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Abstract. Modelling of large scale data series is of significant impor-
tance in fields such as astrophysics and finance. The continuous increase
in available data requires new computational approaches such as the use
of multicore processors and accelerators. Recently, a novel time series
modelling and forecasting method was proposed, based on a recursively
updated pseudoinverse matrix which enhances parsimony by enabling
assessment of basis functions, before inclusion into the final model. Here-
with, a novel GPU (Graphics Processing Unit) accelerated matrix based
auto-regressive variant is presented, which utilizes lagged versions of a
time series and interactions between them to form a model. The original
approach is reviewed and a matrix multiplication based variant is pro-
posed. The GPU accelerated and hybrid parallel versions are introduced,
utilizing single and mixed precision arithmetic to increase GPU perfor-
mance. Discussions around performance improvement and high order
interactions are given. A block processing approach is also introduced
to reduce memory requirements for the accelerator. Furthermore, the
inclusion of constraints in the computation of weights, corresponding
to the basis functions, with respect to the parallel implementation are
discussed. The approach is assessed in a series of model problems and
discussions are provided.

Keywords: Forecasting · Pseudoinverse matrix · Parallel Modelling ·
GPU acceleration

1 Introduction

Modelling and forecasting time series has several applications is a number of sci-
entific fields including signal processing, computational finance and astrophysics.
Modelling of time series can be performed with traditional approaches [21], such
as Auto-Regressive Integrated Moving Average (ARIMA) models [3] and Expo-
nential Smoothing (ES) [4, 16], or machine learning methods such as Long Short
- Term Memory Networks (LSTM) [15] and Support Vector Regression (SVR)
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[8]. Another important family of techniques are based on orthogonalization of a
set of basis functions, such as Fast Orthogonal Search [17] or Matching Pursuit
[22]. These techniques construct a model from a set of basis functions (linear or
non-linear) using orthogonalization procedures such as Gram-Schmidt orthogo-
nalization. Recently, a recursive Schur complement pseudoinverse approach for
modelling time series was introduced [12]. This approach avoids orthogonal-
ization, while enabling the use of preconditioned iterative methods for reducing
memory requirements in the case of a large number of basis functions [10]. These
methods enable the use of arbitrary basis functions including linear, trigonomet-
ric, auto-regressive or machine learning based [12, 13, 11].

The emergence of big data led to an increase in interest in the area of paral-
lel computing in order to reduce processing times. Extensive research has been
carried out in the parallelization of machine learning methods, especially neu-
ral networks in multicore systems, distributed systems and accelerators such as
GPUs [2, 18, 1, 23]. Parallelization was used to reduce training times especially
for deep neural network architectures and for very large input datasets. GPU
acceleration has been also utilized to reduce training and optimization times
for Support Vector Machines [25, 24, 19]. In the majority of these approaches,
the training operations are reformed to take advantage of matrix by matrix
(BLAS3) kernels that can be efficiently parallelized in GPUs and modern mul-
ticore hardware. Another important modification is the use of mixed precision
arithmetic, combining half-precision, single precision and double precision arith-
metic substantially improving performance and storage requirements [20, 1]. In
the literature, efforts have been directed also in the parallelization of Match-
ing Pursuit type methods [9, 6] for GPUs. Despite the extensive literature and
software available for parallelizing machine learning methods, literature around
parallelization of techniques such as Fast Orthogonal Search is limited.

Herewith, we propose a novel parallel implementation of the recently pro-
posed recursive Schur complement pseudoinverse matrix modelling based on
auto-regressive basis functions. Initially, the method is recast to take advantage
of BLAS3 operations, during the basis search operation, while avoiding redun-
dant computations which will increase computational work and memory require-
ments. Then, the parallel algorithm, that utilizes mixed precision arithmetic, is
presented and discussed along with a pure GPU implementation and block mixed
precision variants. Multiplicative interactions between auto-regressive basis func-
tions are also discussed. Implications related to precision and memory transfers
between CPU and GPU are analyzed. The proposed scheme is assessed by mod-
elling and forecasting two time series with different characteristics and sets of
candidate basis functions. Scalability results are also presented and discussed.

