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Abstract. A component-based view of metaheuristics has recently been pro-

moted to deal with several problems in the field of metaheuristic research. 

These problems include inconsistent metaphor usage, non-standard terminology 

and a proliferation of metaheuristics that are often insignificant variations on a 

theme. These problems make the identification of novel metaheuristics, perfor-

mance-based comparisons, and selection of metaheuristics difficult. The central 

problem for the component-based view is the identification of components of a 

metaheuristic. This paper proposes the use of taxonomies to guide the identifi-

cation of metaheuristic components. We developed a general and rigorous 

method, TAXONOG-IMC, that takes as input an appropriate taxonomy and 

guides the user to identify components. The method is described in detail, an 

example application of the method is given, and an analysis of its usefulness is 

provided. The analysis shows that the method is effective and provides insights 

that are not possible without the proper identification of the components. 

 

Keywords: Metaheuristic, General metaheuristic, Taxonomy. 

1 Introduction 

The metaheuristic research field has been criticized for inconsistent metaphor usage, 

non-standard terminology [1, 2], and use of poor experimental setups, validation, and 

comparisons [1–3]. These factors have contributed to challenges in the field such as a 

proliferation of novel metaheuristics and ‘novel’ approaches being very similar to 

existing approaches [1, 2, 4]. Several researchers have thus proposed that a compo-

nent-based view of metaheuristics that explicitly lists metaheuristic components, will 

assist in identifying novel components [1, 5], promote component-based performance 

comparison and analyses, and facilitate component-wise selection of metaheuristics 

for comparative studies [1, 2, 6, 7].  

A component-based view is especially important for general metaheuristics, which 

has enjoyed increasing popularity in recent literature. General metaheuristics, also 

known as general metaheuristic frameworks [8], unified metaheuristic frameworks 

[9], and generalized metaheuristic models [10] are used for tasks such as metaheuris-

tic generation [10], performance analysis [11, 12], metaheuristic-similarity analysis 

[13], and classification of metaheuristics [7]. General metaheuristics are an abstrac-

tion of a set of metaheuristics, i.e., they are generalizations of the components, struc-
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ture, and information utilized by a set of metaheuristics [6, 12]. They thus also take a 

component-based view. General metaheuristics make use of a set of component-types, 

also referred to as general metaheuristics structures [12], component-categories [6], 

main ingredients [14], or key components [15]. 

However, general metaheuristics still suffer the challenges outlined above viz. in-

consistent metaphor usage and non-standard terminology. They also suffer from simi-

lar problems if components are not properly identified. Thus, the identification of 

components takes on special importance.  

This work promotes the systematic use of taxonomies to guide the identification of 

components. Our proposed method uses formal taxonomy theory, which appears to be 

absent in several recent metaheuristic studies that involve the creation or incorpora-

tion of taxonomies such as [7, 16–19]. Taxonomies, ideally, are built using a rigorous 

taxonomy building-method e.g. [20, 21]. Taxonomies are intrinsic prerequisites to 

understanding a given domain, differentiating between objects, and facilitating dis-

cussion on the state and direction of research in a domain [22]. Taxonomies may thus 

help solve the issues affecting metaheuristic research, such as non-standard terminol-

ogy and nomenclature. 

This work proposes the use of taxonomies to guide the identification of metaheu-

ristic components. We developed a general and rigorous method, TAXONOG-IMC, 

that takes as input an appropriate taxonomy and guides the user to identify compo-

nents. TAXONOG-IMC promotes the use of taxonomies to guide component identifi-

cation for any metaheuristic subset, and provides guidance for the proper use of tax-

onomies to perform component identification. 

This paper presents the method, provides an example of its application, and gives 

an analysis of its usefulness. The rest of the paper is structured as follows: section 2 

provides a literature review, section 3 comprehensively describes TAXONOG-IMC, 

section 4 demonstrates the use of the method by applying it to two taxonomies to 

showcase its effectiveness, section 5 provides an analysis of the method by showing 

its effectiveness in analysing nature-inspired, population-based metaheuristics. Sec-

tion 6 concludes the study. 

