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Abstract. It is important for optical network operators to consider the
available budget in forecasting network traffic. This is related to network
expansion and equipment purchases. The underlying motivation is the
constant increase in the demand for network traffic due to the develop-
ment of new access technologies (5G, FTTH), which require particularly
large amounts of bandwidth. The aim of this paper is to numerically
calculate a transformation that allows determining probability distribu-
tions of network edge traffic based on known probability distributions
of demand matrix elements. Statistical methods confirmed the proposed
transformation. The study is performed for a practically relevant network
within selected scenarios determined by realistic traffic demand sets.

Keywords: Optical Network Modeling and Optimization · Non-parametric
and Parametric Probability Distribution · Statistical Analysis · Network
Congestion · Forecasting · Traffic Demands.

1 Introduction

Optical network operators need to continually upgrade the networks to accom-
modate the ever-increasing data traffic. In currently deployed optical networks,
which are based on single core fibres, the data transmission rate can be increased
by using either a larger per-channel bit rate or by increasing the number of avail-
able channels [8]. In order to implement such changes in an operating optical
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network a network operator needs to add equipment to the network nodes. This
additional equipment incurs significant costs, which have to be accounted for in
the company budget. It is needless to say that the minimisation of the equip-
ment costs is critical to the commercial success of an operation network operator
company. The cost minimisation is usually achieved by careful planning and op-
timisation of network resources at every stage of the network development. Al-
gorithms for network optimisation have been developed for many years now [1,
3, 4, 9]. Of specific importance to optical networks are Routing and Wavelength
Assignment (RWA) and Routing and Spectrum Allocation (RSA) algorithms
applied in static [2, 7, 11] and dynamic [16] environment that has been devel-
oped by a number of authors over the past years. More recently, the predictive
capability of a network optimisation software has been improved by taking into
account the physical phenomena occurring in the optical fibre [8] and develop-
ing algorithms that predict the traffic demands in optical network nodes and
corresponding data transmission rates in the network edges [10].

The traffic demands at optical network nodes increase steadily due to a con-
tinued modernisation of telecommunications technologies used in access net-
works. A milestone in the development of modern access networks was the intro-
duction of glass fibres, which have now practically almost completely displaced
in many countries the previously used copper connections. Fibre optics domi-
nate the access network market in many countries, as they are superior to copper
cable solutions by allowing larger data transmitting rates and longer distances.
The other technology, which will further increase the traffic in access networks is
5G wireless technology, supported by its backhaul infrastructure. In the context
of fast technological changes in access networks the analysis of demands and
more specifically an estimation of the demand matrix elements is an essential
element of the optical network planning and development.

In order to analyse and predict the values of demand matrix elements for
optical network it is prudent to assume that a demand can be described by
a random variable. Introducing a random variable, a probability distribution for
a network matrix element can be empirically determined [10]. In the next step,
one can attempt to fit parametric probability distributions to the empirically de-
termined probability distributions [5]. In this context a natural question arises
regarding the transformation of the probability distributions from the known
probability distributions of demand matrix elements to the probability distri-
butions describing the traffic in the network edges, which is the main problem
considered in this contribution.

It is not easy to find an analytical form of the transformation from one non-
parametric probability distribution of the random variable X to another non-
parametric probability distribution of the random variable Y and expressed by
the analytical function f such that Y = f(X), where f is not a given explicitly.
In some cases, for known parametric distributions, analytical transformations
can be defined. However, to the best of the authors’ knowledge, this problem
has not found a satisfactory solution in the literature so far. Thus, one needs to
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resort to the use of numerical methods, based on sampling or random number
generators, and the methods of statistical data analysis.

The probability distribution transformation problem is therefore the primary
objective of this contribution. It is noted that only after the traffic in the network
edges is known the process of the optical network nodal equipment purchase
planning can start. Also the use of statistical methods adds rigour to the way in
which the problem is approached since it allows calculating formally expected
values and the variance, i.e. the values and the ranges for the considered data
transmission rate in a given network edge. We also provide a justification of the
relationship between the known probability distributions of the demand matrix
elements and the probability distributions describing traffic at the edges of the
network.