In Section 2, the recursive Schur complement based pseudoinverse matrix of
basis functions is reviewed and insights on the basis functions selection, higher
order basis interactions and termination criteria is given. In Section 3, the ma-
trix based variant is proposed and the CPU/GPU and pure GPU implementa-
tions are presented. Moreover, a block variant is given along with discussions on
memory requirements, data transfer overhead and the effects of mixed precision
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arithmetic. In Section 4, numerical results are presented depicting the applica-
bility and accuracy of the proposed scheme along with discussions on scalability
and implications of mixed precision arithmetic.

2 Recursive Schur complement based time - series
modelling

The coefficients of a model, corresponding to the time series y, with linearly in-
dependent basis functions stored in the columns of a matrix X can be computed
as follows:

Xa = y ⇐⇒ a = X+y ⇐⇒ a = (XTX)−1XT y, (1)

where a is a vector of length n retaining the coefficients corresponding to the n
basis functions retained in X. The matrix XTX and its inverse are Symmetric
Positive Definite [10]. In most cases all basis functions are not known “a priori”
or their contribution to error reduction is not significant. In order to avoid such
issues a recursive pseudoinverse matrix approach has been proposed [12] based on
a symmetric variant of the matrix preconditioning technique introduced in [10].
Following this approach and given an additional basis F , with Xi+1 = [Xi F ],
1 ≤ i ≤ n, we have:

ai+1 = [Xi F ]+y = Gi+1D
−1
i+1G

T
i+1X

T
i+1y, (2)

or equivalently:[
ai
b

]
=

[
Gi −GiD

−1
i GT

i X
T
i F

0 1

] [
D−1

i 0
0 s−1

i+1

] [
GT

i 0
−FTXiGiD

−1
i GT

i 1

] [
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i y
FT y

]
, (3)

where (XT
i Xi)

−1 = GiD
−1
i GT

i and si+1 = FTF − FTXiGiD
−1
i GT

i X
T
i F de-

notes the Schur Complement corresponding to the addition of basis function
F . The initial conditions for the recursive formulation are G1,1 = 1, D1,1 =
s−1
1 = (FTF )−1 and a1 = s−1

1 FT y. The updated set of coefficients ai+1 can be
computed alternatively using the following equations:

ai+1 =

[
a∗i
b

]
=

[
ai + gi+1b

s−1
i+1(F

T + gTi+1X
T
i )y

]
, (4)

with:

Gi+1 =

[
Gi gi+1

0 1

]
and D−1

i+1 =

[
D−1

i 0
0 s−1

i+1

]
, (5)

where b denotes the coefficient corresponding to basis function F and a∗i is
the updated coefficients after addition of basis function F . The vector gi+1 =
−GiD

−1
i GT

i X
T
i F corresponds to the (i+1) column and si+1 = FT (F +Xigi+1)

is the Schur complement. The modelling error ρi+1 = ∥ri+1∥22 corresponding to
the addition of a basis function F can be computed as:

∥ri+1∥22 = ∥y−Xi+1ai+1∥22 = ∥ri∥22−∥(Xigi+1+F )b∥22 = ∥ri∥22−bT si+1b, 0 ≤ i ≤ n−1
(6)
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with ∥r0∥22 = ∥y∥22. The quantity ei+1 = bT si+1b denotes the error reduction
corresponding to the addition of a basis function F [12]. In order to ensure posi-
tive definiteness of the dot product matrix XT

i+1Xi+1 the quantity ei+1 should be
bounded by 0 ≤ ei+1 ≤ ∥ri∥22. It should be noted that ρi+1 = ∥ri+1∥22 = T ·MSE
is the Squared Error, T is the number of samples in time series y, and MSE de-
notes the Mean Squared Error. Detailed description and additional discussions
regarding the method are given in [12, 13, 11].

2.1 Assessment and selection of basis functions

The explicit expression of error reduction can be used to select a subset of basis
functions to form a model from a candidate set U retaining N basis functions.
Trigonometric, exponential and linear functions have been considered for mod-
elling in [12], [13], while a Non-Negative Adaptive Auto - Regression approach
was followed in [11]. The procedure of selecting an appropriate basis requires
computation of the potential error reduction for each member of the set U . This
procedure is algorithmically described in Alg. 1. The procedure, described by
Alg. 1, proceeds through all candidate basis in U sequentially, storing the re-
spective error reductions to vector u. Then, the algorithm proceeds by selecting
the index of the basis function that lead to maximum error reduction under the
constraints that ensure positive definiteness.

