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Abstract. Graph partitioning is a fundamental combinatorial optimiza-
tion problem that attracts a lot of attention from theoreticians and prac-
titioners due to its broad applications. In this work, we experiment with
solving the graph partitioning on the Fujitsu Digital Annealer (a special-
purpose hardware designed for solving combinatorial optimization prob-
lems) and compare it with the existing top solvers. We demonstrate lim-
itations of existing solvers on many dense graphs as well as those of the
Digital Annealer on sparse graphs which opens an avenue to hybridize
these approaches.
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1 Introduction

There are several reasons to be optimistic about the future of quantum-inspired
and quantum devices. However, despite their great potential, we also need to ac-
knowledge that state-of-art classical methods are extremely powerful after years
of relentless research and development. In classical computing, the development
of algorithms, the rich mathematical framework behind them, and sophisticated
data structures are relatively mature, whereas the area of quantum computing is
still at its nascent stage. Many existing classical algorithms do not have provable
or good enough bounds on the performance (e.g., they might not have ideal per-
formance in the worst case), but in many applications, the worst-case scenarios
are rather rarely seen. As a result, such algorithms, many of which heuristics,
can achieve excellent results in terms of the solution quality or speed. Therefore,
when utilizing emerging technologies such as quantum-inspired hardware accel-
erators and quantum computers to tackle certain problems, it is important to
compare them not only with possibly slow but provably strong algorithms but
also with the heuristic algorithms that exhibit reasonably good results on the
instances of interest.

The graph partitioning [2] is one of the combinatorial optimization problems
for which there exists a big gap between rigorous theoretical approaches that
ensure best known worst-case scenarios, and heuristics that are designed to cope
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with application instances exhibiting a reasonable quality-speed trade-off. In-
stances that arise in practical applications often contain special structures on
which heuristics are engineered and tuned. Because of its practical importance,
a huge amount of work has been done for a big class of graphs that arise in
such areas as combinatorial scientific computing, machine learning, bioinformat-
ics, and social science, namely, sparse graphs. Over the years, there were several
benchmarks on which the graph partitioning algorithms have been tested and
compared with each other to mention just a few [1,3,21]. However, dense graphs
can be rarely found in them. As a result, most existing excellent graph partition-
ing heuristics do not perform well in practice on dense graphs, while provable
algorithms with complexity that depends on the number of edges (or non-zeros
in the corresponding matrix) are extremely slow. As we also show in compu-
tational results, a graph sparsification does not necessarily practically help to
achieve high-quality solutions.

Multilevel Algorithms This class of heuristics is one of the most successful for
a variety of cut-based graph problems such as the minimum linear arrangement
[15], and vertex separator [7]. Specifically for a whole variety of (hyper)graph
partitioning versions [10, 11, 16, 18] these heuristics exhibit best quality/speed
trade-off [2]. In multilevel graph partitioning frameworks, a hierarchy of coarse
graph representations is constructed in such a way that each next coarser graph
is smaller than the previous finer one, and a solution of the partitioning for the
coarse graph can approximate that of the fine graph and be further improved
using fast local refinement. Multilevel algorithms are ideally suited for sparse
graphs and suffer from the same problems as the algebraic multigrid (which
generalizes, to the best of our knowledge, all known multilevel coarsening for
partitioning) on dense matrices. In addition, a real scalability of the existing
refinement for partitioning is achieved only for sparse local problems. Typically,
if the density is increasing throughout the hierarchy construction, various ad-hoc
tricks are used to accelerate optimization sacrificing the solution quality. When
such things happen at the coarse levels, an error is quickly accumulated. Here
we compare our results with KaHIP [17] which produced the best results among
several multilevel solvers [2].

Hardware Accelerators for Combinatorial Problems Hardware accelerators such
as GPU have been pivotal in the recent advancements of fields such as machine
learning. Due to the computing challenges arising as a result of the physical
scaling limits of Moore’s law, scientists have started to develop special-purpose
hardware for solving combinatorial optimization problems. These novel tech-
nologies are all unified by an ability to solve the Ising model or, equivalently,
the quadratic unconstrained binary optimization (QUBO) problem. The general
QUBO is NP-hard and many problems can be formulated as QUBO [14]. It is
also often used as a subroutine to model large neighborhood local search [13].
The Fujitsu Digital Annealer (DA) [4], used in this work, utilizes application-
specific integrated circuit hardware for solving fully connected QUBO problems.
Internally the hardware runs a modified version of the Metropolis-Hastings al-
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gorithm for simulated annealing. The hardware utilizes massive parallelization
and a novel sampling technique. The novel sampling technique speeds up the
traditional Markov Chain Monte Carlo by almost always moving to a new state
instead of being stuck in a local minimum. Here, we use the third generation DA,
which is a hybrid software-hardware configuration that supports up to 100,000
binary variables. DA also supports users to specify inequality constraints and
special equality constraints such as 1-hot and 2-way 1-hot constraints.

