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Abstract. The purpose of the paper is to analyze an incorporation of
local search mechanisms into five crossover operators (KPoint, AEX,
HGreX, HProX and HRndX) used in genetic algorithms, compare the
results depending on various parameters and draw the conclusions. The
local search is used randomly with some probability instead of the stan-
dard crossover procedure in order to generate a new individual. We an-
alyze injecting the local search in two situations: to resolve the conflicts
and also without a conflict with a certain probability. The discussed
mechanisms improve the obtained results and significantly accelerate the
calculations. Moreover, we show that there exists an optimal degree of
the local search component, and it depends on the particular crossover
operator.

Keywords: genetic algorithms · crossover · local search.

1 Introduction

Genetic algorithms (GA) is a highly researched topic for a long time and es-
pecially in recent years. GA have two important advantages: a fast intelligent
search mechanism, which allows finding a good solution after analyzing only a
small fraction of possible candidates, and a high level of universality, which al-
lows for a broad range of practical applications, and also optimization of training
data and parameters of other artificial intelligence methods [2, 19, 12]. GA are
very good at exploring the whole solution space, however, they are not so good
at exploiting the local areas of the most promising solutions. For that purpose
some hybrid methods have been proposed [18, 3, 20].

Hybrid genetic algorithms use an additional local search method, which co-
operates with the genetic algorithm in order to achieve better results, by leverag-
ing the power of both: the global search capabilities of GA and the local search.
There are two basic families of approaching the joint genetic and local search:
the Lamarckian approach and the Baldwinian one [14]. In the Baldwinian ap-
proach the effects of the local search improve the fitness of the individual, but its
chromosome remains unchanged. In the Lamarckian approach, the effects of the
local search are reflected in the chromosome. The advantage of the former one is
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better exploration of the search space, and of the second one is better exploita-
tion. Also combinations of the both approaches are possible [8]. In the method
presented in this paper, we use the Lamarckian approach, because it accelerates
the search process more effectively [102]. On the other hand, by changing the
chromosome of individuals, it can disrupt the building blocks created by genetic
algorithms, what may lead to a fast conversion, but only to a local minimum.
To prevent this, we apply the local search only with a limited frequency.

An Adaptive Hybrid Genetic Algorithm (AHGA) was proposed in [4], which
contains two dynamic learning mechanisms to guide and combine the exploration
and exploitation search processes adaptively. The first learning mechanism aims
to assess the worthiness of conducting the local search. The second learning
mechanism uses instantaneously learned probabilities to select from a set of
predefined local search operators which compete against each other for selection
which is the most appropriate at any particular stage of the search to take over
from the evolutionary-based search process. The authors of [6] presented a hybrid
genetic algorithm (HGA) that uses a sequential constructive crossover, a local
search approach along with an immigration technique to find good solutions
in the multiple traveling salesman problem. In [23] an inversion operation was
discussed to solve this problem, which was similar to an RMS mutation, but
performed only if it improves the fitness. Hybrid genetic search with dynamic
population management and adaptive diversity control with a problem-tailored
crossover and local search operators were analyzed in [24]. A hybrid genetic
algorithm given by applying 2-opt selection strategy to two edges chosen by
replacement probability, and add the new edges by 2-opt permutation algorithm
was proposed in [15].

2 Crossover Operators

The purpose of the crossover operator to combine information from two or more
different chromosomes (parents) into one chromosome (child) that can represent
a better solution than its parents.

In this paper we consider this kind of problems, where each item can occupy
only one location (one position of the chromosome) at a time and each location
must be occupied by exactly one item. For example, the traveling salesman
problem or product placement optimization in a warehouse. In these cases, the
crossover operator must ensure that there will be no duplicate elements and that
each element will be present in the newly created individual.

Several crossover operators have been developed for this purpose. This in-
cludes the well known crossover operators as order crossover (OX), partially
mapped crossover (PMX), order-based crossover (OBX), and position-based
crossover (PBX) and cycle crossover (CX) [1, 11]. Also several newer crossover
operators were developed, and we present some of them below.

