
Intersection Representation of Big Data
Networks and Triangle Enumeration

Wali Mohammad Abdullah, David Awosoga, and Shahadat Hossain

University of Lethbridge, Lethbridge, Alberta, Canada
{w.abdullah,david.awosoga,shahadat.hossain}@uleth.ca

Abstract. Triangles are an essential part of network analysis, repre-
senting metrics such as transitivity and clustering coefficient. Using the
correspondence between sparse adjacency matrices and graphs, linear
algebraic methods have been developed for triangle counting and enu-
meration, where the main computational kernel is sparse matrix-matrix
multiplication. In this paper, we use an intersection representation of
graph data implemented as a sparse matrix, and engineer an algorithm
to compute the “k-count” distribution of the triangles of the graph. The
main computational task of computing sparse matrix-vector products
is carefully crafted by employing compressed vectors as accumulators.
Our method avoids redundant work by counting and enumerating each
triangle exactly once. We present results from extensive computational
experiments on large-scale real-world and synthetic graph instances that
demonstrate good scalability of our method. In terms of run-time per-
formance, our algorithm has been found to be orders of magnitude faster
than the reference implementations of the miniTri data analytics appli-
cation [18].

Keywords: Intersection Matrix · Local Triangle Count · Forward De-
gree Cumulative · Forward Neighbours · Sparse Graph · k-count.

1 Introduction

The presence of triangles in network data has led to the creation of many metrics
to aid in the analysis of graph characteristics. As such, the ability to count and
enumerate these triangles is crucial to applying these metrics and gaining further
insights into the underlying composition and distribution of these graphs. Gen-
eralizations aside, the applications of triangle counting are as ubiquitous as the
triangles themselves, including transitivity ratio - the ratio between the number
of triangles and the paths of length two in a graph - and clustering coefficient
- the fraction of neighbours for a vertex i of a graph who are neighbours them-
selves. Other real-life applications of triangle counting include spam detection
[4], network motifs in biological pathways [12], and community discovery [13].
However, before any network analysis can be undertaken, the underlying data
structure of a graph must be critically examined and understood. An efficient
representation of network data will dictate analysis capabilities and improve

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

2 Abdullah et al.

algorithm performance and data visualization potential [5]. Note that large real-
life networks are typically sparse in nature, so efficient computations of these
graphs must be able to account for their sparsity and skewed degree distribution
[3]. A consistent structure makes linear algebra-based triangle counting methods
appealing, and most methods use direct or modified matrix-matrix multiplica-
tion, with a notable exception being the implementation of Low et al. [11]. This
paper expands upon the preliminary ideas of a poster presentation from the 2021
IEEE Big Data Conference (Big Data) [2], and here we propose an “intersec-
tion” representation of network data obtained as a list of edges [17] and based
on sparse matrix data structures [8]. Our triangle enumeration algorithm derives
its simplicity and efficiency by employing matrix-vector product calculations as
its main computational kernel. The local triangle count and edge support infor-
mation are then acquired from the enumerated triangles obtained as the result
of this matrix-vector multiplication.

1.1 K-count Distribution

Application proxies provide a simple yet realistic way to assess the performance
of real-life applications’ architecture and design. Below, we outline the main com-
ponents of the miniTri data analytics proxy [18], which we use to demonstrate the
effectiveness of our intersection-based graph representation and computation.

Let G = (V,E) be a connected and undirected graph without multiple edges
and self loops, where V denotes the set of vertices and E denotes the set of edges.
For v ∈ V a path of length 2 through v is a sequence of vertices u−v−w such that
e1 = {u, v} ∈ E and e2 = {v, w} ∈ E. Such a length-2 path is termed a wedge
at vertex v. Let d(v) denote the number of edges incident on v, also defined as
the number of vertices x such that {v, x} ∈ E. The number of wedges in G is

then given by
∑

v∈V

(
d(v)
2

)
. A wedge u − v − w is a closed wedge or a triangle

if e3 = {v, w} ∈ E. Let δ(v) and δ(e) denote the number of triangles incident
on vertex v and edge e = {u, v} respectively. In the literature δ(v) is known as
the local triangle count or triangle degree of vertex v and δ(e) is known as the
support or triangle degree of edge e = {u, v}. We denote by ∆(G) the number of
triangles contained in graph G. Since a triangle is counted at each of its three
vertices, we have ∆(G) = 1

3

∑
v∈V δ(v). Let H = (V ′, E′) be a subgraph of G

where |V ′| = k and each pair of vertices are connected by an edge (H is a k-

clique). Then H contains
(
k
3

)
triangles and δ(v) =

(
(k−1)