2 Literature Review 

The need for a component-based view is best appreciated in general metaheuristics. 

However, many general metaheuristics lack a rigorous method for identifying compo-

nents. Many studies proposing a general metaheuristic provide guidance through ex-

amples of their usage. Several broad-scoped general metaheuristics follow this trend, 

such as general metaheuristics for population-based metaheuristics [9] and metaheu-

ristics in general [10, 11, 13]. The general metaheuristics proposed by [6, 9, 10, 13] 

use mathematical formulations for their component-types. Since these mathematical 

formulations are sometimes in-part derived from text, the researcher can choose how 

to formulate a component based on their judgement and interpretation. However, this 

process can be negatively impacted by inconsistent metaphor usage and non-standard 
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terminology. Components that are essentially the same can be regarded as different. 

Using examples for guidance may not account for all contingencies.  

A general metaheuristic built on the assumption that differentiating the components 

in detail and using relatable terminology may help resolve challenges in component 

identification, is presented in [12]. However, most of their component-types of the 

general metaheuristic were a renaming of the components in [13] and may conse-

quently face the same challenges. Some component-categories in literature were 

listed, but using them for the general metaheuristic may be difficult; if they consist of 

combinations of components, then they themselves need to be decomposed, which 

requires expert knowledge. 

Several studies used taxonomies and/or classification-schemes to support the de-

sign of general metaheuristics. The advantage of using a taxonomy for this purpose is 

that it declares a convention by which the components will be identified.  It provides a 

list of possible components that a component-type encompasses. If an issue is taken 

with the convention, then it can be argued at the taxonomy level. There are studies, 

such as [23, 24], that propose general metaheuristics whose components make use of 

a presented taxonomy, and there are studies that make use of existing taxonomies for 

a proposed general metaheuristic, such as [7, 15]. The studies that proposed both a 

general metaheuristic and a taxonomy are likely to work well, as the taxonomy is built 

for the general metaheuristic; however, taxonomies are not necessarily built with 

general metaheuristics in mind.  

Works that use existing taxonomies lack guidance on how to use taxonomies effec-

tively. Existing taxonomies and viewpoints were used in [15] to create a new taxono-

my to guide the usage of a proposed general metaheuristic. The taxonomy presented 

used examples at the lowest level of its hierarchy to illustrate its usage. However, 

examples do not account for every contingency. The essence of the multi-level classi-

fication method proposed in [7] is meritorious; however, a misuse of the behaviour 

taxonomy presented in [5], led to a classification that is questionable in terms of the 

taxonomy used, i.e., tabu search is depicted as possessing the differential vector 

movement behaviour. Some studies consider tabu search as population-based but 

viewing tabu search as being single-solution based has a stronger consensus [25] and 

appears to be followed by [5], i.e., the behaviour taxonomy presented by [5] is not 

applicable to tabu search in its canonical sense.  

The study in [14] presents a taxonomy for evolutionary algorithms based on their 

main components. The same study uses the taxonomy to facilitate the expression of 

evolutionary algorithms in terms of their main components, and the distinguishing 

between various evolutionary algorithm classes. This study is notable for its use of a 

vector representation for its components. Our work uses a similar representation. 

3 Taxonomy Guided Identification of Metaheuristic 

Components: TAXONOG-IMC 

This section proposes TAXONOG-IMC (see Fig. 1), a general, rigorous method that 

guides the identification of metaheuristic components using taxonomies. 
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We use the definition of a taxonomy provided in [20] that lends itself to a flat rep-

resentation of the metaheuristics or metaheuristic component-types, which facilitates 

tabular analysis. A taxonomy T is formally defined in [20] as: 

 

𝑇 = {𝐷𝑖 , (𝑖 = 1,… , 𝑛)|𝐷𝑖 = {𝐶𝑖𝑗 , (𝑗 = 1,… , 𝑘𝑖); 𝑘𝑖 ≥ 2}} (1) 

 

where 𝑇 is an arbitrary taxonomy, 𝐷𝑖  is an arbitrary dimension of 𝑇, 𝑘𝑖 ≥ 2 is the 

number of possible characteristics for dimension 𝐷𝑖 , 𝐶𝑖𝑗 an arbitrary characteristic for 

dimension 𝐷𝑖 . Characteristics for every dimension are mutually exclusive and collec-

tively exhaustive, i.e., each object under consideration must have one and only one 𝐶𝑖𝑗 

for every 𝐷𝑖 .This organization, using dimensions and characteristics, is likely to be 

relevant in all cases since they are fundamental to understanding the properties of 

objects in a domain; hence the definition (1) is used. 

