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Abstract. This paper presents an algorithm for fitting the boundary geometry 

with Bézier curves in the parametric integral equation system (PIES). The algo-

rithm determines the coordinates of control points by minimizing the distance 

between the constructed curves and contour points on the boundary. The mini-

mization is done with the Adam optimizer that uses the gradient of the objective 

function calculated by automatic differentiation (AD). Automatic differentiation 

eliminates error-prone manual routines to evaluate symbolic derivatives. The al-

gorithm automatically adjusts to the actual number of curves and their degrees. 

The presented tests show high accuracy and scalability of the proposed approach. 

Finally, we demonstrate that the resulting boundary may be directly used by the 

parametric integral equation system (PIES) to solve the boundary value problem 

in 2D governed by the Laplace equation. 

Keywords: automatic differentiation, parametric curve fitting, Bézier curves, 

parametric integral equation system (PIES), boundary value problems 

1 Introduction 

One of the main difficulties during computer simulation of boundary value problems 

(BVP) is the appropriate definition of the computational domain. Typically it is done 

by dividing the problem domain into finite elements (FEM) [1] or only the boundary of 

that domain into boundary elements (BEM) [2]. However, such discretization is ex-

tremely laborious as it requires hundreds or thousands of elements and even more nodes 

are necessary to declare them. The alternative is to introduce the mathematical and ge-

ometric tools used in computer graphics and CAD/CAM systems. This is used in the 

parametric integral equation system (PIES) where the boundary of the computational 

domain is bounded by parametric curves [3] and surfaces [4]. Moreover, due to the 

analytical integration of the boundary geometry directly in the PIES formula, there is a 

lot of freedom in choosing the appropriate structure of the boundary representation. Our 

previous studies have shown that it is particularly effective to declare such boundary 

geometries by employing Bézier parametric curves defined by a small set of control 

points. This allows for a continuous representation of the boundary and the number of 

the curves is significantly smaller than finite or boundary elements required to solve 

the same problem. 
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Despite these advantages, parametric curves also have some implementation difficul-

ties since its shape is determined by control points that generally do not lie on the curve. 

Curve fitting is a fundamental problem in computer graphics and has become a very 

active scientific area. Mathematically, it can be formulated as optimization problem to 

minimize the distance between the points describing the approximated shape and the 

points on the parametric curve. There is a rich literature to solve such optimization 

problem with several linear [5] and non-linear [6] least-squares techniques. Another 

approaches are based on biologically inspired solutions: genetic algorithms [7], simu-

lated annealing [8], particle swarm optimization [9], evolutionary algorithms [10], ar-

tificial immune systems [11]. In [12] neural network-based curve fitting technique is 

presented. However, most existing algorithms are based on gradient descent minimiza-

tion [13]. On the other hand, analytical evaluation of gradients is a labor-intensive task 

and sensitive to human errors, especially in the case of real problems defined by many 

design variables related to the coordinates of control points. 

This paper attempts a new look at the parametric curve fitting applied to the bound-

ary approximation in PIES. This is done by minimizing the distance between the con-

structed curves and the contour points on the boundary with the Adam optimizer [14], 

where the required derivatives of the objective function are computed by automatic 

differentiation (AD). The idea of AD is based on a decomposition of an input function 

into elementary operations, whose local derivatives are easy to compute. While AD has 

a long history and is supported by many publications [15,16], the recent revolution in 

deep learning and artificial intelligence has brought a new stage in the development of 

advanced AD tools and new optimization algorithms. Popular libraries such as Tensor-

Flow [17] and PyTorch [18] provide efficient AD and optimization algorithms for large 

models with thousands or even millions of parameters. The results of the presented tests 

illustrate good fitting properties of the proposed algorithm for various shapes of the 

boundary and high scalability. The fitted boundaries are directly used in PIES to solve 

BVP governed by the Laplace equation. 

