne, Germany pp. 83–
87 (2017)

14. Kepner, J., Gilbert, J.: Graph Algorithms in the Language of Linear Algebra,
Society for Industrial and Applied Mathematics. Philadelphia, PA, USA (2011)

15. Kepner, J., Jananthan, H.: Mathematics of big data: Spreadsheets, databases, ma-
trices, and graphs. MIT Press (2018)

16. Kou, L., Stockmeyer, L., Wong, C.: Covering edges by cliques with regard to key-
word conflicts and intersection graphs. Communications of the ACM 21(2), 135–
139 (1978)

17. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data (Jun 2014), accessed: 2019-10-02

18. Leskovec, J., Sosič, R.: Snap: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology (TIST) 8(1), 1
(2016)

19. Park, J.S., Penner, M., Prasanna, V.K.: Optimizing graph algorithms for improved
cache performance. IEEE Transactions on parallel and distributed systems 15(9),
769–782 (2004)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

A Sparse Matrix Approach for Covering Large Complex Networks by Cliques 13

20. Rodrigues, M.O.: Fast constructive and improvement heuristics for edge clique
covering. Discrete Optimization 39, 100628 (2021)

21. Rossi, R.A., Gleich, D.F., Gebremedhin, A.H., Patwary, M.M.A.: Fast maximum
clique algorithms for large graphs. In: Proceedings of the 23rd International Con-
ference on World Wide Web. pp. 365–366 (2014)

22. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gen-
erating all maximal cliques and computational experiments. Theoretical computer
science 363(1), 28–42 (2006)

23. Wasserman, S., Faust, K.: Social network analysis: Methods and applications. Cam-
bridge university press (1994)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_43

https://dx.doi.org/10.1007/978-3-031-08757-8_43