 

Some important terms concerning taxonomies are explained below: 

1. Dimensions: A dimension represents some attribute of an object and can be 

thought of as a variable that has a set of possible values. 

2. Characteristics: The characteristics of a given dimension are the possible values 

that can be assigned to a particular dimension. 

3. Taxonomy dimension: A taxonomy dimension refers to a dimension that is part of 

the taxonomy under consideration. The method has steps where dimensions are 

proposed – these are not part of the taxonomy but are under consideration to be in-

cluded. We refer to these as candidate dimensions that may then become part of the 

taxonomy. 

4. Specialized dimension: A specialized dimension is a characteristic of a taxonomy 

that is promoted to dimension status; specialized dimensions are candidate dimen-

sions. 

5. Generalized dimension: A generalized dimension is created by partitioning charac-

teristics of a taxonomy dimension or partitioning the combination of characteristics 

from multiple taxonomy dimensions. A generalized dimension is a candidate di-

mension. 

To illustrate each term, consider the following dimensions of some metaheuristic: 

initializer, search operator, and selection. Characteristics of search operator may be, 

e.g., genetic crossover, swarm dynamic, differential mutation. A taxonomy for evolu-

tionary algorithms in [14] has population, structured population, information sources 

etc., as its dimensions. Then population would be a taxonomy dimension. Using the 

behaviour taxonomy presented in [5], solution creation can be thought of as a general-

ized dimension of the combination and stigmergy dimensions. If we use solution-

creation as a taxonomy dimension, then combination would be a specialized dimen-

sion. 
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Fig. 1. Flowchart depicting the processes of TAXONOG-IMC 

3.1 Comprehensive Description of Method Process 

A good start for step 1 (select or create a taxonomy), is to conduct a literature search 

for relevant taxonomies using keywords, key-phrases, publication titles, etc. Howev-

er, if no appropriate taxonomy is found, then an appropriate taxonomy building meth-

od should be used to create a taxonomy. 

Expressing a taxonomy using definition (1), ensures the taxonomy is in a standard 

format for subsequent steps. The dimensions, and the dimensions’ characteristics 

must be clearly stated to avoid ambiguity. 

Steps 3 to 5 guides the creation of specialized dimensions. Using specialized di-

mensions will allow for focusing on specific components. The role of set S, intro-

duced in step 4, is to store a collection of dimensions that are to be replaced by one of 
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their characteristics in taxonomy T. In the metaheuristic context, a dimension may be 

replaced by more than one of its characteristics; this decision accommodates for hy-

brid-metaheuristics that have more than one characteristic for a dimension. When 

characteristics become dimensions, they will each need a set of possible characteris-

tics of their own that will be derived from literature or the expertise of the researcher. 

The addition of specialized dimensions to the Taxonomy may result in an over-

whelmingly large number of taxonomy dimensions. Generalizing an appropriate 

number of taxonomy dimensions may help with this challenge. 

Creating generalized dimensions is guided by steps 7 to 10. It is essential to name 

the general dimensions clearly and their characteristics to ensure no ambiguities nor 

confusion arises as to which dimension or characteristic a trait falls under. It is im-

portant to note that each subset of taxonomy dimensions, chosen in step 8, must be 

disjoint. Note that not every taxonomy dimension needs to be integrated into a general 

dimension. 

As an example of when and how general dimensions can be used, consider a cho-

sen set of metaheuristics that have a large diversity on certain taxonomy dimensions. 

They may be grouped by their characteristic combinations on these dimensions. A 

generalized dimension could then have two possible values, 1 representing a metaheu-

ristic having a required combination of characteristics for those dimensions, and 0 

representing a metaheuristic not having such a combination of characteristics for 

those dimensions.  