2 Defining the boundary by Bézier curves in PIES 

We consider a boundary value problem governed by the Laplace equation defined in a 

domain   with a boundary  , as shown in Fig. 1a.  

 a) b) 

 

Fig. 1. BVP defined in the domain   with the boundary  (a), boundary description in PIES 

with 4 Bézier curves and 12 control points (b). 
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The boundary of that domain is described in PIES by a set of Bézier curves. A single 

Bézier curve of degree m  is defined by the location of the 1m  control points iP  and 

is mathematically described as 
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where s  is a parametric coordinate along the curve )10(  s . Fig. 1b shows a prac-

tical definition of the boundary formed by joining 4 cubic Bézier curves. The formula 

of PIES for 2D BVP governed by the Laplace equation is presented below 
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where  )()( )1()1(
1 sΓsΓ jl  , )()( )2()2(

2 sΓsΓ jl  . (5) 

Moreover, )(),( )(
2

)(
1 snsn jj  denote the components of the normal vector to the boundary 

and )(sJ j  is the Jacobian. The reader can find details of the PIES mathematical for-

mulation in several previous papers, for example in [3]. 

3 Proposed algorithm 

Let G  be a set of data points sampled along the boundary and G  is a set of points 

lying on Bézier curves. The objective function ),(2  GGlossL  of our optimization 

problem is the 2L  distance between G  and G . The gradient of the objective function 

with respect to the corresponding control points P  of the curves is written as 
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The gradient (6) can be derived analytically, however, is laborious and prone to human 

errors. Therefore, we compute it employing AD which decomposes the derivative of 

the objective function into those of elementary operations based on the chain rule. This 

decomposition can be described by a computational graph that shows the relations be-

tween individual differentials. For demonstrating the procedure, an elementary case 

with one cubic Bézier curve defined by 4 control points is analyzed below. In this case, 

the formula (6) reduces to the following form 
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where C,A,P  are referred to a matrix representation for the cubic Bézier curve 
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Finally, the computational graph for formula (7) is presented below. 

 

Fig. 2. Structure of the computational graph for a single cubic Bézier curve. 

Tab. 1 contains the vertices iz  corresponding to the intermediate computed variables 

for elemental operations and their derivatives for forward and backward data flow. 

Table 1. Forward and backward propagation of derived values for the graph shown in Fig. 2. 
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The computational graph can dynamically update its structure for more Bézier 

curves and control points. The full diagram of the procedure with backward mode AD 

as best suited for our problem is shown in Fig. 3. 

 

Fig. 3. Schematic flowchart of the proposed curve fitting combined with PIES. 

To determine the coordinates of control points, the ADAM [14] optimization algorithm 

is used characterized by fast convergence, and resistance to local minima. 

4 Results and evaluation 

The scheme given in Fig. 3 is implemented in the PyTorch framework providing access 

to AD and Adam optimizer modules. Fig. 4 shows the results of our experimental eval-

uation for 4 identified boundaries generated from 16 to 40 cubic Bézier curves.  

Table 2. Convergence of the objective functions during iterations and the PIES accuracy. 

),(2  GGlossL  

Iteration A B C D 

1 75.3377 186.8021 212.6234 195.2782 

50 25.1174 125.8349 147.8667 98.5266 

100 1.0304 81.2112 87.9212 20.3172 

200 0.0935 17.3265 1.5679 0.1621 

400 0.0685 0.0831 0.0657 0.0954 

PIES ( 2L  error norm) 

400 0.1567 0.1235 0.3643 0.3025 
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The curves require 48 and 120 control points to be defined. The data set G  consists 

of evenly sampled points along the boundary. The first three shapes are sampled into 

160 points and the last one into 400 points.  

Fig. 4. Iterations 1, 50, 100, and 400 in the fitting process. 

As it can be seen from the graphic results, all tested shapes are fitted successfully. 

The related numerical results are listed in Tab. 2. Finally, the final boundaries are di-

rectly used in PIES to simulate BVP governed by the Laplace equation for the following 

Dirichlet boundary conditions 

 )sinh()sin()cosh()cos(),( 112121 xxxxxx  . (9) 

This is possible since the control points are included analytically in the kernels (3,4). 

In order to solve the problem on the boundary, the collocation method [3] is adopted 

with 6 colocation points per each Bézier curve. The last row in Tab. 2 shows the 2L  

error norm of the PIES solutions for all shapes from the 400th iteration of the fitting. 

5 Conclusions 

The results show that the proposed approach can be applied not only to academic but 

also to real-life problems with hundreds of design variables considered as the positions 

of control points. The boundary defined by the Bézier curves is integrated analytically 
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with the PIES computational method so that it can be directly used to solve BVP, as 

shown in the example. The approach can use different types of objective functions and 

optimization algorithms. We also hope to extend the research to study the boundary 

reconstruction from an unstructured point cloud as well to 3D problems. 
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