Tan proposed heuristic greedy crossover (HGreX) and its variants HRndX
and HProX [21], which we will explain in detail later. Other popular crossover
operator is edge recombination crossover (ERX) and also several its variants
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were proposed [22, 10], alternating edges crossover (AEX) [16] and the uniform
partially matched crossover [7]. AEX also performs well after the improvements
that we introduced, and for this reason we also used it in this paper.

A crossover method similar to HGreX, but with the difference that four
candidates for each next position in the child were considered, was presented in
[14]. These four candidates were the position placed before and after the current
position in both parents, and the nearest position was selected.

Hassanat and Alkafaween [9] proposed several crossover operators, such as
cut on worst gene crossover (COWGC) and collision crossover, and selection
approaches, as select the best crossover (SBC). COWGC exchanges genes be-
tween parents by cutting the chromosome at the point that maximally decreases
the cost. The collision crossover uses two selection strategies for the crossover
operators. The first one selects this crossover operator from several examined
operators, which maximally improves the fitness, and the other one randomly
selects any operator. This algorithm applies multiple crossover operators at the
same time on the same parents, and finally selects the best two offspring to enter
the population.

In this paper we analyze incorporation of the local search in the following
five crossover operators: KPoint, AEX, HRndX, HProX and HGreX. We chose
them, because they perform very well and at the same time they are widely used.
All the five operators work in a similar way. They use two parents to generate
a child by alternatively taking the elements from one or from the other parent.
They differ in the way in which the element alternation is organized.

The AEX operator can start from any position in the chromosome. In the
example, we will start from the value on the first position in the first parent, this
is A. Thus, A becomes the first position in the child. Then AEX looks at the
second parent to find what it contains after A. This is actually D. Then again a
value from Parent1 that is after D is used and so on. If following this rule would
cause a conflict leading to repeating some values in the child, then randomly one
from the available elements is chosen.

A sample explanation is presented in Figure 1, where we start from two
parents; P1 and P2, and perform the following steps:

1. In step 1, we start creating a child, by taking the first element from the first
parent and removing that element from both parents.

2. In step 2, we must find what is after A in P2 - this is D. So the next element
of the child will be D and we remove it from the parents.

3. In step 3, we look, what is after D in P1 - this is E and this will be the next
element in the child.

4. In a similar way in step 4.
5. In step 5, we would normally add D to the child. However, D has already

been used, so a conflict appear here, and we select randomly any of the
remaining elements. Let us say G.

6. In steps 6-8, we follow the standard rule and since there are no more conflicts,
we add to the child F and then H and then B.
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Fig. 1. Explanation of the AEX Crossover operator.

The HRndX crossover operator works similarly to AEX. The difference is,
that it does not take alternatively the elements from both parents, but always
randomly decides if the next element is taken from the first or from the second
parent. HGreX always chooses the next element from this parent, to which the
distance is closer. HProX chooses the closest element with a higher probability.
The conflicts are resolved in the same way as in AEX.

The KPoint crossover operator does not take into account, which element oc-
curs after which in the parents, but takes them sequentially alternating between
the two parents. So for this example, it will generate the following child in the
first three steps:

P1 = ABCDEFGH P2 = HADBGFEC Child = HBD_____

and a conflict occurs here. The conflicts are resolved in the same way as in
AEX, so any unused value will be taken randomly, and then it continues with
its standard scheme.

3 The Local-Search Enhancements of the Crossover
Operators

3.1 Local search implementation in conflict and non-conflict
resolvers

Let us analyze the case of a conflict first. A conflict appears, if following the
standard crossover rule would lead to setting the next position in the child
chromosome to a value that has already been used, as discussed in the previous
section. The conflicts must be resolved in order to build a valid child chromosome
in which each value appears exactly once.

Random/Native Resolver is the method of conflict resolving used origi-
nally by all the five crossover operators. In case of a conflict, this resolver takes
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randomly any of the not used so far values and makes it the next element of the
child.