4 Application of method 

To demonstrate the method, we use it to generate binary component vectors to repre-

sent nature-inspired, population-based metaheuristics in terms of their inspiration and 

behaviour components.  We use the behaviour and natural-inspiration taxonomies 

provided in [5]. In this study, we consider the metaphor/inspiration of a metaheuristic 

to be a component, but more specifically, a non-functional component. The nature-

inspiration taxonomy was created to ascertain the natural-inspiration category of a 

metaheuristic without ambiguity. The behavioural taxonomy is based on the metaheu-

ristic behaviour, i.e., focusing on the means by which new candidate solutions are 

obtained, and disregarding its natural inspiration. See section 4.3 for descriptions of 

all dimensions used by the behaviour and natural-inspiration taxonomies. 

4.1 Behavior taxonomy 

• Step 1: We use the behavior taxonomy from [5]. 

• Step 2: We express the taxonomy using the definition given in (1) as follows. A 

characteristic of 1 means that it is present and 0 means it is not. 

─ b1 - Combination (characteristics are {0, 1}) 

─ b2 - Stigmergy (characteristics are {0; 1}) 

─ b3 - All population Differential Vector Movement (DVM) (characteristics are 

{0; 1}) 
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─ b4 - Groups-based (DVM) (characteristics are {0; 1}) 

─ b5 - Representative based (DVM) (characteristics are {0; 1}) 

• Step 3: We create specialized dimensions. 

• Step 4:  S = {Groups-based (DVM)}, The step at this phase dictates that we only 

select one characteristic to promote to dimension status, but with regards to me-

taheuristics, which can be hybridized and still be metaheuristics, an exception can 

be made such that numerous characteristics can be promoted during specialization 

(this depends on the characteristics, if the characteristics are single-solution and 

population-based then these can't both be used as component-types for a metaheu-

ristic at the same time, since there is a possibility that both can be set to 1, which 

does not make intuitive sense). Therefore, we promote both Sub-population 

(DVM) and Neighborhood (DVM) to dimensions with their characteristics being 

binary {0; 1}. b4 is set to Sub-population (DVM) and b5 is set to Neighborhood 

(DVM), b6 is set to Representative based (DVM). 

• Step 5: Groups-based (DVM) is not referenced by any dimension and can thus be 

discarded. T = {b1; b2; b3; b4; b5; b6 | bi = {0; 1}; (i = 1, 2, 3, 4, 5, 6)} 

• Step 6: We do not create generalized dimension. 

•  Step 11: The vector representation derived from the behavoiur taxonomy is: 

 [𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6] (2) 

4.2 Natural-inspiration taxonomy 

• Step 1: We use the natural-inspiration taxonomy from [5]. 

• Step 2: We express the taxonomy using the definition given in (1) as follows: 

─ n1 - Breeding-based evolution (characteristics are {0; 1}) 

─ n2 - Aquatic animals (characteristics are {0; 1}) 

─ n3 - Terrestrial animals (characteristics are {0; 1}) 

─ n4 - Flying animals (characteristics are {0; 1}) 

─ n5 - Microorganisms (characteristics are {0; 1}) 

─ n6 - Others (characteristics are {0; 1}) 

─ n7 - Physics-based (characteristics are {0; 1}) 

─ n8 - Chemistry-based (characteristics are {0; 1}) 

─ n9 - Social human behaviour algorithms (characteristics are {0; 1}) 

─ n10 - Plants based (characteristics are {0; 1}) 

─ n11 - Miscellaneous (characteristics are {0; 1}) 

• Step 3: We do not create specialized dimensions. 

• Step 6: We create general dimensions. 

• Step 7: We create two general dimensions that will be identified as Swarm-

intelligence and Physics and Chemistry Based. (This is already done in the taxon-

omy, but we are redoing it in this process for demonstration). 

• Step 8: Aquatic animals, Terrestrial animals, Flying animals, Microorganisms, 

Others are allocated to the Swarm-intelligence general dimension. Physics-based, 
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Chemistry-based are allocated to the Physics and Chemistry Based general dimen-

sion. 