2

)
and δ(e) = (k− 2) for

v ∈ V ′ and e ∈ E′. Let t be a triangle in G and let δ(tx) = minx δ(x), where
x is a vertex of t and δ(te) = mine δ(e) where e is an edge of t. The k-count of
triangle t is defined to be the largest k such that

1. δ(tx) ≥
(
(k−1)

2

)
and

2. δ(te) ≥ (k − 2)

The main computational task of miniTri is to compute the k-count distribution of
the triangles of an input graph. Figure 1 displays an example input graph with 7
vertices and 13 edges. Each vertex i is circled and contains a label that represents

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

Intersection Representation of Big Data Networks and Triangle Enumeration 3

its identity. Beside each vertex i is an integer denoting its local triangle count
δ(i), and there is an integer beside each edge e = {i, j} denoting its support δ(e).
The graph contains 7 triangles. The table of Figure 1 enumerates the triangles
in the graph and displays the local triangle count and support of the vertices
and edges together with the k-count of the triangles. Each row of the table lists
the vertex labels of a triangle followed by the local triangle count, support, and
k-count. There are 4 triangles with k-count value 4 and 3 triangles with k-count
value 3. Let ω be the size of the largest clique in G. Then the graph contains
at least

(
ω
3

)
triangles with k-count value of at least ω. Therefore, the k-count

distribution can be used to obtain a bound on the size of the largest clique of a
graph.

Fig. 1. K-Count Table for the Example Input Graph

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

4 Abdullah et al.

The remainder of the paper is organized as follows. In Section 2, we in-
troduce the notion of the intersection representation of network data and our
data structure, followed by an illustrative example describing the main ideas in
our intersection matrix-based triangle enumeration method. Section 3 outlines
the computing environment employed to perform numerical experiments and
presents triangle enumeration results on three sets of representative network
data. miniTri1 [18] and its successor, which we call miniTri2, are the reference
implementations by which we present comparative running times and demon-
strate that our method scales very well on massive network data, and can be
very flexible in its extensions to the analysis of network characteristics such as
truss decomposition [7] and triangle ranking [6]. The paper is summarized in
Section 4 with a discussion on future research directions.

2 Intersection Representation of Network Data

Let the vertices in V be labelled 1, 2, . . . , |V | = n. Using the labels on the
vertices, a unique label can be assigned to each edge ek = {vi, vj}, i < j, k =
1, 2, . . . , |E| = m.

The intersection representation of graph G is a matrix X ∈ {0, 1}m×n in
which for each column j of X there is a vertex vj ∈ V and {vi, vj} ∈ E whenever
there is a row k for which X(k, i) = 1 and X(k, j) = 1. The rows of X represent
the edge list sorted by vertex labels. Therefore, matrix X can be viewed as an
assignment to each vertex a subset of m labels such that there is an edge between
vertices i and j if and only if the inner product of the columns i and j is 1. Since
the input graph is unweighted, the edges are simply ordered pairs, and can be
sorted in O(m) time. Unlike the adjacency matrix which is unique (up to a fixed
labelling of the vertices) for graph G, there can be more than one intersection
matrix representation associated with graph G [1]. We exploit this flexibility to
store a graph in a structured and space-efficient form.

2.1 Adjacency Matrix-based Triangle Counting

Many existing triangle counting methods use the sparse representation of ad-
jacency matrices in their calculations. The adjacency matrix A(G) ≡ A ∈
{0, 1}|V |×|V | associated with graph G is defined as,

A(i, j) =

{
1 if {vi, vj} ∈ E, i ̸= j
0 otherwise

It is well known in the literature that the number of closed walks of length
k ≥ 0 are obtained in the diagonal entries of kth power Ak. Therefore, the total
number of triangles in a graph G,∆(G), is given by the trace of A3,

∆(G) =
1

6
Tr(A3).

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

Intersection Representation of Big Data Networks and Triangle Enumeration 5

Fig. 2. Intersection Matrix Representation of the Example Input Graph

The factor of 1
6 accounts for the multiple counting of a triangle (the number

of ways closed walks of length 3 can be obtained is 3! = 6). There is a large
body of literature on sparse linear algebraic triangle counting methods based
on adjacency matrix representation of the data [5]. miniTri’s triangle counting
implementation takes the adjacency matrix A of the input graph and creates
an incidence matrix B from it [18]. The enumeration and counting of the tri-
angles occur in the overloaded matrix multiplication C = AB, where entries in
the resultant matrix C with a value of 2 correspond to a completed triangle.
This method triple-counts each triangle, once for each vertex, so the final result
is divided by 3 to give the total number of triangles in the graph. Since the
multiplication of two sparse matrices usually results in a dense matrix, this is a
memory intensive process.