The rest of the paper is organised as follows. In Section 2, the problem is
described and the proposed methods for addressing the probability distribution
transformation problem are presented. Next, in Section 3 the results obtained
are presented together with the relevant discussion. Finally, Section 4, provides
a summary of the main research findings.

2 Problem formulation and methods

A 3-node slice containing the nodes Wroclaw, Lodz and Katowice and the con-
nections between them were selected from the Polish backbone network. The
whole network together with the analysed part consisting of 3 nodes (marked
using the red line) is shown on the Fig. 1.
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Kolobrzeg
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Bialystok
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Warszawa
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Fig. 1: Case of study, the segment
of Polish core optical network.

In the following subsections the research
methods are described. First, the approach
used for the calculation of the demands ma-
trix elements probability distributions is dis-
cussed. In the second subsection, the tech-
nique applied to calculate the probability
distributions of the network edge data trans-
mission rates subject to the known values of
the demand matrix elements probability dis-
tributions is presented in a case of a 3 node
network. In the last subsection an approach
to calculating the probability distributions of
the network edge data transmission rates for
larger networks is discussed.

2.1 Demands matrix elements probability distributions

When attempting to forecast the values of demands matrix elements, i.e., cal-
culate their probability distributions in the coming years one needs historical
data to build suitable stochastic models. However, such data are not generally
available, as telecommunications network operators protect such information.
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Also SNDlib database lacks data on the historical evolution of demand matrix
elements for the Polish network considered here [12]. Consequently, the val-
ues of the demands matrix elements had to be calculated using other methods.
The general description of the method adopted here is described in [10]. The
approach presented in [10] relies upon combining data from two statistical of-
fices: Central Statistical Office (CSO) and European Statistical Office (Eurostat).
Using the statistical data stemming from both sources the historical values of
traffic demands for specific network nodes were estimated. Then the demands
between pairs of cities of the Polish backbone network were estimated [10].

Table 1: Demands.

Year Lodz–Kat. Wro.–Kat. Wro.–Lodz
2010 0,0909 0,0833 0,1211
2011 0,0972 0,0919 0,1303
2012 0,1099 0,0961 0,1389
2013 0,1100 0,0959 0,1393
2014 0,1125 0,1036 0,1501
2015 0,1099 0,1036 0,1496
2016 0,1184 0,1102 0,1576
2017 0,1191 0,1124 0,1600
2018 0,1202 0,1097 0,1580
2019 0,1228 0,1215 0,1684
2020 0,1319 0,1297 0,1801

The Table 1 shows the calculated his-
torical values of the demands matrix el-
ements in the years 2010–2020 between
cities of the considered network section
consisting of 3 nodes (expressed in units
of Tera bit per second [Tbps]). The de-
mand is modeled by the sum of the val-
ues resulting from the trend present in the
historical data (ŷt) and a random variable
(et = yt− ŷt) that represents the residuals,
and is based on the relationship: yt = ŷt+et
[15].

Three methods were selected, based on the following procedure:

S1. on the basis of empirical data Y , estimate the parameters α̂ of the appro-
priate trend function Ŷ = f(α̂, t), determine residuals e = Ŷ −Y and finally
the probability distribution function of the value of random variable Y as
one realisation of an appropriate stochastic process,

S2. generate a sequence of {z1, . . . , zn} ∈ Z random numbers based on F−1(Y ) :=
Z, where F - distribution function of the random variable Y ,

S3. based on a sequence of {z1, . . . , zn} from S2. find the "averaged" probability
distribution of the random variable Z,

These methods calculate the probability distributions of the demands matrix
elements using:

1. Extended Empirical Distribution (EED) - a stationary distribution that is
computed from data containing historical residuals (et) and the observations
generated from them. Limited historical data are available, so the idea is
to estimate 1000000 new ones using the inverse transform sampling. All
points are divided into k bins. Each bin represents one class with probability
proportional to the number of samples;

2. Normal Distribution (ND) - in contrast to EED, describes the variables using
µ and σ parameters (computed from e). For discretisation, one million points
were generated from the N(µ, σ) distribution, which were divided into k bins;

3. Model with Increasing Uncertainty (MwIU) - took into account that predic-
tions become less and less reliable with the length of the prediction horizon,
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which is used in fan-based methods ([5],[14]). They are typically based on
the two-part normal distribution [6] represented in the equation (1), where
A = 2

(1/
√
1−γ)+(1/

√
1+γ)

.

f(x;µ, σ, γ) =
A√
2πσ

{
exp{− 1−γ

2σ2 [(x− µ)2]}, for x ⩽ µ

exp{− 1+γ
2σ2 [(x− µ)2]}, for x > µ

(1)

This distribution has three parameters mode - µ, uncertainty indicator -
σ and inverse skewness indicator - γ. Nonstationarity was introduced by
multiplying the uncertainty coefficient values in successive years. The three-
sigma rule of thumb was used for discretisation.

2.2 Calculation of edge data transmission rate probability
distributions for a small network

A demand matrix is used to describe the data transmission demands across the
DWDM network. Its example form for a 3-node network is shown in the equation
(2). This matrix is a square matrix of dimension N x N , where N denotes the
number of nodes in the network. The elements from row l and column m contains
the data transfer demand between city l and m expressed in Gbps.

Dijk =

0 di12 dj13
0 0 dk23
0 0 0

 (2)

The demand matrix is a multivariate random variable. In the approach
adopted here, it is assumed that each of its elements is ultimately described
by a discrete probability distribution consisting of c classes (or bins), where
c ∈ {3, 4, 5, 6}. In the equation (2), the indices i, j, and k are used to specify
the class to which each element of the demand matrix belongs, where i, j, k ∈
{0, · · · , c − 1}. The label 0 corresponds to the minimum class and c − 1 to the
maximum class. To fully describe a random variable next to the values (i.e.
data transfer demand between two selected cities expressed in Gbps) one needs
to specify the corresponding values of the probability that the random vari-
able assumes a specific value. The individual elements of the matrix Dijk have
a corresponding probability of occurrence. Thus, a matrix of the probabilities
for occurrence of a specific value of the matrix Dijk element are given by the
corresponding elements of the matrix P ijk:

P ijk =

0 pi12 pj13
0 0 pk23
0 0 0

 (3)

Thus, knowing the values of the matrix P ijk elements and assuming that
the random variables corresponding to the elements of matrix Dijk are indepen-
dent of each other one can calculate the probability of a specific matrix Dijk

realisation as the product of the corresponding matrix P ijk elements. Once all
the demands matrix elements are set and the corresponding probability of the
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specific realisation of demands matrix Dijk, is known one can start calculating
the values of the data traffic in the network edges by solving the optimisation
problem as described in [8] subject to the known constrains. This procedure has
to be repeated for each possible realisation of the demands matrix Dijk to give
the full probability distribution of the data traffic in the network edges, which
in the considered 3 node example, and including 4 classes for matrix Dijk ele-
ments discrete probability distributions gives 43 optimisations to calculate the
full probability distribution of network edge data transmission rates.