• Step 9: The characteristics of Swarm-intelligence are {0; 1}. 1 indicating that ei-

ther Aquatic animals, Terrestrial animals, Flying animals, Microorganisms, or Oth-

ers are present, 0 indicating that Aquatic animals, Terrestrial animals, Flying ani-

mals, Microorganisms, and Others are absent. The characteristics of Physics and 

Chemistry Based are {0; 1}. 1 indicating that either Physics-based or Chemistry-

based is 1, 0 indicating that Physics-based and Chemistry-based are absent. 

• Step 10: Since n2 to n8 are removed, n2 will be the dimension for Swarm-

intelligence, n3 will be the dimension for Physics and Chemistry Based, n4 will be 

the dimension for Social human behavior algorithms, n5 will be the dimension for 

Plants based, n6 will be the dimension for Miscellaneous; n7 to n11 do not refer to 

any dimensions so they can be discarded. T = {n1; n2; n3; n4; n5; n6 | ni = {0; 1}, (i = 

1, 2, 3, 4, 5, 6)} 

• Step 11: The vector representation definition derived from the selected taxonomy 

is:  

 [𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6] (3) 

4.3 Dimension Descriptions 

In this sub-section, the nodes of each hierarchal taxonomy presented in [5] are unam-

biguously defined as dimensions using the descriptions of each node provided in the 

same study; from these definitions, we can define the dimensions in the initial steps 

and proceed to modify them in subsequent steps by adding and/or dropping these 

dimensions due to using generalized or specialized dimensions. 

 

Behaviour Dimensions 

─ Differential vector movement:  New solution is obtained by movement relative to 

an existing solution 

─ All population Differential Vector Movement (DVM):  All individuals in the popu-

lation are used to generate the movement of each solution. 

─ Representative-based (DVM): The movements of each solution are only influenced 

by a small group of representative solutions, e.g., the best solutions found 

─ Group-based (DVM): Sub-populations or subsets of the populations are consid-

ered, without representative solutions. 

─ Sub-population (DVM): The movements of each solution are influenced by a sub-

set or group of solutions in the population, and no representative solutions are de-

termined and used in the trajectory calculation at hand. 

─ Neighborhood (DVM): Each solution is only influenced by solutions in its local 

neighborhood. 

─ Combination: New solutions are selected and combined via some method to create 

new solutions. 

─ Stigmergy: An indirect communication and coordination strategy is used between 

different solutions to create new solutions. 
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─ Creation: Exploration of search domain by generating new solution, differential 

vector movement not present. 

Natural-Inspiration Dimensions 

─ Breeding-based evolution: Inspired by the principle of natural evolution and refer-

ences to producing offspring, successive generations. 

─ Swarm Intelligence: Inspired by the collective behavior of animal societies. 

─ Flying animals: Agent movements inspired by flying movements. 

─ Terrestrial animals: Agent movements inspired by foraging or movements of ter-

restrial animals. 

─ Aquatic animals: Agent movements inspired by animals living in aquatic ecosys-

tems. 

─ Microorganisms: Agent movements inspired by food search by bacteria or how 

viruses spread infection. 

─ Others: Very low popularity inspiration sources from the collective behavior of 

animals. 

─ Physics and Chemistry Based: Imitate the behavior of physical/chemical phenome-

na (field of physics and chemistry). 

─ Social Human Behavior Algorithms: Inspired by human social concepts. 

─ Plants Based: Inspired by plants, where there is no communication between agents. 

─ Miscellaneous: Not inspired by any identified category. 

5 Analysis and Discussion 

We now demonstrate the use of the method. Information showing the application 

frequency of different nature-inspired metaheuristics to feature selection in disease 

diagnosis is depicted in Table 10 taken from the study in [26]. It is stated that data for 

the table was obtained by executing various search queries on google scholar. RA is 

not population-based, and thus is ignored since it is out of scope for the vector derived 

in the current paper. In this section, the amount of information extracted from Table 

10 in [26] is extended using the derived vector. The aim is to reconfigure the table to 

attribute the frequencies to the component-types of the derived vector. This task is 

accomplished via the following steps: 

1. List all metaheuristic abbreviations and ascertain their full name. 

2. Represent each of the nature-inspired, population-based metaheuristics using the 

vector formats derived, i.e., (2) and (3), as shown in Table 1. If the metaheuristics 

were not present in the tables, the descriptions of the dimensions of the taxonomies 

presented in [5] would have to be used to derive their vector representation.  