2.2 Intersection Matrix-based Triangle Counting

Graph algorithms can be effectively expressed in terms of linear algebra opera-
tions [9], and we combine this knowledge with our proposed data representation
to count the triangles in a structured three-step method. For vertex i we first
find its neighbours j > i such that {i, j} ∈ E by multiplying the submatrix
of X consisting of rows corresponding to edges incident on i (let us call them
(i − j)−rows) by the transpose of the vector of ones of compatible length. A
value of 1 in the vector-matrix product indicates that the corresponding vertex
j is a neighbour of vertex i.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

6 Abdullah et al.

Next, we multiply the submatrix of X consisting of columns j identified in
the previous step and the rows below the (i − j)−rows by a vector of ones of
compatible length. A value of 2 in the matrix-vector product indicates a triangle
of the form (i, j, j′) where j and j′ are neighbours of vertex i with j < j′. Let
k be the row index in matrix X for which the matrix-vector product contains
a 2. Then it must be that X(k, j) = 1 and X(k, j′) = 1. Since each row of X
contains exactly 2 nonzero entries that are 1, it follows that {j, j′} ∈ E. This
operation is identical to performing a set intersection on the forward neighbours
of vertices j and j′.

The number of triangles in the graph is given by the sum of the number of tri-
angles associated with each vertex as described. Since the edges are represented
in sorted order in our algorithm, unlike many other triangle counting methods
[18], each triangle is counted exactly once. Figure 2 displays the intersection
matrix representation of the input graph X. The triangles of the form (1, j, j′)
where j, j′ ∈ {3, 5, 6} are obtained from the product X(7 : 13, [3 5 6]) ∗ 1, where
1 denotes the vector of ones. The product has a 2 at locations corresponding
to rows 7, 8, and 12 of X and the associated triangles are (1, 3, 5), (1, 3, 6), and
(1, 5, 6). Therefore, there are three triangles incident on vertex 1, and it can be
easily verified that the graph contains a total of 7 triangles across all of the
vertices.

2.3 Data Structure

In our preliminary implementation, we use two arrays to store useful information
that can be computed after we sort the edges. FDC (Forward Degree Cumulative)
is an array of size n, with elements corresponding to the total number of “forward
neighbours” across the vertices of a graph. Forward neighbours are defined as
the neighbours of a vertex that have a higher label than the vertex of interest.
With the vertices of the graph labelled, finding the forward degree of a vertex
j can be calculated as fd(j) = FDC[j+1] - FDC[j]. FN is an array of size m
that stores which vertices are the forward neighbours of a vertex j. Using FN

we can find these forward neighbours of j as fn(j) = FN[k], where k ranges
from FDC[j] to FDC[j+1]-1. The arrays FDC and FN thus save the vector-matrix
products needed to find the forward neighbours. Figure 3 displays the arrays
FDC and FN for the graph of Figure 2.

Fig. 3. FN and FDC for the Example Graph.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

Intersection Representation of Big Data Networks and Triangle Enumeration 7

2.4 Local Triangle Count and Edge Support

As discussed in Section 1, there are many other metrics related to triangle com-
putation that can be found using our intersection matrix data structure. The
bases for these metrics are the triangle degrees, which are the number of triangles
incident on an edge (edge support) or vertex (local triangle count) of a graph.
This is illustrated in Figure 4 as edgeDeg and vertDeg, respectively, derived
from Figure 1.

Fig. 4. vertDeg and edgeDeg for the Example Graph.

Let j be the column (vertex) of matrixX (graphG) currently being processed
in the fullCount algorithm. For each pair of its forward neighbours j′ and j′′

there is an edge between them if and only if both of the corresponding columns
contain a 1 in some row k identifying the triangle (j, j′, j′′). In terms of the
matrix-vector multiplication in line 7 of algorithm fullCount, vector T will get
updated as T (k)← 2. Thus the triangle (j, j′, j′′) can be enumerated and stored
instantly. The vertex triangle degrees of each triangle are dynamically updated
with this same information, and stored in an array. The edge triangle degrees
are stored in a separate array and updated by exploiting the structure of the FN
and FDC arrays in tandem. The entries of the FDC array, while primarily used
to store the forward degree of a vertex, also contain the edge number (edge id)
that the forward neighbourhood of the vertex of interest begins and ends at.
Since the sub-arrays in FN that correspond to the forward neighbourhood of the
vertices are in the same order as the listed edges of the intersection matrix, any
edge between two vertices can be identified by first finding the distance between
the higher labelled vertex and the beginning of the forward neighbourhood in
which it is found (using FN), and then adding this distance to the entry in FDC