2.3 Extending edge calculations to complex networks

The advantage of studying a small network segment is that it allows for a detailed
estimation of network traffic based on demands matrix element forecasts. How-
ever, the accuracy of such approach is limited since other nodes of the network
have an impact on the traffic present in the specific segment. Unfortunately, a full
analysis of all realisations of the demand matrix in case of an entire backbone
network using the presented approach leads to very intensive computations. First
of all, it should be noted that the number of combinations of demand matrices
is c

N(N−1)
2 , where c is the number of classes used in probability distributions

while N is the number of network nodes. So, even with a 12-node network and
a three-class distribution, the number of combinations of demand matrices is
366. Moreover, as the complexity of the network rises, the time required to find
a solution to the optimisation problem increases. For these reasons, an alterna-
tive approach has been considered giving an additional insight into the network
operation. It consists in analysing the impact of changes in demands for selected
city pairs. For this purpose the demand matrix element corresponding to the
considered city pair is assumed to be described by a random variable whilst all
other demands matrix elements are approximated by the expected value of the
corresponding random variable. As an illustrative example in the next section
an analysis was carried out of data traffic between selected distant city pairs:
Szczecin-Rzeszow and Rzeszow-Poznan.

3 Results

The first series of experiments started by generating demand matrices for all
class numbers and for all methods of forecast considered as described in section
2.1. The demand matrix element values corresponding to an example pair of
cities (Katowice and Lodz) with a four-class distribution are collected in Table
2. The first two distributions (EED and ND) have similar expected values, which
is due to the fact that they use the same linear model and the mean values of
the deviations are close to zero.

In order to assess the quality of the predictions, the Theil Index values (I2)

and relative prediction errors „ex post“ (vsf =

√
1

#If

∑
t∈If

(yt−yf
t )

2

ȳt∈If
, where yft -

forecast of y in time t, If - forecast verification time interval) of the distributions
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Table 2: Comparison of forecast demand levels between Katowice and Lodz,
4-class distribution, (probability).

Id Year Levels
Min Negative Positive Max

2019 616(0.278) 638(0.278) 653(0.222) 679(0.222)
2020 633(0.278) 655(0.278) 670(0.222) 696(0.222)

EED 2021 650(0.278) 672(0.278) 687(0.222) 713(0.222)
2022 667(0.278) 689(0.278) 704(0.222) 730(0.222)
2023 684(0.278) 706(0.278) 721(0.222) 747(0.222)
2019 556(0.010) 623(0.491) 669(0.494) 743(0.005)
2020 573(0.010) 640(0.491) 686(0.494) 760(0.005)

ND 2021 590(0.010) 656(0.491) 703(0.494) 777(0.005)
2022 607(0.010) 673(0.491) 720(0.494) 794(0.005)
2023 624(0.010) 690(0.491) 737(0.494) 811(0.005)
2019 587(0.065) 630(0.431) 659(0.431) 702(0.065)
2020 576(0.065) 640(0.431) 683(0.431) 748(0.065)

MwIU 2021 564(0.065) 650(0.431) 707(0.431) 794(0.065)
2022 552(0.065) 660(0.431) 732(0.431) 839(0.065)
2023 540(0.065) 670(0.431) 756(0.431) 885(0.065)

employed were collected in Table 3. Since there were no significant differences
between the expected values, the relative prediction errors and Theil Index val-
ues are similar for the distributions considered. The least accurate predictions
were obtained for the Katowice-Wroclaw demand (although most values were
acceptable, as 5% < v(sP ) < 10%, where a commonly acceptable level of good
fit is v(sP ) < 10% [15]). The forecasts’ accuracy for the remaining demands is
very good (v(sP ) < 3%). Similar conclusions can be drawn by considering the
Theil coefficient.

Table 3: Comparison of I2 and v(sP ) values of generated forecasts for the studied
distributions for 3-node network.