3. Let 𝐵 be a matrix representing the data of Table 1, i.e., 𝐵[𝑝][𝑞] will indicate 

whether the component-type at column index q is present in the metaheuristic at 

row index p. Let 𝐷 be a matrix where each intersection of row 𝑖 and column 𝑗 is 

the frequency of application of metaheuristic at row index 𝑖 to the disease at col-

umn index  𝑗 (D holds the data of Table 10 in [26]). Let 𝐹 be the matrix that holds 
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the component-type to disease diagnosis application frequencies (Table 2), i.e., 

where 𝑗 is index number of the disease in the columns of Table 10 presented in 

[26] and q is the index number of the component-type in the vector: 

 𝐹[𝑗][𝑞] = ∑ 𝐵[𝑥][𝑞]𝑁
𝑥=0 × 𝐷[𝑥][𝑗] (4) 

4. Matrix 𝐹 contains the data of Table 2 that depicts the table of frequency of appl 

cation of a component-type to disease diagnosis. From this table, further analysis 

can be done.  

Table 1.  Representation of nature-inspired, population-based metaheuristics in terms of de-

rived vector formats. 

KEY:  Harmony search (HS), Artificial bee colony (ABC), Glow-worm swarm optimization 

(GSO), Ant colony optimization (ACO), Firefly algorithm (FA), Monkey algorithm (MA), 

Cuckoo search (CS), Bat algorithm (BA), Dolphin echolocation (DE), Flower pollination algo-

rithm (FPA), Grey wolf optimizer (GWO), Dragonfly algorithm (DA), Krill herd algorithm 

(KHA), Elephant search algorithm (ESA), Ant lion optimizer (ALO), Moth-flame optimization 

(MFO), Multi-verse optimizer (MVO), Runner-root algorithm (RRA), Laying chicken algo-

rithm (LCA), Killer whale algorithm (KWA), Butterfly optimization algorithm (BOA). 

PMBH b1 b2 b3 b4 b5 b6 n1 n2 n3 n4 n5 n6 

HS 1 0 0 0 0 0 0 0 1 0 0 0 

ABC 0 0 0 0 0 1 0 1 0 0 0 0 

GSO 0 0 0 0 0 1 0 1 0 0 0 0 

ACO 0 1 0 0 0 0 0 1 0 0 0 0 

FA 0 0 1 0 0 0 0 1 0 0 0 0 

MA 0 0 0 0 0 1 0 1 0 0 0 0 

CS 1 0 0 0 0 0 0 1 0 0 0 0 

BA 0 0 0 0 0 1 0 1 0 0 0 0 

DE 1 0 0 0 0 0 0 1 0 0 0 0 

FPA 0 0 0 0 0 1 0 0 0 0 1 0 

GWO 0 0 0 0 0 1 0 1 0 0 0 0 

DA 0 0 0 0 0 1 0 1 0 0 0 0 

KHA 0 0 0 0 0 1 0 1 0 0 0 0 

ESA 0 0 0 0 0 1 0 1 0 0 0 0 

ALO 0 0 0 0 0 1 0 1 0 0 0 0 

MFO 0 0 0 0 0 1 0 1 0 0 0 0 

MVO 0 0 0 0 0 1 0 0 1 0 0 0 

RRA 0 0 0 0 0 1 0 0 0 0 1 0 

LCA 1 0 0 0 0 0 0 1 0 0 0 0 

KWA 0 0 0 0 0 1 0 1 0 0 0 0 

BOA 0 0 0 0 0 1 0 1 0 0 0 0 
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Table 2.  Frequencies of component-type usage, in literature, in various disease diagnosis ap-