that corresponds to the edge of the lower numbered vertex. Finally, the k-count
distribution of the triangles is used to give a bound on the maximum clique of a
graph [18], and with the triangles enumerated and the edge and vertex triangle
degrees computed and stored as shown in Figure 4, the k-count calculations can
be quickly computed using the method described Section 1. The algorithm in its
entirety is given in the next section.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

8 Abdullah et al.

2.5 Algorithm

fullCount (X)
Input: Intersection matrix X

1: Calculate FDC ▷ Forward degree cumulative
2: Calculate FN ▷ Forward neighbour
3: count← 0 ▷ Number of triangles
4: for j = 1 to n− 1 do ▷ j ∈ V , where V is the set of vertices
5: fd← FDC[j + 1]− FDC[j] ▷ fd is the forward degree of j
6: if fd > 1 then ▷ j has more than one forward neighbour
7: T = X([FDC(j + 1) : m], fnj) ∗ 1
8: S = {t | T [t] = 2}
9: if S ̸= ∅ then

10: count← count+ |S|
11: for t ∈ S do
12: update edgeDeg ▷ Array of triangle edge degrees
13: update vertDeg ▷ Array of triangle vertex degrees
14: Triangles← Triangles ∪ t ▷ Array that stores enumerated

triangles

15: kCountTable← computeKCounts(count, vertDeg, edgeDeg, Triangles)
16: return count, vertDeg, edgeDeg, kCountTable, and Triangles

3 Numerical Results

This section contains experimental results from selected test instances. The first
set comprises real-world social networks from the Stanford Network Analysis
Project (SNAP), obtained from the Graph Challenge website [15]. SNAP is a
collection of more than 50 large network datasets containing a large number
of nodes and edges, including social networks, web graphs, road networks, in-
ternet networks, citation networks, collaboration networks, and communication
networks [10]. The first set of experiments were performed using a Dell Precision
T1700 MT PC with a 4th Gen Intel Core I7-4770 Processor (Quad Core HT, with
3.4GHz Turbo and 8GB RAM), running Centos Linux v7.9. The implementa-
tion language was C++ and the code was compiled using −O3 optimization flag
with a g++ version 4.4.7 compiler. Performance times are reported in seconds
and were averaged over three runs where possible, using the following imple-
mentation abbreviations: mt1 for miniTri1, mt2 for miniTri2, and int for our
intersection algorithm.

Figure 5 shows the speedups of our algorithm versus the two reference mini-
Tri implementations on these real-world instances. The speedups are a unitless
measurement defined as the ratio of the miniTri counting time divided by that of
our algorithm. For the triangle counting algorithms, our speedups ranged from
22× to an impressive 1383× over miniTri1, and from 16× to 642× over mini-
Tri2, with two instances (“flickrEdges” and “Cit-Patents”) failing to compute
with miniTri2. Instances with an ”*” had speedups greater than 650× against
miniTri1 and were cut off from the figure for ease of viewing.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

Intersection Representation of Big Data Networks and Triangle Enumeration 9

Fig. 5. Comparing our Intersection Algorithm with both miniTri implementations on
Large Real World Networks

Table 1. Comparing Our Intersection Algorithm with miniTri on Large Synthetic
Networks.

Graph Characteristics Time in Seconds
Name |V | |E| ∆(G) mt1 int

graph500-scale18-ef16 262144 4194304 82287285 17440 9.357
graph500-scale19-ef16 524288 8388608 186288972 49211.8 25.21
graph500-scale20-ef16 1048576 16777216 419349784 197456 72.34
graph500-scale21-ef16 2097152 33554432 935100883 N/A 171.2
graph500-scale22-ef16 4194304 67108864 2067392370 N/A 481.43
graph500-scale23-ef16 8388608 134217728 4549133002 N/A 1340.05
graph500-scale24-ef16 16777216 268435456 9936161560 N/A 3317.15
graph500-scale25-ef16 33554432 536870912 21575375802 N/A 7959.39

Table 1 compares our algorithm performance on large synthetic test instances
from GraphChallenge to miniTri1 (miniTri2 was only able to compute the first
instance and thus omitted). “N/A”denotes instances where miniTri1 timed out
after four days of computation. Due to the large sizes of this second set of in-
stances, they were run on the large High Performance Computing system (Gra-
ham cluster) at Compute Canada. On the first 3 instances, our method is over
1800 times faster than miniTri1, and the relative performance improves with
increasing instance size, further demonstrating the scalability of our triangle
counting algorithm.