Bin Demand I2 v(sP )
EED ND MwIU EED ND MwIU

Katowice-Lodz 0.00053 0.00053 0.00054 0.02296 0.02306 0.02332
3 Katowice-Wroclaw 0.00240 0.00285 0.00286 0.04905 0.05340 0.05351

Lodz-Wroclaw 0.00066 0.00072 0.00072 0.02563 0.02680 0.02681
Katowice-Lodz 0.00054 0.00056 0.00054 0.02322 0.02376 0.02324

4 Katowice-Wroclaw 0.00275 0.00282 0.00282 0.05252 0.05312 0.05316
Lodz-Wroclaw 0.00083 0.00073 0.00071 0.02877 0.02710 0.02675
Katowice-Lodz 0.00054 0.00054 0.00055 0.02329 0.02327 0.02357

5 Katowice-Wroclaw 0.00275 0.00285 0.00285 0.05251 0.05338 0.05339
Lodz-Wroclaw 0.00082 0.00071 0.00071 0.02865 0.02675 0.02672
Katowice-Lodz 0.00055 0.00055 0.00054 0.02338 0.02349 0.02332

6 Katowice-Wroclaw 0.00274 0.00286 0.00286 0.05235 0.05355 0.05351
Lodz-Wroclaw 0.00084 0.00073 0.00073 0.02904 0.02713 0.02697

The Kolmogorov-Smirnov goodness of fit test was used to verify the statistical
concordance of the probability distributions: demand matrix elements and traffic
in the network edges for the 3rd to sixth classes. Tables 4–5 contain the results
of the KS statistics given by the formula 4.
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√
n · n
2n

· sup
x

|Fref (x)− Fid(x)| (4)

where
Fref (x) - the distribution function of the demand matrix elements,
Fid(x) - the distribution function of the forecast demand level (given e.g. in

table 2).
Depending on the number of classes, the empirical KSemp statistics val-

ues obtained in Tables 4-5, with a significance level α = 0.05, do not exceed
KStheor = 1.358. So there are no grounds for rejecting H0 : Fref (x) = Fid(x)
against the alternative H1 : Fref (x) ̸= Fid(x). At the significance level α = 0.05
we can assume that the respective probability distributions are consistent. As
expected, an increase in the bin number generally increases the value of KSemp,
which in the case of high granularity of the probability distribution may lead
to the relationship KSemp > KStheor, i.e. rejection of H0 (a lack of accordance
between the compared distribution functions [13]).

Table 4: Values of KS tests for stationary distributions.

Id Bin Demand
Katowice-Lodz Katowice-Wroclaw Lodz-Wroclaw Max per demand

3 0.0001 0.0010 0.0005 0.0010
4 0.0789 0.0012 0.1566 0.1566

EED 5 0.1052 0.0691 0.2804 0.2804
6 0.0005 0.0017 0.0009 0.0017
3 0.4696 0.6177 0.3356 0.6177
4 0.4571 0.7071 0.4578 0.7071

ND 5 0.4624 0.6201 0.2789 0.6201
6 0.6750 0.4887 0.6743 0.6750

Table 5: Values of KS tests for MwIU.

Year Bin Demand
Kat.-Lodz Kat.-Wro. Lodz-Wro. Max per demand

3 0.3512 0.4872 0.2151 0.4872
4 0.7071 0.7071 0.7071 0.7071

2022 5 0.4327 0.4457 0.4327 0.4457
6 0.6736 0.8660 0.6736 0.8660
3 0.3512 0.4872 0.2151 0.4872
4 0.7071 0.7071 0.7071 0.7071

2023 5 0.4327 0.4457 0.4327 0.4457
6 0.6736 0.8660 0.8660 0.8660

As expected, when the bin number increases, the value of KSemp increases.
It means that the higher number of bins, the greater probability of rejecting
H0, (which is in line with the intuition) the greater accuracy of the probability
distribution, expressed with more classes. This may, from a statistical point of
view, lead to a lack of accordance between the compared distribution functions.
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Table 6 presents the values of the Kolmogorov-Smirnov statistics scaled by
class count for the 2019 and 2023 MwIU distributions for different bins. The
comparison of the remaining pairs of years had similar yields similar results and
for this reason it is not included in the Table 6.

Table 6: Values of KS tests for MwIU between MwIU.