Algorithm 1 The Extended Crossover Operators
1: Input: Two parents
2: Output: The child

3: if Both parents are equal then
4: mutate one parent with RSM mutation
5: end if
6: for k = 1 to chromocomeLength do
7: if No Conflict then
8: if Radom()>probability1 then
9: set the k-th position in the child according to the crossover operator rule
10: else
11: if random resolver = Nearest Neighbor Resolver then
12: set the k-th position in the child to the nearest from the unused positions
13: else if random resolver = Tournament Resolver then
14: set the k-th position in the child with the tournament selection of the

unused positions
15: end if
16: end if
17: else if Conflict then
18: if conflict resolver = Random Resolver then
19: set the k-th position in the child according to the crossover rule (by selecting

a random unused position)
20: else if conflict resolver = Nearest Neighbor Resolver then
21: set the k-th position in the child to the nearest from the unused positions
22: else if conflict resolver = Tournament Resolver then
23: set the k-th position in the child with the tournament selection of the

unused positions
24: end if
25: end if
26: end for
27: Return child

Nearest Neighbor Resolver - in this case, if a conflict occurs, the cost
between the last position added to the child and all unused positions is calculated
and the point with the lowest cost is chosen.

Tournament Resolver performs a tournament selection of all the unused
values. A predefined number n or percentage p of the unused elements are ran-
domly selected, and then the one with the lower cost to the recently added
position in the child is chosen.

As a matter of fact, the tournament conflict resolver with n = 1 is equivalent
to the random selection (random conflict resolver) and with n being equal to the
number of remaining points is equivalent to the nearest neighbor resolver.
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The Nearest Neighbor Resolver and the Tournament Resolver can also be
applied with a certain probability for dealing with the situations, where there
are no conflicts. In these situations, normally the next child position would be
determined by the base crossover operator rule. However, using the resolver here
introduces the local search component.

4 Experimental Evaluation

We performed the experiments using two sample problems: the Warehouse Opti-
mization Problem and the Traveling Salesman Problem (TSP). The source code
of our software and the experimental data can be found at kordos.com/iccs2022.

In this section, first we describe these two problems along with the encoding
schemes and local search methods that we used, and then we present the obtained
results.

The HGreX and HProX operators are only suitable for the TSP example.
The KPoint operator, although being suitable for both examples, works very
well for the warehouse problem, but quite poor for the TSP. For that reason we
evaluate AEX, HRndX for both problems, HGreX and HProX only for TSP and
KPoint only for the warehouse problem.

4.1 The Example of Warehouse Optimization Problem

For the evaluation we used 6 different warehouse structures with the size between
60 and 240 locations, which can be found at kordos.com/iccs2022

Problem description Order picking is the most time-consuming task in ware-
house operations, and thus also the task generating most costs. It was discovered
that about 60% of warehouse operation costs are those of picking up products
when completing orders [2]. Thus, reducing the order completion time is a cru-
cial challenge, as it gives an opportunity to significantly reduce costs and to
increase sales using the same resources. The problem was studied in many liter-
ature positions [4, 6, 5, 17, 13]. A review of the scientific literature investigating
order picking and planning problems can be found in [23]. With n items in the
warehouse, the number of all possible their placements is n! Already for 100
products it gives 100! = 9.3e157 possible product placements. Thus, it can be
easily seen that this cannot be optimized by brute force.

Thus, we consider this as a good example that can be used to analyze the
performance of the crossover operators with incorporated local search.

In a paper co-authored by one of us [13] presented an optimization of product
layout in the warehouse with a genetic algorithm, which used only the standard
global search with the standard AEX crossover operator. The reader is refer-
enced to that paper for more details about the problem, because due to space
limitations we cannot explain them here.

In the current experiment we analyze the different ways of adding local search
components to the AEX, KPoint, and HRndX crossovers to solve the warehouse
optimization problem.
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Objective function The objective function is expressed by the sum of all
orders picking times within a certain time frame, e.g. one month (the smaller,
the better). This objective can be measured by the length of the route that the
workers must cover to complete all the orders. In practice, the length should be
measured rather in time units than in distance units, as for example covering
the same distance in a straight line is faster than going around a corner and
especially covering the same distance in horizontal direction is faster than in
vertical direction (to reach the product located on upper shelves). However, it
does not matter for the functioning of the genetic algorithm.

As a byproduct of the optimization, we obtain shorter completion routes for
all orders. (which is another NP-hard problem). To keep the example simple, we
use the nearest neighbor algorithm followed by 2-opt to find the shortest order
completion routes. This method is used only as an example to calculate the value
of the objective function used by the genetic algorithm. Thus, we do not try to
improve this mechanism of the order completion route generation, because it is
not the purpose of the paper.