Figure 6 demonstrates our algorithm’s performance on relatively dense brain
networks from the Network Repository[14], back in the Linux environment.
These graphs have between 15 and 268 million edges and up to 42 trillion tri-
angles, and neither miniTri implementation was able to provide results for any

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

10 Abdullah et al.

Fig. 6. Testing Our Intersection Algorithm on Networks with Billions of Triangles.

of the instances. The line of best fit is a polynomial of degree 2 and shows that
our algorithm scales very well with graphs with massive amounts of triangles.

Our intersection-based implementation also produces competitive results when
compared to the state-of-the art triangle counting algorithms [16]. Algorithms
were analyzed and compared by fitting a model of graph counting times, Ttri, as
a function of the number of edges Ne = |E|. This data was then used to estimate
the parameters N1 (the number of edges that can be processed in one second)
and β:

Ttri = (Ne/N1)
β

to compare different counting implementations. Implementations with a larger
N1 and smaller β perform the best, and the top entries from the 2019 review
had N1 values ranging from 5× 105 to 5× 108, and β values ranging from 1

2 to
4
3 . For reference, our algorithm had β = 3

4 and N1 = 1× 107.
After examining the comparative performance of our triangle counting al-

gorithm, we proceeded to expand the implementation to include the metrics
described in Section 2.4 - triangle counting, triangle vertex degree, triangle edge
degree, and k-count calculations. Similar to the basic counting experimental re-
sults, our intersection method of this “full count”was faster than miniTri1 and
miniTri2 on every instance, with speedups ranging between 2× and 177× on the
ten largest instances, displayed in Table 2. One noteworthy observation about
these results is that due to the data structure that stored the enumerated tri-
angles, the k-count calculation of our algorithm ran much faster than those of
miniTri, even though the code implementation was nearly identical. This demon-

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

Intersection Representation of Big Data Networks and Triangle Enumeration 11

Table 2. Comparing Our Full Count Intersection Algorithm with miniTri1 and mini-
Tri2 on Large Real World Networks.

Graph Characteristics Time in Seconds Speedup
Name |V | |E| ∆(G) mt1 mt2 int mt1/int mt2/int

Loc-gowalla 196591 950327 2273138 156 106.4 0.882 177 121
roadNet-PA 1090920 1541898 67150 2.067 1.792 0.076 27 24
roadNet-TX 1393383 1921660 82869 2.544 2.207 0.070 36 32
flickrEdges 105938 2316948 107987357 1112 N/A 553.1 2 ∞
amazon0312 400727 2349869 3686467 26.8 22.29 0.932 29 24
amazon0505 410236 3356824 3951063 28.71 23.39 0.997 29 23
amazon0601 403394 3387388 3986507 28.24 25.09 0.998 28 25
roadNet-CA 1965206 5533214 120676 3.706 3.212 0.134 28 24
Cit-Patents 3774768 33037894 7515023 157.21 N/A 3.502 45 ∞

strates the versatility of FDC and FN in their ability to perform a wide range
of network analytics.

4 Conclusion

Network data is usually input as a list of edges which can be preprocessed into
a representation such as an adjacency matrix or adjacency list, suitable for al-
gorithmic processing. We have presented a simple, yet flexible scheme based on
intersecting edge labels, the intersection matrix, for the representation of and
calculation with network data. A new linear algebra-based method exploits this
intersection representation for triangle computation – a kernel operation in big
data analytics. By using sparse matrix-vector products instead of the memory-
intensive matrix-matrix multiplication, our implementation has the capacity to
enumerate and extend triangle analysis in graphs so that important informa-
tion such as triangle vertex and edge degree can be gleaned in a fraction of
the time of reference implementation of miniTri on large benchmark instances.
The computational results from a set of large-scale synthetic and real-world net-
work instances clearly demonstrate that our basic implementation is efficient
and scales well. The two arrays FDC and FN together constitute a compact rep-
resentation of the sparsity pattern of network data, requiring only n +m units
of storage. This is incredibly useful in the exchange of network data, with the
potential to allow for the computation of many additional intersection matrix-
based network analytics such as rank and triangle centrality [6]. A shared mem-
ory parallel implementation of this method using OpenMP is being developed,
with very optimistic preliminary results. This algorithm can still be tuned, and
cache efficiency is being studied for additional optimizations, exploring tempo-
ral and spatial locality to analyze the memory footprint and provide further
improvements. A natural extension of the research presented in this paper is to
use the intersection representation in graphlet counting methods. Similar to the
k-count distribution, graphlet frequency distribution (a vector of the frequency

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

12 Abdullah et al.

of different graphlets in a graph) provides local topological properties of graphs
[17].