Algorithm 1 Basis Search
(k = bs(y,Gi, D

−1
i , Xi, U, ρi))

1: Let N denote the number of candidate basis functions in U .
2: ei = 0, 1 ≤ i ≤ N
3: for i ∈ [1, N ] ⊂ N do
4: F = Ui

5: gi+1 = −GiD
−1
i GT

i X
T
i F

6: si+1 = FT (F +Xigi+1)
7: b = s−1

i+1(F
T + gTi+1X

T
i )y

8: ei = bT si+1b
9: end for
10: k = argmaxi∈[1,N ] ei under the constraint 0 ≤ ei ≤ ρi

The set U can host any type of basis functions even Machine Learning models
such as Support Vector Machines [8]. In the current manuscript we focus on
lagged basis function of the form:

U = [y−1 y−2 y−3 y−4 . . . y−N ], (7)

with y0 = y. In practice, the number of samples in lagged time series y−i is n−N ,
since the latest sample is removed (retained in the responses y), along with the
first N − 1 samples from each candidate lagged basis to ensure that there are
no missing data. In case multiplicative interactions between basis functions are
allowed [14], e.g. yiyj . . . the number of basis functions into the candidate set
are: (

N

k

)
+N k, k > 1 (8)
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where k is the order of allowed interactions. In the case of k = 1, then the
number of candidate basis functions is equal to N .

Additional constraints can be imposed during the selection of a basis function
that leads to the maximum error reduction. These constraints can be imposed
during step 10 of Alg. 1. Examples of constraints include non-negativity of the
coefficients [11] or imposing a threshold on their magnitude.

After selection of an appropriate basis function or lag, addition of this basis
function has to be performed and the corresponding matrices to be updated.
Several basis functions can be fitted by executing the process described by Alg.
1 followed by the process of Alg. 2, iteratively. The fitting process is terminated
based on criteria regarding the fitting error, e.g. [12]:

√
ρi+1 < ϵ

√
ρ0. (9)

Another approach is to terminate the fitting process based on the magnitude
of the coefficients:

|b| < ϵ|a1|. (10)

where b is the coefficient corresponding to the i+ 1 added basis function, while
a1 is the coefficient corresponding to the basis function added first. In both
termination criteria ϵ is the prescribed tolerance. It should be noted that the
second criterion is more appropriate in the case of lagged basis.

Algorithm 2 Add Basis Function
([Gi+1, D

−1
i+1, Xi+1, ai+1, ρi+1] = addbasis(y,Gi, D

−1
i , Xi, F, ai, ρi))

1: gi+1 = −GiD
−1
i GT

i X
T
i F

2: si+1 = FT (F +Xigi+1)
3: b = s−1

i+1(F
T + gTi+1X

T
i )y

4: Check termination criterion and terminate if met

5: ai+1 =

[
ai

b

]
6: ρi+1 = ρi − bT si+1b

7: Gi+1 =

[
Gi gi+1

0 1

]
; Di+1 =

[
D−1

i 0
0 s−1

i+1

]
; Xi+1 =

[
Xi F

]
3 Performance optimization and parallelization

The procedure, described by Alg. 1, proceeds through all candidate basis in
U sequentially. It can be performed in parallel by assigning a portion of basis
functions to each thread of a multicore processor. However, the most computa-
tionally intensive operations are matrix by vector and vector by vector, which
are BLAS2 (Basic Linear Algebra Subroutines - Type 2) and BLAS1 operations,
respectively, [5]. These operations lead to decreased performance compared to
operations between matrices which are BLAS3 operations, since they require
increased memory transfers and cache tiling and data re-use is limited [7]. Thus,
to increase performance the most computationally intensive part, which is the
basis search described by Alg. 1, has to be redesigned in order to compute the
corresponding error for all candidate basis functions.
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Let us consider a set of N candidate basis functions, represented as vectors
of length N −n, stored in the columns of matrix U ((n−N)×N). The columns

g
(j)
i+1, 1 ≤ j ≤ N corresponding to each basis can be computed by the following
matrix multiplication operations:

gi+1 = [g
(1)
i+1 g

(2)
i+1 . . . g

(N)
i+1 ] = −GiD

−1
i GT

i X
T
i U. (11)

The matrix gi+1 (i×N) is formed by four dense matrix multiplications, however
matrix D−1

i is diagonal matrix, thus it can be retained as a vector. Multiplying
matrix D−1

i by another matrix is equivalent to multiplying the elements of each
row j with the corresponding element d−1

j,j of the vector retaining the elements
of the diagonal matrix. For the remainder of the manuscript we will denote this
operation as (⋆). This operation can be used in the process described in Alg.
2. This reduces operations required, as well as storage requirements, since a
matrix multiplication is avoided and the computation can be performed in place
in memory.