Problem encoding The particular locations in the warehouse (e.g. shelves) are
represented by the positions in the chromosome. Each position corresponds to
one location. The products are represented by particular numbers on the chro-
mosome positions. For example, if a product number 1 is placed on the location
number 3, product number 2 is placed on location number 2 and product number
3 is placed on location number 1, then the encoding of this product distribution
is represented as: [3 2 1]. To optimize the objective function, the genetic algo-
rithm needs to decide upon appropriate locations of particular products, that is,
upon the appropriate order of the numbers in the chromosome.

Local search component To construct the local search for the warehouse
example, we use the two commonly known facts. First, the products which are
most frequently purchased should be placed close to the warehouse entry. We call
this Single Product Frequency Search (SPFS). Second, the products which are
frequently purchased together within one order should be placed close to each
other. Pairwise Product Frequency Search (PPFS). However, optimizing the two
criteria together is an NP-hard problem, as the orders differ one from another
and particular products appear in many orders in different combinations with
other products. For that reason, we cannot use the local search only, without
the genetic algorithm, which provides the global search.

FPS can be used with some probability to determine the next position in
the child instead of determining this position according to the base crossover
operator rule.

Before applying SPFS, two arrays are created: an array of warehouse locations
AWL sorted by the distance from the warehouse entry and an array of single
product frequencies APS (how many times each product occurred in all the
orders together). The idea of SPFS is to try placing a product in a location
which is on similar position in the AWL as the product position in APS . In this
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way, more frequently purchased product get placed closer to the entry and the
less frequently get placed further. However, SPFS cannot always place the most
optimal product on each location, because it can use only the products, which
are not positioned yet by the crossover operator, so it searches for free products
and selects this one, which is most close to the optimal one.

Before applying PPFS, a pairwise product frequency matrix MPF is calcu-
lated.MPF contains the frequencies with which each two products occur together
in the same orders. The idea is to select such a product for the current location,
which coexists frequently in the same orders with the product already placed in
the closest neighbor locations in the warehouse.

SPFS and PPFS can be used as well to resolve the conflicts in the crossover
operator (replacing the default method of conflict resolving, which takes ran-
domly any available product) as to select the next product in the chromosome
(instead of the given crossover rule). In the second case, it is used with a certain
probability.

Also, PPFS cannot always place the most optimal product on each location,
but chooses the most optimal of the still available products.

4.2 The Example of Traveling Salesman Problem

For the evaluation we used 10 travels comprising between 50 and 1600 locations,
which can be found at kordos.com/iccs2022

Problem description and objective function In the traveling salesman
problem (TSP) the task is to visit all the cities from a given list, starting from
the first one and returning to the first one in such a way that the total length
of the travel will be minimal. The objective function is expressed by the total
length of the travel Tdist (the smaller, the better). To obtain this, the cities
must be visited in a proper order.

Problem encoding The order of visiting the cities is encoded in the chromo-
some. Let us say that there are six cities on the list: A, B, C, D, E, F, and A is
the starting city (and the ending one). For example, the following chromosome:

[A D B C F E]
represents the following order of visiting the cities: A->D->B->C->F->E->A
and this order also determines the total distance Tdist that must be covered to
visit the cities in this order as the Tdist = dist(A,D)+dist(D,B)+dist(B,C)+
dist(C,F ) + dist(F,E) + dist(E,A).

Local search component The common knowledge in the TSP is that cities
that are close to each another should be rather visited one by one. This knowledge
is implemented by the nearest neighbor algorithm, which always connects a given
city with the closest city. Because of lack of the global search, it produces worse
results than GA in this case. Nerveless, when used as the local search component
inside GA, it allows improving the results.
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4.3 Experimental setup and parameters

The following parameters of the genetic algorithm were used for all the experi-
ments:
– base crossover operators: AEX, HGreX, HProX, HRndX for TSP, and KPoint,

AEX, HRndX for the Warehouse Optimization Problem
– population size: 100
– number of children: 80 (80 children and the best 20 parents were promoted

to the next generation)
– selection: tournament selection with 8 candidates per each parent.
– The GA was run for 1000 epochs, because no further improvement of results

was observed while running the optimization for more than 1000 epochs.
– mutation: RSM mutation with the probability of 10%.
– resolver type 1: tournament selection with the number of candidates set to

25% of the available locations
– resolver type 2: nearest neighbor
– resolver type 3: random selection
– random resolver probability: we performed the experiments with 11 different

probabilities: 0, 0.1, 0.2, ... 1.0.

