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Abstract. This work proposes a novel adaptive global surrogate mod-
eling algorithm which uses two neural networks, one for prediction and
the other for the model uncertainty. Specifically, the algorithm proceeds
in cycles and adaptively enhances the neural network-based surrogate
model by selecting the next sampling points guided by an auxiliary neu-
ral network approximation of the spatial error. The proposed algorithm
is tested numerically on the one-dimensional Forrester function and the
two-dimensional Branin function. The results demonstrate that global
surrogate modeling using neural network-based function prediction can
be guided efficiently and adaptively using a neural network approxima-
tion of the model uncertainty.

Keywords: Global surrogate modeling · neural networks · model un-
certainty · error based exploration.

1 Introduction

There is often a need in engineering to assess the performance of a process (e.g.,
through physical or computer experiments) with a limited number of evalua-
tions. In such cases, surrogate models are often used to approximate the output
response of the process over a given data [19, 17, 3]. The surrogates are fast to
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evaluate and can be used to either explore the output response or exploit them
to determine a set of parameter values that yield optimal performance.

Modern surrogate modeling strategies start by constructing a surrogate of
an initial data set and then progress in cycles using prediction and uncertainty
estimates (if available) to select the next sampling point [26]. Several such ap-
proaches have been proposed, including the efficient global optimization (EGO)
algorithm [9] and Bayesian optimization (BO) [16, 24, 8, 20]. The EGO algorithm
[9] follows this strategy by modeling the output response as a random variable
and selects the next point to be sampled by maximizing the expected improve-
ment over the best current solution. BO follows the same idea as EGO, but the
approach is formalized rigorously through Bayesian theory [16, 24, 20].

Gaussian process regression (GPR) (or Kriging) [11, 7, 3] is widely used with
EGO and BO because of its unique feature of providing a prediction of the
mean of the underlying data and a prediction of its uncertainty. In particular,
GPR provides the mean squared error of the predictor using the same data
for constructing the predictor. EGO and BO utilize the predictor and its error
estimate to compute a criterion to guide the algorithm to adaptively enhance the
predictor. Both EGO and BO typically use ther expected improvement as the
criterion [3, 27]. The major disadvantages of GPR modeling, however, are that
the computational cost scales cubically with the number of observations, and
does not scale well to higher dimensions [13]. This issue can be partially relieved
by using graphical processing units (GPUs) and parallel computing [14].

Neural network (NN) regression modeling [6], on the other hand, scales much
more efficiently for the optimization of complex and large data sets [13, 22]. It
should be noted that the training cost of NNs depends on various factors, such as
sample size, number of epochs, and architecture complexity. A major limitation
of NN regression modeling is that uncertainty estimates are, in general, not read-
ily available for a single prediction [13]. Rather, it is necessary to make use of an
ensemble of NNs with a range of predictions. Bayesian neural networks (BNNs)
are an example of such class of algorithms [12, 25, 5]. Current BNN approaches,
however, are approximation methods because exact NN-based Bayesian infer-
ence is computationally intractable. Using dropout as a Bayesian approximation
to represent model uncertainty in deep NNs (DNNs) is an example of one such
approach [4]. Current BNN algorithms are, however, computationally intensive.

There is recent interest in creating surrogate modeling algorithms that com-
bine the predictive capabilities of NNs and the uncertainty estimates of GPR.
Renganathan et al. [18] use DNNs in place of a polynomial to model the global
trend function in GPR modeling. This approach improves the prediction ca-
pabilities while still retaining the model uncertainty of GPR. Nevertheless, that
approach is still limited in the same way as the original GPR modeling approach.
Zhang et al. [28] propose an algorithm that creates and adaptively enhances a
multifidelity DNN by exploiting information from low-fidelity data sets. This ap-
proach is limited to exploitation only and cannot perform exploration or search
a criterion that balances exploration and exploitation.
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In this paper, a novel adaptive global surrogate modeling algorithm is pro-
posed that follows the EGO strategy but uses NNs in place of GPR. Specifically,
the proposed algorithm iteratively constructs two NN models, one for the pre-
diction of a given process output and the other for the model uncertainty. The
proposed algorithm uses separate data sets to construct each NN model. In each
cycle, the model uncertainty is used to select the next sampling point and then
update the NN prediction model. The algorithm terminates once the uncertainty
measure has reached a specified tolerance or the maximum number of samples
is reached. In this work, the spatial error in the prediction is used as the uncer-
tainty measure, and it is maximized in each cycle to select the next sampling
point. The proposed algorithm is tested on two low-dimensional analytical prob-
lems. The results demonstrate that global modeling using NN-based function
prediction can be guided efficiently and adaptively by an NN approximation of
the model uncertainty.