Years Bin Demand
Kat-Lodz Kat-Wro Lodz-Wro Max per demand

3 0.8384 0.8384 0.8384 0.8384
2019 4 0.6143 0.6143 0.6143 0.6143
2023 5 0.7158 0.7158 0.7158 0.7158

6 0.8289 0.8289 0.8289 0.8289

All generated realisations of the demand matrices served as input to the op-
timisation process as described in sections 2.2 and 2.3. In total, more than 10000
experiments were performed, which were based on the results of the forecasts
from all distributions for 2019–2023. The simulations were designed to calculate
the probability of congestion on the network and to identify the edges that are
most heavily loaded. First we consider the 3 node network.

Fig. 2 shows the probability of network congestion for 3-(Fig. 2a), 4-(Fig. 2b),
5-(Fig. 2c) and 6-class (Fig. 2d) distribution, respectively. Each graph shows how
the probability of network congestion has changed over the forecast years.

It can be seen that the probability of network congestion calculated using
the empirical distribution (EED) ranges from 0 to 100%. This is because the
differences between the lowest and highest predicted values are small - in 2019.
For every realisation of the demand matrix, the algorithm found a solution to the
problem in 2019 while in 2023, for every realisation of the matrix no acceptable
solution could be found. Using the parametric distribution (MwIU) congestion
probability never reached 100% while for the normal distribution (ND) and 2023,
the congestion probability was very close to 100%.

For almost all distributions and class numbers, an increase in the congestion
probability was observed in subsequent years. Only for the model with increasing
uncertainty (MwIU) and the 3-, 4- and 5-class distributions, there was a decrease
between 2021 and 2022. This is because in this case the range of accepted values
widens within the prediction horizon.

As expected, the larger the number of classes into which the data was di-
vided, the more accurately the probability of network congestion is estimated.
As the number of classes increases, the ranges associated with individual classes
become narrower. Also with the number of classes the number of possible re-
alisations of the demand matrix increases exponentially. Thus, computational
effort is needed to perform simulations. On the other hand, the shapes of the
cumulative distribution function, regardless of the number of classes, stay almost
unchanged.
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(a) 3-class demand matrix distribution.
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(b) 4-class demand matrix distribution.
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(c) 5-class demand matrix distribution.
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(d) 6-class demand matrix distribution.

Fig. 2: Probability of network congestion in subsequent years.

Based on the results obtained, it was decided that all three methods would
also be selected for the application of the forecasts to the full network, as in
the case of the 3-node network: EED, ND, and MwIU. In addition, the forecast
years have been limited to 2019 and 2020. An in-depth analysis with the selected
methods was carried out only for demands between distant city pairs: Szczecin-
Rzeszow and Rzeszow-Poznan.

The Table 7 collects the obtained probabilities of realised classes for indi-
vidual demands depending on the idea under study for 3-class distribution. The
occurrence of underestimation is marked with a plus sign (+). As in the case
of the forecast for the 3-node network, the EED predicted demand for 2020 is
lower than in the case of ND and MwIU.

Tables 8a and 8b show a comparison of expected values calculated using se-
lected probability distributions between years 2019 and 2023, for the demand
matrix elements corresponding to Rzeszow–Szczecin and Szczecin–Poznan net-
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Table 7: Comparison of the probabilities of the class corresponding to the actual
demand for analyzed city pairs [%].

Demand Year Distribution
EED ND MwIU

Rzeszow-Poznan 2019 22.21 90.33 15.69
2020 + 5.66 15.69

Szczecin-Rzeszow 2019 22.21 88.75 15.69
2020 + 5.53 15.69

work edge, respectively. As with the network slice analysis in Fig. 1, calculations
were performed for all realisations of the demand matrix. The elements of the
demand matrix were increased 15000 times to highlight the differences between
the realisations under the adopted network parameters. Additionally, it is noted
that the city pairs that were selected for in-depth analysis were characterised by
small demand values.