Our contribution The goal of this paper is twofold. First, we demonstrate that
existing scalable graph partitioning dedicated solvers are struggling with the
dense graphs not only in comparison to the special-purpose hardware accelera-
tors but even sometimes if compared to generic global optimization solvers that
are not converged. At the same time, we demonstrate a clear superiority of clas-
sical dedicated graph partitioning solvers on sparse instances. Second, this work
is a step towards investigating what kind of problems we can solve using combi-
natorial hardware accelerators. Can we find problems that are hard for existing
methods, but can be solved more efficiently with novel hardware and specialized
algorithms? As an example, we explore the performance of Fujitsu Digital An-
nealer (DA) on graph partitioning and compare it with general-purpose solver
Gurobi, and also graph partitioning solver KaHIP.

We do not attempt to achieve an advantage for every single instance, espe-
cially since at the current stage, the devices we have right now are still facing
many issues on scalability, noise, and so on. However, we advocate that hybridiza-
tion of classical algorithms and specialized hardware (e.g., future quantum and
existing quantum-inspired hardware) is a good candidate to break the barriers
of the existing quality/speed trade-off.

2 Graph Partitioning Formulations

Let G = (V,E) be an undirected, unweighted graph, where V denotes the set of
n vertices, and E denotes the set of m edges. The goal of perfect balanced k-way
graph partitioning (GP), is to partition V into k parts, V1, V2, · · · , Vk, such that
the k parts are disjoint and have equal size, while minimizing the total number
of cut edges. A cut edge is an edge that has two end vertices assigned to different
parts. Sometimes, the quality of the partition can be improved if we allow some
imbalance between different parts. In this case, we allow some imbalance factor
ϵ > 0, and each part can have at most (1 + ϵ)⌈n/k⌉ vertices.

Binary Quadratic Programming Formulation of GP We first review the integer
quadratic programming formulation for k-way GP [8,20]. When k = 2, we intro-
duce binary variables xi ∈ {0, 1} for each vertex i ∈ V , where xi = 1 if vertex
i is assigned to one part, and 0 otherwise. We denote by x the column vector
x = (x1, x2, · · · , xn)

T . The quadratic programming is then given by

min
x

xTLx such that xi ∈ {0, 1}, ∀i ∈ V, (1)
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where L is the Laplacian matrix of graph G. For perfect balance GP, we have
the following equality constraint:

xT1 =
⌈n
2

⌉
, (2)

where 1 is the column vector with ones. For the imbalanced case, we have the
following inequality constraint xT1 ≤ (1 + ϵ)

⌈
n
2

⌉
.

When k > 2, we introduce binary variables xi,j ∈ {0, 1} for each vertex i ∈ V
and part j, where xi,j = 1 if vertex i is assigned to part j, and 0 otherwise. Let
xj denote the column vector xj = (x1,j , x2,j , · · · , xn,j)

T for 1 ≤ j ≤ k. The
quadratic programming formulation is then given by

min
x

1

2

k∑
j=1

xT
j Lxj

s.t.

k∑
j=1

xi,j = 1, ∀i ∈ V,

xi,j ∈ {0, 1}, ∀i ∈ V, 1 ≤ j ≤ k.

Again, for perfect balance GP, we have another set of equality constraints:

xT
j 1 =

⌈n
k

⌉
, 1 ≤ j ≤ k.

For the imbalance case, we have the following inequality constraints:

(1− ϵ)
⌈n
k

⌉
≤ xT

j 1 ≤ (1 + ϵ)
⌈n
k

⌉
, 1 ≤ j ≤ k.

QUBO Formulation To convert the problem into QUBO model, we will need to
remove the constraints and add them as penalty terms to the objective function
[14]. For example, in the quadratic programming (1) with the equality constraint
(2), we obtain the QUBO model as follows:

min
x

xTLx+ P
(
xT1−

⌈n
2

⌉)2

s.t. xi ∈ {0, 1}, ∀i ∈ V,

where P > 0 is a postive parameter to penalize the violation of constraint (2).
For inequality constraints, we will introduce additional slack variables to first
convert the inequality to equality constraints, and then add them as penalty
terms to the objective function.