Following computation of the columns stored in matrix gi+1, the Schur Com-

plements s
(j)
i+1, 1 ≤ j ≤ N corresponding to the candidate basis functions are

computed as follows:
si+1 = diag(s̃i+1) = diag(UT (U +Xigi+1)). (12)

The formula UT (U + Xigi+1) leads to the computation of Schur complement
of the block incorporation of basis and not the individual Schur complements
corresponding to the candidate basis function, which are stored in the diagonal
of the result. The Schur complement s̃i+1 is a dense matrix of dimensions N×N
and requires substantial computational effort. In order to avoid unnecessary
operations each diagonal element can be computed as follows:

(si+1)j = (UT )j,:((U):,j +Xi(gi+1):,j), (13)

where ( . )i,j denotes an element at position (i,j) of a matrix and (:) denotes all
elements of a row or column of a matrix. In order to compute all elements of the
diagonal concurrently, eq. (13) can be reformed as follows:

si+1 = (UT ⊙ (U +Xigi+1)
T )v, (14)

where ⊙ denotes the Hadamard product of two matrices and v is a vector of the
form [1 1 . . . 1]T . The vector si+1 (N × 1) retains the Schur complements
corresponding to the candidate basis functions in U . Dedicated (Optimized)
Hadamard product is not included in the standard BLAS collection, however it
is included in vendor versions or CUDA (Compute Unified Device Architecture).
Following the same notation the coefficients corresponding to the basis functions
in set U can be computed as:

b = s−1
i+1 ⊙ (UT + gTi+1X

T
i )y (15)

and the corresponding error reductions as:

e = b⊙ si+1 ⊙ b. (16)
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The most appropriate basis function is selected by finding the maximum error
reduction in vector e. The matrix based basis selection procedure is algorithmi-
cally described in Alg. 3.

Algorithm 3 Matrix Based Basis Search
(k = mbbs(y,Gi, D

−1
i , Xi, U, ρi))

1: Let N denote the number of candidate basis functions in U .
2: vi = 1, 1 ≤ i ≤ N
3: gi+1 = −Gi(D

−1
i ⋆ (GT

i X
T
i U))

4: Ũ = U +Xigi+1

5: si+1 = (UT ⊙ Ũ)v
6: b = s−1

i+1 ⊙ ŨT y
7: e = b⊙ si+1 ⊙ b
8: k = argmaxi∈[1,N ] ei under the constraint 0 ≤ ei ≤ ρi

A block variant of Alg. 3 can be utilized to process batches of candidate
functions. This can be performed by splitting matrix U into groups, processing
them and accumulating the corresponding error reductions in vector e before
computing the index of the most effective basis function. Despite the advantages
in terms of performance, the matrix and block based matrix approaches have
increased memory requirements. The memory requirements are analogous to
the number of candidate basis functions, since they have to be evaluated before
assessment, while in the original approach each candidate basis is evaluated only
before its assessment. Thus, the matrix approach requiresO(N(n−N)), the block
approach O(max(ν(n−N)), bs(n−N))) and the original approach O(ν(n−N))
64-bit words, where ν denotes the number of basis functions included in the
model and bs the number of basis in each block.

3.1 Graphics Processing Unit Acceleration

The operations involved in Matrix Based Basis Search, given in Alg. 3, can be ef-
ficiently accelerated in a Graphics Processing Unit (GPU). However, most GPU
units suffer from substantial reduction of the double precision performance, e.g.
32× in the case of double precision arithmetic (Geforce RTX 20 series). In order
to mitigate this issue, 32-bit floating point operations and 16-bit half precision
floating point operations are utilized. This gives rise to mixed precision compu-
tations, where GPU related operations are performed in reduced precision, while
CPU related ones are performed in double precision arithmetic. This approach
enables acceleration while minimizing round off errors from reduced precision
computation.