We repeated each experiment 100 times. The average results for selected
configurations are presented in Tables 1 and 2. We analyzed the fitness obtained
after each number of epochs, so that the speed of achieving the results can be
observed, and this is presented in Table 1, and in Figure 1 for the warehouse
optimization problem with optimal probabilities of the tournament selection
resolver.

For the TSP the results were similar, so due to the limited space here we
decided not to present them in this form, but instead to show a detailed snapshot
of the process, to show in detail how the types and probabilities of the resolvers
influence the results. We show the snapshot at the 100-th epoch, because it
shows also well the speed of the convergence of the optimization with various
configurations. Obviously, the differences at the end of the optimization (1000-th
epoch) are smaller, but still significant - proportionally to what we can see in
Table 1.

To compare the results over all the dataset in Table 2, we introduced the rel-
ative route length for each dataset as the proportion of the route length obtained
with a given set of parameters to the shortest obtained route lengths. These val-
ues were calculated as the average length obtained over 100 runs of the genetic
algorithms for each dataset, and then averaged over all the datasets. Thus, the
lowest possible value is 1.0. In fact, 1.0 does not appear in the table, because it
would mean that some set of parameters were the best for each dataset and in
practice it was not the case.

4.4 Analysis of the Results obtained for the Warehouse Problem

The first conclusion visible from Table 1, Table 2, and Figure 1 is that the
addition of local search not only improves the final results, but also drastically
accelerates the genetic algorithms process.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_31

https://dx.doi.org/10.1007/978-3-031-08757-8_31


10 M. Kordos et al.

Table 1. Fitness for the warehouse optimization problem (sum of the order picking
route lengths for the warehouse-orders set) obtained with different crossover operators
with and without the local search (the lower, the better). The name of the warehouse-
orders set indicates the number of position in the warehouse (p), number of orders
(o) and number of items in all orders (i). For example 233p25o131i is the set of 233
positions, 25 orders and 131 items.

warehouse-orders epoch Kpoint
Kpoint with

AEX
AEX with

HRndX
HrndX with

local search local search local search
10 7087 3745 8987 4558 8848 5153

233p25o131i 100 4607 3512 6541 3599 5663 3619
1000 3905 3450 5251 3513 3691 2931
10 7495 6197 12088 9218 12049 9444

118p25o666i 100 6435 5997 9871 8139 9469 8184
1000 6187 5946 8476 7768 8335 7846
10 33213 24146 35004 26983 34710 28235

81p25o804i 100 22230 20415 26938 23624 24158 24079
1000 19600 19427 22828 22012 20892 21927
10 10053 7174 11066 8037 11069 7730

71p34o392i 100 7330 6554 7656 6794 7469 6701
1000 6796 6497 6836 6577 6879 6516
10 30456 17578 37250 19568 34094 23196

106p25o668i 100 20611 15032 25888 17176 23285 17504
1000 16351 14662 21544 16478 19722 16416
10 21191 18364 28898 20897 30093 21807

127p25o406i 100 16089 13824 17709 20060 17864 17400
1000 15588 12768 16939 15674 16803 14957

Fig. 2. Comparison of optimization progress with standard KPoint crossover (blue) and
KPoint crossover with product frequency search (red) for the 100p34o434 warehouse.
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Table 2. Relative fitness value after 100 iterations averaged over 100 runs on 10
datasets for TSP (the lower the better).