3 Computational Experiments

The goal of the experiments was to identify the class of instances that is more
suitable to be solved using the QUBO framework and the current hardware. We
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compare the performance of DA with exact solver Gurobi [5], and the state-of-
the-art multilevel graph partitioning solver KaHIP [17]. We set the time limit for
DA and Gurobi to be 15 minutes. For KaHIP, we use KaFFPaE, a combination of
distributed evolutionary algorithm and multilevel algorithm for GP. KaFFPaE
computes partitions of very high quality when the imbalance factor ϵ > 0, but
does not perform very well for the perfectly balanced case when ϵ = 0. Therefore
we also enable a recommended by the developers KaBaPE ran with 24 parallel
processes, and the time limit of 30 minutes.

To evaluate the quality of the solution, we compare the approximation ra-
tio, which is computed using the GP cut found by each solver divided by the
best-known value. For some graphs, we have the best-known provided from the
benchmark [21], otherwise we use the best results found by the three solvers as
the best known. Since this is a minimization problem, the minimum possible
value of the approximation ratio is 1, the smaller the better. For each graph and
each solver used, we also provide the objective function value, i.e., the number of
cut edges. Due to space limitation, we present only the summary of the results.
Detailed results are available in [12].
Main conclusion: We have focused on demonstrating practical advantage of soft-
ware and hardware approaches for GP. We found that dense graphs exhibit
limitations of the existing algorithms which can be improved by the hardware
accelerators.

Graph Partitioning on Sparse Graphs We first test the three solvers on instances
from theWalshaw graph partitioning archive [21]. We present the summary of the
results with box plots in Fig. 1 (a), (d). We observe that in Figure 1 (d), where
we compare DA and Gurobi, DA can find the best-known partition for most
instances, and perform better compared to Gurobi. However, for several sparse
graphs, i.e., davg < 3, for example, uk, add32 and 4elt, DA can not find the best-
known solutions. For these sparse graphs, multilevel graph partitioning solvers
such as KaHIP can usually perform an effective coarsening and uncoarsening
procedure based on local structures of the graph and therefore find good solutions
quickly. As shown in Fig. 1 (a), KaHIP performs better than DA. Based on the
numerical results, we conclude that for the sparse graphs, generic and hardware
QUBO solvers do not lead to many practical advantages. However, graphs with
more complex structures, that bring practical challenges to the current solvers
might benefit from using the QUBO and hardware accelerators.

Graph Partitioning on Dense Graphs To validate our conjecture, in the next set
of experiments, we examine dense graphs from the SuiteSparse Matrix Collection
[3] The experimental results are presented in Fig. 1 (b), (e). We observe that for
these dense graphs, in general, DA is able to find solutions that are usually at
least as good as those produced by KaHIP and Gurobi. In particular, we find that
for one instance, exdata 1, KaHIP fails significantly. We therefore use a graph
generator MUSKETEER [6] to generate similar instances3. The parameters used

3 The exdata graph files are available here: https://github.com/JoeyXLiu/

dense-graph-exdata
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Fig. 1: Comparison of DA with KaHIP (dedicated GP solver), and Gurobi
(general-purpose solver) for sparse and dense graphs respectively. The y-axis
represents the approximation ratio (solution to best-solution ratio), the mini-
mum possible value of the approximation ratio is 1, the smaller the better. The
x-axis represents the imbalance factor as percentage

to generate the instances can be found in the appendix of the full version. In
short, MUSKETEER applies perturbation to the original graph with a multilevel
approach, the local editing preserves many network properties including different
centralities measures, modularity, and clustering. The experiment results are
presented in Fig. 1 (c), (f). We find that in most instances, DA outperforms
KaHIP and Gurobi, demonstrating that in this class of problems, specialized
hardware such as DA is having an advantage.

Currently, to tackle GP on dense graphs, the main practical solution is to
first sparsify the graphs (hoping that the sparsified graph still preserves the
structure of the original dense graph), solve GP on the sparsified graph, and
finally project the obtained solution back to the original graph. We have applied
the Forest Fire sparsification [9] available in Networkit [19]. This sparsification
is based on random walks. The vertices are burned starting from a random
vertex, and fire may spread to the neighbors of a burning vertex. The intuition
is that the edges that are visited more often during the random walk are more
important in the graph. In our experiments, we eliminate 30% of the edges. Then
we solve GP using KaHIP (KaffpaE version) and project the obtained solution
back to the original dense graph. Results and details of the experiments can
be found in the full version of the paper.We find that for dense graphs with
complex structures, KaHIP does not outperform DA, and graph sparsification
does not help to achieve this goal. In this case, we advocate the use of the QUBO
framework and specialized hardware.
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