The proposed scheme utilized a similar approach in order to accelerate the
most computationally intensive part of the process, which is the basis search.
Computations in the GPU require data movement from the main memory to
the GPU memory, which is a time consuming operation, thus should be limited.
For the case of of the Matrix Based Basis Search algorithm, data should be
transferred in the GPU before processing. This includes the time series y, the
matrix Gi and vector Di, the matrix of included basis Xi and the previous
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modelling error ρi in order to mark basis that could hinder positive definiteness.
Before copying these arrays to the GPU memory, they should be cast to single
precision arithmetic to ensure increased performance during computations. The
matrix U , retaining the candidate basis, and time series y can be transferred in
the GPU before starting the fitting process, since they are “a priori” known, while
all the other matrices should be updated after addition of new basis function to
the model. However, the update process includes only a small number of values
to be transferred at each iteration.

Algorithm 4 GPU accelerated modelling

1: Let y denote the time series to be modelled, N the maximum lag, n the number
of samples in y.

2: vi = 1, 1 ≤ i ≤ n−N
3: y = cpu2gpu(single(y))
4: U = cpu2gpu(single([y−1 y−2 . . . y−N ])
5: ρ0 = ∥y∥22; ρ = cpu2gpu(single(ρ0))
6: [G1, D

−1
1 , X1, a1, ρ1] = addbasis(y, [ ], [ ], [ ], v, [ ], ρ0)

7: G = cpu2gpu(single(G1)); D−1 = cpu2gpu(single(D1))
8: X = cpu2gpu(single(X1)); ρ = cpu2gpu(single(ρ1))
9: for i ∈ [1, N ] do
10: k = mbbs(y,G,D−1,X,U ,ρ) ▷ GPU
11: k = gpu2cpu(k); F = y−k

12: [Gi+1, D
−1
i+1, Xi+1, ai+1, ρi+1] = addbasis(y,Gi, D

−1
i , Xi, F, ai, ρi)

13: G = update(single(Gi+1)); D−1 = update(single(D−1
i+1))

14: X = update(single(Xi+1)); ρ = cpu2gpu(single(ρi+1))
15: end for

The process is described in Alg. 4. The matrices and vectors stored in the
GPU memory are given in bold. The process terminates if the termination cri-
terion of eq. (10) is met during the basis addition process or line 12 of Alg. 4.
It should be noted that the first basis included removes the mean value of the
time series y. This is performed in line 6 where the addbasis function is invoked.
In practice, addition of the first basis function is performed using the equations:
s1 = FTF, a1 = s−1

1 FT y,D−1
1 = s−1

1 , G1 = 1, where F is substituted with a
vector ((n−N)× 1) with all its components set to unity.

The functions cpu2gpu and gpu2cpu are used to transfer data from CPU
memory to GPU memory and from GPU memory to CPU memory, respectively.
Conversion of matrices, vectors and variables from double precision to single
precision arithmetic is performed with function single and the function update
is utilized to update matrices and vectors involved in the Matrix Based Basis
Search performed in the GPU. At each iteration 2+ i+(n−N), 1 ≤ i ≤ ν single
precision floating point numbers need to be transferred to GPU memory, with
ν denoting the number of basis functions included in the model.

A full GPU version of Alg. 4 can be also used, by forming and updating all
matrices directly to the GPU memory. In this approach, the matrix of candidate
matrices U and the time-series y need to be transferred to the GPU memory,
before computation commences. The value of the first coefficient should also

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_33

https://dx.doi.org/10.1007/978-3-031-08757-8_33


GPU accelerated modelling and forecasting for large time series 9

be transferred to the CPU since it is required by the termination criterion.
Moreover, in every iteration the new coefficient has to be transferred to CPU in
order to assess model formation through the termination criterion. This approach
uses solely single precision arithmetic and is expected to yield slightly different
results due to rounding errors.

4 Numerical results
In this section the applicability, performance and accuracy of the proposed
scheme is examined by applying the proposed technique to two time series.
The first time series is composed of large number of samples and lagged ba-
sis functions without multiplicative interactions are used as the candidate set.
The scalability of different approaches is assessed with respect to single preci-
sion, mixed precision and double precision arithmetic executed either on CPU
or GPU. The second time series has a reduced number of samples, however an
extended set of lagged candidate basis functions, which include second order in-
teractions, are included. The characteristics of the time series are given in Tab.
1. The two time series were extracted from R studio. The error measures used
to assess the forecasting error was Mean Absolute Percentage Error (MAPE),
Mean Absolute Deviation (MAE) and Root Mean Squared Error (RMSE):

MAPE =
100

T

T∑
i=1

|yi − ŷi|
|yi|

, MAE =
1

T

T∑
i=1

|yi−ŷi|, RMSE =

√√√√ 1

T

T∑
i=1

(yi − ŷi)2

(17)
where yi are the actual values, ŷi the forecasted values and T the length of the
test set. All forecasts are performed out-of-sample using a multi-step approach
without retraining. All experiments were executed on a system with an Intel
Core i7 9700K 3.6-4.9 GHz CPU (8 cores) with 16 GBytes of RAM memory and
an NVIDIA Geforce 2070 RTX (2304 CUDA Cores) with 8 GBytes of memory.
All CPU computations were carried out in parallel using Intel MKL, while the
GPU computations were carried out using NVIDIA CUDA libraries.