plications 

Disease diag-

nosis 

b1 b2 b3 b4 b5 b6 n1 n2 n3 n4 n5 n6 

Breast cancer 413 619 216 0 0 893 0 1859 236 0 46 0 

Prostate cancer 35 73 9 0 0 68 0 161 21 0 3 0 

Lung cancer 105 157 41 0 0 154 0 400 51 0 6 0 

Oral cancer 4 3 2 0 0 6 0 12 3 0 0 0 

Neck cancer 4 4 0 0 0 9 0 13 3 0 1 0 

Skin cancer 19 4 15 0 0 53 0 81 8 0 2 0 

HIV 40 114 24 0 0 80 0 237 18 0 3 0 

Stroke 116 120 36 0 0 129 0 330 60 0 11 0 

Schizophrenia 8 44 9 0 0 16 0 72 4 0 1 0 

Parkinson 91 144 52 0 0 233 0 434 62 0 24 0 

Heart disease 129 34 58 0 0 234 0 390 55 0 10 0 

Anxiety 17 65 9 0 0 50 0 135 5 0 1 0 

Insomnia 1 6 0 0 0 2 0 9 0 0 0 0 

Sum 982 1387 471 0 0 1927 0 4133 526 0 108 0 

 

It can be observed from Table 2 that b6 (Representative-based (DVM)) is the domi-

nant behaviour and n2 (Swarm intelligence) is the dominant natural-inspiration. It is 

interesting to note that in [26], it is stated that ACO is dominant in the use of diagno-

sis of different human disorders. However, the behaviour associated with ACO is 

Stigmergy (b2) is not the dominant behaviour; instead, representative-based differen-

tial movement (b6) is the dominant behaviour for this application domain.  

Literature such as [1] has shown that the names and metaphors of metaheuristics 

sometimes mask the substantial similarities between the metaheuristics and their dif-

ferences are so minute that they can be considered marginal variants. ACO is popular, 

but the problem could lie with many metaheuristics, which have behavioural compo-

nent-type b6, being diverse in names as this trend is either diluting the core algorithm's 

popularity or is misguiding users to believe that different metaheuristic names entail 

that they have nearly orthogonal behaviours. 

From Table 2, it can be ascertained that scope for future research lies in applying 

metaheuristics with behavioural component-types: sub-population (DVM), neigh-

bourhood (DVM), breeding-based evolution, social-human behaviour algorithms, and 

miscellaneous to disease diagnosis. Even though the three latter component-types are 

natural-inspirations, and literature has motivated that this category of component-

types has little contribution to performance. Applying them increases their presence in 

a population, from which data can be sampled, i.e., a diverse population is good. 

The taxonomies in [5] organized the metaheuristics using their canonical versions. 

This study relies on the assumption that if two or more metaheuristic-algorithms are 

associated with the same metaheuristic, then they should possess the behaviour of that 

metaheuristic. The proposed method can be used to select components for metaheuris-

tic frameworks, classification schemes, representations, and comparative analysis.  
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6 Conclusion 

This study proposes TAXONOG-IMC, a structured method that provides guidance for 

metaheuristic component identification using taxonomies. An example application is 

provided to showcase how TAXONOG-IMC can aid in metaheuristic analysis.  

Identification of metaheuristic components is an important task for the effective 

use of general metaheuristics, and the metaheuristic component-based view by and 

large. General metaheuristic publications use strategies such as providing examples, 

using finer-grain component-types, relying on existing taxonomies or creating new 

ones to assist in component identification. However, examples don’t account for all 

contingencies that a researcher may encounter, and finer-grain components can also 

be affected by non-standard terminology and inconsistent metaphor usage. There are 

general metaheuristic publications that use taxonomies to assist in component identi-

fication; some propose their own taxonomy, and others use an existing taxonomy. The 

ones that propose their own taxonomy are likely to be compatible with the general 

metaheuristic since they are created for that purpose; however, some of the publica-

tions that use existing taxonomies made questionable decisions during the demonstra-

tion of general metaheuristic use – indicating a lack of proper use of taxonomy.  

Future research lies in using taxonomies for component-identification for many 

other metaheuristic subsets, metaheuristics analysis, and use in general metaheuris-

tics. 
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