Table 8: Comparison of expected values

(a) Rzeszow-Szczecin

Year Distribution
EED ND MwIU

2019 1380.104 1380.373 1379.000
2020 1419.104 1419.373 1417.842
2021 1458.104 1458.373 1456.842
2022 1497.104 1497.333 1495.842
2023 1535.659 1535.430 1534.158

(b) Szczecin-Poznan

Year Distribution
EED ND MwIU

2019 1139.433 1138.879 1139.000
2020 1175.433 1174.879 1174.842
2021 1210.765 1209.936 1210.000
2022 1246.765 1245.879 1246.000
2023 1282.433 1281.879 1282.000

Table 9 lists the I2 and v(sP ) values for the analyzed demands in the full
Polish network for the 3-class distributions. Similarly to the studied network
slice, the values were low enough to consider that the forecasts are either good
or very good.

Table 9: Comparison of I2 and v(sP ) values of generated forecasts for the studied
3-class distributions for full Polish network.

Demand I2 v(sP )
EED ND MwIU EED ND MwIU

Rzeszow-Poznan 0.00093 0.00093 0.00096 0.03060 0.03053 0.03095
Szczecin-Rzeszow 0.00069 0.00069 0.00070 0.02627 0.02635 0.02641

sum 0.00162 0.00162 0.00165 0.05687 0.05688 0.05736
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The representative results of numerical simulations for the year 2023 using
demand matrix with 3-class probability distributions are shown in Fig. 3 and
4. The top indices of the demand matrix correspond respectively to the class
indices for the Rzeszow-Poznan and Szczecin-Rzeszow pairs. Maps showing the
bandwidth occupancy at each edge for the extreme values of demand matrix ele-
ments and the three considered approaches (EED, ND and MwIU) are presented
in Fig. 4. Fig. 3 shows the channel occupancies calculated for the year 2023. The
results obtained show that all distributions have similar demand expectation
values.
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Fig. 3: Percentage edge occupancies for the 2023 forecast for D11 demand matrix,
EED, ND and MwIU, 3-class distribution.

Also, it is noted that in all maps shown in Fig. 4 and 3 one can see that traffic
tends to accumulate in the Warsaw node. Edges linked with Warsaw have the
highest occupancy and the degree of this node is the only one equal to 5 while
the degrees of all other nodes are lower. For the EED and ND distributions (Fig.
4a, 4d and 4b, 4e ), it can be observed that the average channel occupancy per
edge rises as the demands increase. In contrast, for the MwIU distribution this
regularity is distorted (Fig. 4c, 4f). Although the demands are higher for MwIU
D22 matrix , the average edge occupancy for this matrix was lower by about 0.6
pp than the result obtained for D00 matrix.

4 Conclusions

This contribution presents a statistical analysis of the data traffic in optical
network and calculates estimates of the future values for the demand matrix
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(a) EED, D00
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(b) ND, D00
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(c) MwIU, D00
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(d) EED, D22
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(e) ND, D22
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(f) MwIU, D22

Fig. 4: Percentage edge occupancies for the 2023 forecast depending on the de-
mand matrix and the assumed 3-class distribution.

elements with parametric/non-parametric probability distribution. Once the de-
mand matrix elements are known, an optimisation algorithm is used to predict
the required network equipment needed to satisfy the traffic demand. As an ex-
ample, firstly a 3 nodes network was considered and then full 12-nodes network
with selected 2 demands. Depending on the nature of the data, three approaches
to determining the types of distributions have been proposed: extended empirical
distribution, normal distribution and model with increasing uncertainty.

The statistical concordance distribution test confirmed that the proposed nu-
merical methods transform the empirical probability distribution into the prob-
ability distribution of demands and can be applied in the absence of analytical
methods allowing for the transformation of the considered probability distribu-
tions. The challenge is still to provide the analytical function that allows for such
a transformation of the probability distributions and a step further: transforming
the empirical probability distributions into the transponder distribution.
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