Table 1: Model time series with description and selected splitting.
# Name Frequency Train Test Description

1
Call volume

for a large North
American bank

5-mins 22325 5391

Volume of calls,
per five minute intervals,
spanning 164 days starting

from 3 March 2003

2
Daily female

births in California
Daily 304 61

Daily observations
in 1959

Different notation is used for the variants of the proposed scheme:
CPU-DP: Matrix based CPU implementation using double precision arith-
metic. This is the baseline implementation.
CPU-SP: Matrix based CPU implementation using single precision arithmetic.
CPU-DP-GPU: Matrix based CPU/GPU implementation using mixed preci-
sion arithmetic. The basis search is performed in the GPU using single precision
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10 C. K. Filelis - Papadopoulos et al.

arithmetic, while incorporation of the basis function is performed in double pre-
cision arithmetic.
CPU-DP-GPU-block(nb): Block matrix based CPU/GPU implementation
using mixed precision arithmetic. The basis search is performed in the GPU
using single precision arithmetic, while incorporation of the basis function is
performed in double precision arithmetic.
GPU: Pure matrix based GPU implementation using single precision arithmetic.

The parameter nb denotes the number of blocks. The block approach requires
less GPU memory.

4.1 Time series 1 - Scalability and accuracy

The average value of the dataset is 192.079, the minimum value is 11 and the
maximum value is 465. For this model the lagged candidate basis has been uti-
lized, while higher degree interactions are not allowed, resulting in an additive
model. The performance in seconds for all variants is given in Fig. 1, while
speedups are presented in Fig. 2. The pure GPU and CPU-DP-GPU implemen-
tations have the best performance overall leading to the best speedups. The pure
GPU implementation has a speedup greater than 20× for more than 50 basis
functions with a maximum of approximately 27×, with respect to the baseline
implementation. With respect to the CPU single precision arithmetic implemen-
tation the pure GPU approach has a speedup of approximately 10× for more
than 50 basis functions. The CPU-DP-GPU has a maximum speedup of ap-
proximately 22× attained for 134 basis functions. After that point the speedup
decreases because the double precision operations in the CPU do not scale with
same rate, reducing the overall speedup. It should be noted that even for low
number of basis functions, e.g. 6, the speedup of the pure GPU implementation is
approximately 6× with respect to CPU-DP and approximately 4× with respect
to CPU-SP implementation.
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CPU-DP-GPU-block(8)

CPU-DP-GPU-block(20)

CPU-DP-GPU-block(40)

CPU-SP

GPU

Fig. 1: Performance for all variants for different number of basis functions.

The performance of the block variants degrades when increasing the number
of blocks retaining the candidate basis functions, since they require more data
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transfers between CPU and GPU. The speedups for the block variants range
from 2.5 × − 8.6× over CPU-DP implementation and 1.5 × − 3.4× over the
CPU-SP implementation.
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Fig. 2: Speedup for all variants for different number of basis functions.

Table 2: Minimum, maximum and average number of basis functions, RMSE,
MAE and MAPE for all variants for the first time series.