The next section introduces the proposed algorithm. The following section
presents results of numerical experiments using one- and two-dimensional ana-
lytical functions. Finally, concluding remarks are presented.

2 Methods

The proposed approach is summarized in Algorithm 1. The algorithm requires
two initial data sets that are used to fit separate neural networks. One neural
network models the process output in terms of the input parameters, and the
other models the spatial error in the first neural network. Let (X,Y)f be the set
of sample points used to fit the neural network to the process output, and let
(X,Y)u be the set of sample points used to fit the neural network to the spatial
uncertainty. Here, Xf = {x(1), ...,x(p)}T is the set of the input parameter sam-
ple points and Yf = (y(1)(x(1)), ..., y(p)(x(p)))T the corresponding set of model
outputs. Furthermore, Xu = {x(1), ...,x(q)}T is the set of input parameter sam-
ple points and Yu = (y(1)(x(1)), ..., y(q)(x(q)))T the corresponding set of model
outputs. In this work, it is assumed that the data sets (X,Y)f and (X,Y)u are
distinctly different. Both sets are created using Latin hypercube sampling (LHS)
[15].

To fit the neural networks within the proposed algorithm, the mean squared
error (MSE) loss function is minimized:

L =

∑N
l=1(ŷ

(l) − y(l))2

N
, (1)

where N is the number of samples in the training data. The loss function mini-
mizes the mismatch between the training data, y, and the predicted values, ŷ, of
the neural network [6, 21]. To minimize the loss function, the adaptive moments
(ADAM) optimization algorithm is used [10] along with the backpropagation
algorithm [2] to compute the gradients. The neural network setup used in this
work, in particular the number of hidden layers and the number of neurons per
hidden layer, is case dependent and is described in the numerical experiments.
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Algorithm 1 Adaptive global surrogate modeling algorithm with neural
network-based prediction and uncertainty

Require: initial data sets (X,Y)f and (X,Y)u
repeat
fit neural network to function with available data (X,Y)f
compute uncertainty with available data (X,Y)u
fit neural network to uncertainty with available data (X,Y)u
P← argmaxx ŝ

2(x)
Xf ← Xf ∪P
Yf ← Yf ∪ y(P)

until convergence

Other hyperparameters are common between the cases. Specifically, the tangent
hyperbolic is used as the activation function, the learning rate is set to 0.001,
and the number of epochs is fixed with a value of 3, 000. The neural network
algorithm is implemented using TensorFlow [1].

The neural network algorithm is used in each cycle to construct a surrogate
model, ŷf , of the process output, y, using (X,Y)f . In this work, the uncertainty
measure of ŷf is estimated by the square of the spatial error and is written as

s2(x) = (ŷf (x)− yf (x))
2. (2)

In the proposed algorithm, s(x)2 is computed in each cycle using the data set
(X,Y)u, and the neural network algorithm is used to construct the surrogate
model ŝ(x)2.

To select the next sampling point in each cycle of the proposed algorithm,
the uncertainty measure ŝ(x)2 is maximized using differential evolution [23]. The
algorithm is terminated if ŝ(x)2 is lower than a specified tolerance or the number
of cycles exceeds a specified maximum value.

3 Numerical Experiments

The results of numerical experiments with the proposed algorithm are presented
in this section. Two analytical cases are considered, the first case has one input
parameter and the second has two.

3.1 One-dimensional Forrester Function

The one-dimensional analytical function developed by Forrester et al. is written
as

y(x) = (6x− 2)2 sin(12x− 4), (3)

where x ∈ [0,1]. The proposed algorithm is applied to the modeling of this
function using three uniformly distributed initial samples and ten infill points.
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The total number of samples for modeling the function is, therefore, 13. Ten
uniformly distributed samples are used for modeling the uncertainty. The number
of hidden layers is set to three and the number of neurons in each hidden layer
is set to 50.

Figure 1 shows the modeling progression at iterations 0 (3 initial samples
and the first infill point), 3 (3 initial and 3 prior infills and the new infill point),
6 (3 initial and 6 prior infills and the new infill), and 9 (with all the initial and
infill samples), respectively. Specifically, each subfigure shows the neural network
prediction ŷ(x) along with the true function y(x), sample points and the next
sampling point, as well as the neural network model of the uncertainty ŝ2(x).
The location of the maximum uncertainty in the interval from 0 to 1 guides the
sampling so that the prediction quickly aligns with the true function through
exploration.