Acknowledgments This research was supported in part by NSERC Discov-
ery Grant (Individual), NSERC Undergraduate Student Research Award, and
the AITF Graduate Student Scholarship. A part of our computations were per-
formed on Compute Canada HPC system (http://www.computecanada.ca), and
we gratefully acknowledge their support.

References

1. Abdullah, W.M., Hossain, S., Khan, M.A.: Covering large complex networks by
cliques—a sparse matrix approach. In: Kilgour, D.M., Kunze, H., Makarov, R.,
Melnik, R., Wang, X. (eds.) Recent Developments in Mathematical, Statistical and
Computational Sciences. pp. 117–127. Springer International Publishing, Cham
(2021)

2. Abdullah, W.M., Awosoga, D., Hossain, S.: Intersection representa-
tion of big data networks and triangle counting. In: 2021 IEEE Inter-
national Conference on Big Data (Big Data). pp. 5836–5838 (2021).
https://doi.org/10.1109/BigData52589.2021.9671349

3. Al Hasan, M., Dave, V.S.: Triangle counting in large networks: a review. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery 8(2), e1226 (2018)

4. Becchetti, L., Boldi, P., Castillo, C.: Efficient algorithms for large-scale local tri-
angle counting. In: ACM Trans Knowl Discovery Data. pp. 1–28 (2010)

5. Burkhardt, P.: Graphing trillions of triangles. Information Visualization 16(3),
157–166 (2017)

6. Burkhardt, P.: Triangle centrality. ArXiv abs/2105.00110 (2021)

7. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. National secu-
rity agency technical report 16(3.1) (2008)

8. Hasan, M., Hossain, S., Khan, A.I., Mithila, N.H., Suny, A.H.: DSJM: a soft-
ware toolkit for direct determination of sparse Jacobian matrices. In: International
Congress on Mathematical Software. pp. 275 – 283. Springer (2016)

9. Kepner, J., Gilbert, J.: Graph algorithms in the language of linear algebra. SIAM
(2011)

10. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data (Jun 2014), accessed: 2019-10-02

11. Low, T.M., Rao, V.N., Lee, M., Popovici, D., Franchetti, F., McMillan, S.: First
look: Linear algebra-based triangle counting without matrix multiplication. In:
2017 IEEE High Performance Extreme Computing Conference (HPEC). pp. 1–6
(2017). https://doi.org/10.1109/HPEC.2017.8091046

12. Milo, R., Shen-Orr, S., Itzkovitz, S.: Network motifs: simple building blocks of
complex network. Science pp. 824–827 (2002)

13. Palla, G., Dereny, I., Frakas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature pp. 814–818 (2005)

14. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015), https://networkrepository.com

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

Intersection Representation of Big Data Networks and Triangle Enumeration 13

15. Samsi, S., Gadepally, V., Hurley, M., Jones, M., Kao, E., Mohindra, S., Monticciolo,
P., Reuther, A., Smith, S., Song, W., Staheli, D., Kepner, J.: Static graph challenge:
Subgraph isomorphism. http://graphchallenge.mit.edu/data-sets (2017), accessed:
2021-07-09

16. Samsi, S., Gadepally, V., Hurley, M., Jones, M., Kao, E., Mohindra, S., Monticciolo,
P., Reuther, A., Smith, S., Song, W., Staheli, D., Kepner, J.: Graphchallenge.org
triangle counting performance (2020)

17. Szpilrajn-Marczewski, E.: A translation of sur deux propriétés des classes
d’ensembles by. Fund. Math 33, 303–307 (1945)

18. Wolf, M.M., Berry, J.W., Stark, D.T.: A task-based linear algebra building blocks
approach for scalable graph analytics. In: 2015 IEEE High Performance Extreme
Computing Conference (HPEC). pp. 1–6. IEEE (2015)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_34

https://dx.doi.org/10.1007/978-3-031-08757-8_34