# Basis RMSE MAE MAPE

ϵ Min Max Avg Min Max Avg Min Max Avg Min Max Avg

0.1 4 4 4.0 41.96 41.96 41.96 34.25 34.25 34.25 25.80 25.80 25.80
0.07 6 6 6.0 44.86 44.86 44.86 36.87 36.87 36.87 29.29 29.29 29.29
0.04 23 23 23.0 26.32 26.32 26.32 19.61 19.61 19.61 11.76 11.76 11.76
0.02 39 39 39.0 24.07 24.07 24.07 18.07 18.07 18.07 11.23 11.23 11.23
0.01 42 42 42.0 24.13 24.14 24.14 18.12 18.12 18.12 11.22 11.22 11.22
0.009 47 47 47.0 23.86 23.86 23.86 17.96 17.96 17.96 11.45 11.45 11.45
0.006 132 136 134.1 23.31 23.64 23.47 17.65 17.96 17.81 11.66 11.92 11.83
0.005 695 716 702.8 23.16 23.64 23.22 17.50 17.96 17.56 11.49 11.92 11.55
0.004 795 833 818.7 23.15 23.64 23.21 17.49 17.96 17.55 11.48 11.92 11.53
0.003 941 960 952.3 23.16 23.17 23.17 17.50 17.52 17.51 11.50 11.52 11.51
0.002 1081 1136 1116.0 23.16 23.17 23.16 17.49 17.50 17.50 11.46 11.47 11.47
0.001 1232 1266 1257.3 23.16 23.16 23.16 17.49 17.50 17.50 11.46 11.47 11.47

The number of basis functions included in the model along with forecasting
errors are given in Tab. 2. The number of basis functions as well as the errors
are not substantially affected by the use of mixed or single precision arithmetic.
More specifically, up to approximately 50 basis functions all variants produce
almost identical results. However, above 50 basis functions there is a minor
difference in the number of basis functions included in the model which in turn
slightly affects the error measures. The difference in the number of included basis
functions is caused by rounding errors in the computation of error reduction ρ.
This is caused by the rounding errors in the formation of the column vectors gi+1,
involved in the computation of respective Schur complements and potential basis
coefficients.

An important observation is that the error measures regarding forecasts do
not significantly reduce after the incorporation of approximately 130 basis func-
tions. Thus, additional basis functions increase the complexity of the model. In
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order to ensure sparsity of the underlying model, a different termination cri-
terion can be used, since the termination criterion of eq. (10) depends on the
magnitude of the entries of the basis functions and is more susceptible to nu-
merical rounding errors. The new termination criterion based on error reduction
percentage is as follows:

√
ρi −

√
ρi − ei+1 < ϵ

√
ρi, (18)

where ei+1 denotes the potential error reduction that will be caused by the incor-
poration of the i+1-th basis. ϵ ∈ [0, 1] ⊂ R denotes the acceptable percentage of
error reduction to include a basis function. This criterion will be used to model
the second time series along with higher level interactions.

4.2 Time series 2 - Flexibility and higher order interactions

The average value of the dataset is 41.9808, the minimum value is 23 and the
maximum value is 73.
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Fig. 3: Actual along with forecasted values with and without interactions.

The candidate set is composed of lagged basis functions and second order
interactions of the form yjyk. The termination criterion of eq. (18) was used
with ϵ = 0.002, with maximum lags equal to 50. In Fig. 3 the actuals along
with the forecasted values computed with and without interactions are given.
The inclusion of second order interactions results in capturing the nonlinear
behavior of the time series in the forecasted values. The error measures without
interactions were: RMSE = 5.96, MAE = 5.11 and MAPE = 12.33, while
with interactions the error measures were: RMSE = 6.18, MAE = 4.93 and
MAPE = 12.20. The inclusion of higher order interactions led to reduction of
the error measures and showcases the flexibility of the approach allowing for the
inclusion of arbitrary order interactions in the candidate basis functions.

The execution time for CPU-SP, CPU-DP and GPU were 1.1621, 2.2076 and
0.3932, respectively. Thus, the speedup of the pure GPU variant was approxi-
mately 3× over the CPU-SP variant and 5.6× over the CPU-DP version. The
pure GPU version is efficient even for time series with small number of samples,
under a sufficiently sized space of candidate basis functions.
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5 Conclusion

A matrix based parallel adaptive auto-regressive modelling technique has been
proposed. The technique has been parallelized in multicore CPUs and GPUs and
a block variant has been also proposed, based on a matrix (BLAS3) recast of the
required operations. The pure GPU variant presented speedup up to 27× over
the double precision arithmetic parallel CPU version and 10× over the parallel
single precision CPU version for time series with large number of samples. The
use of single and mixed precision did not affect substantially the forecasting error,
rendering the technique suitable for modelling and forecasting large time series.
Implementation details and discussions on higher order interactions between
basis functions have been also given. The applicability and effectiveness of the
method were also discussed and new termination criterion based on potential
error reduction of basis functions, which is invariant to scaling, has been given.

Future work is directed towards the design of an improved basis search that
will reduce the search space based on a tree approach. Moreover, backfitting
procedures will be considered.
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