The global accuracy of the surrogate models is measured using the root mean
squared error (RMSE), which is evaluated using a separate testing data set.
Figure 2(a) shows how the RMSE changes over the the iterations and is reduced
to around 0.1. Figure 2(b) shows how the maximum model uncertainty reduces
over the iterations from around 250 to 0.01, or by four orders of magnitude.

3.2 Two-dimensional Branin Function

The two-dimensional Branin function is written as

y(x1, x2) =

(
x2 −

5.1

4π2
x2
1 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10, (4)

where x1, x2 ∈ [0, 10]. The proposed algorithm models this function with ten
initial samples selected using LHS and fifty additional infill points for a total of
sixty points at the end of fifty iterations. One hundred points, selected through
LHS, are used for the uncertainty model. For this case, the number of hidden
layers was set to two, with fifty neurons in each hidden layer.

The modeling progression, at iterations 0 (initial samples only), 14, 31, and
49, is shown in Fig. 3. The left plot in each subfigure shows the neural network
model of the function ŷ(x1, x2) with the sample points used and the next se-
lected infill point, while the right plot shows the neural network model of the
uncertainty ŝ2(x1, x2) that is being used to select that infill point.

Figure 4 illustrates the global improvement of the surrogate model as the al-
gorithm progresses through the iterations with Fig. 4(a) showing how the RMSE
for the surrogate model reduces down to 0.2, and Fig. 4(b) showing how the max-
imum predicted model uncertainty ŝ2(x1, x2) reduces by six orders of magnitude
(from roughly 3.7 · 105 to 0.1). The close comparison between the final neural
network model and the true function can be seen in Fig. 5 with (a) the contour
plot of the true function and (b) the final predicted model with all of the sample
points indicated.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_35

https://dx.doi.org/10.1007/978-3-031-08757-8_35


6 Leifsson et al.

0.0 0.2 0.4 0.6 0.8 1.0
x

5

0

5

10

15
y(

x)
True
Predicted
Samples
Infill

0.0 0.2 0.4 0.6 0.8 1.0
x

0

50

100

150

200

250

s2 (
x)

Variance
Infill

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

5

0

5

10

15

y(
x)

True
Predicted
Samples
Infill

0.0 0.2 0.4 0.6 0.8 1.0
x

0
2
4
6
8

10
12
14
16

s2 (
x)

Variance
Infill

(b)

0.0 0.2 0.4 0.6 0.8 1.0
x

5

0

5

10

15

y(
x)

True
Predicted
Samples
Infill

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

s2 (
x)

Variance
Infill

(c)

0.0 0.2 0.4 0.6 0.8 1.0
x

5

0

5

10

15

y(
x)

True
Predicted
Samples
Infill

0.0 0.2 0.4 0.6 0.8 1.0
x

0.000

0.002

0.004

0.006

0.008

0.010

s2 (
x)

Variance
Infill

(d)

Fig. 1: Forrester function prediction (left) and uncertainty (right) at iterations: (a) 0,
(b) 3, (c) 6, (d) 9.
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Fig. 2: Forrester function modeling error evolution: (a) root mean squared error of the
prediction model, (b) maximum variance of the uncertainty model.

4 Conclusion

Global modeling of large data sets is important for decision-making in experi-
mentally and computationally-driven discoveries in engineering and science. The
proposed approach of combining efficient global optimization strategies and neu-
ral network modeling directly tackles this important problem. Specifically, this
paper demonstrates that global modeling using neural network-based function
prediction can be guided by an auxiliary neural network approximation of the
prediction spatial error that enables efficient adaptive surrogate modeling of large
data sets. This capability will support scientists and engineers to make decisions
on whether and where in the parameter space to do a physical experiment or
computational simulation.

Future work will focus on improving the proposed algorithm to permit adap-
tive sampling of the uncertainty model as well as using data from multiple levels
of fidelity. Furthermore, the process of updating the neural network fit in each
cycle of the algorithm needs to be accelerated. Other uncertainty metrics than
the prediction variance also need to be explored. An important step will be to
compare the proposed approach against current state-of-the-art methods and to
characterize the computational costs of each approach. Performing numerical ex-
periments on high-dimensional problems involving physical and computational
data is of current interest.
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Fig. 3: Branin function prediction (left) and uncertainty (right) at iterations: (a) 0,
(b) 14, (c) 31, (d) 49.
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(a) (b)

Fig. 4: Branin function global modeling error evolution: (a) root mean squared error
of the prediction model, (b) maximum variance of the uncertainty model.
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Fig. 5: Branin function: (a) true, (b) predicted.
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