crossover conflict non-c.
non-conflict resolver probability

p=0 p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9 p=1
AEX Rnd Rnd 8.76 9.91 10.15 10.30 10.42 10.51 10.59 10.66 10.72 10.77 10.80
AEX NN Rnd 1.21 2.48 3.84 5.05 6.12 7.08 7.96 8.73 9.47 10.16 10.80
AEX Trn Rnd 1.56 3.64 4.92 6.01 6.93 7.70 8.44 9.11 9.70 10.27 10.80
AEX Rnd NN 8.76 5.45 4.45 3.73 3.12 2.60 2.11 1.69 1.38 1.15 1.18
AEX NN NN 1.21 1.17 1.14 1.11 1.10 1.09 1.09 1.08 1.09 1.09 1.18
AEX Trn NN 1.56 1.55 1.40 1.29 1.22 1.17 1.12 1.11 1.10 1.10 1.18
AEX Rnd Trn 8.76 6.20 5.42 4.70 4.13 3.59 3.06 2.52 1.97 1.43 1.17
AEX NN Trn 1.21 1.36 1.35 1.29 1.23 1.17 1.12 1.08 1.07 1.09 1.17
AEX Trn Trn 1.56 1.60 1.46 1.35 1.26 1.18 1.13 1.11 1.11 1.12 1.17
HProX Rnd Rnd 4.17 6.93 8.17 8.95 9.49 9.87 10.15 10.38 10.54 10.71 10.80
HProX NN Rnd 1.19 2.30 3.68 5.05 6.28 7.34 8.24 9.00 9.67 10.26 10.80
HProX Trn Rnd 1.47 3.14 4.65 5.95 7.05 7.94 8.68 9.31 9.85 10.37 10.80
HProX Rnd NN 4.17 2.49 2.12 1.79 1.58 1.41 1.26 1.19 1.10 1.10 1.18
HProX NN NN 1.19 1.11 1.09 1.09 1.08 1.08 1.08 1.08 1.08 1.09 1.18
HProX Trn NN 1.47 1.25 1.19 1.14 1.12 1.10 1.10 1.09 1.09 1.09 1.18
HProX Rnd Trn 4.17 3.79 3.52 3.17 2.77 2.39 2.00 1.62 1.36 1.20 1.16
HProX NN Trn 1.19 1.28 1.27 1.23 1.18 1.12 1.09 1.07 1.09 1.10 1.16
HProX Trn Trn 1.47 1.39 1.33 1.25 1.19 1.13 1.11 1.10 1.11 1.12 1.16
HGreX Rnd Rnd 2.97 5.57 7.07 8.09 8.86 9.42 9.85 10.17 10.44 10.64 10.80
HGreX NN Rnd 1.11 2.05 3.36 4.68 5.91 7.03 8.00 8.85 9.59 10.22 10.80
HGreX Trn Rnd 1.23 2.64 4.08 5.40 6.57 7.56 8.42 9.15 9.77 10.31 10.80
HGreX Rnd NN 2.97 1.80 1.55 1.41 1.30 1.18 1.12 1.11 1.11 1.11 1.18
HGreX NN NN 1.11 1.06 1.07 1.07 1.08 1.08 1.08 1.09 1.09 1.10 1.18
HGreX Trn NN 1.23 1.07 1.08 1.09 1.09 1.09 1.09 1.09 1.09 1.10 1.18
HGreX Rnd Trn 2.97 2.85 2.62 2.39 2.10 1.88 1.64 1.45 1.26 1.21 1.17
HGreX NN Trn 1.11 1.07 1.08 1.08 1.06 1.05 1.06 1.07 1.09 1.10 1.17
HGreX Trn Trn 1.23 1.11 1.11 1.10 1.07 1.08 1.09 1.10 1.11 1.12 1.17
HRndX Rnd Rnd 7.11 9.33 9.77 10.06 10.26 10.39 10.52 10.60 10.69 10.76 10.79
HRndX NN Rnd 1.47 3.47 5.07 6.19 7.07 7.81 8.51 9.17 9.77 10.34 10.79
HRndX Trn Rnd 2.17 4.63 6.06 6.99 7.73 8.36 8.92 9.46 9.95 10.40 10.79
HRndX Rnd NN 7.11 4.86 3.74 2.88 2.23 1.72 1.44 1.24 1.13 1.10 1.18
HRndX NN NN 1.47 1.26 1.18 1.13 1.11 1.10 1.08 1.08 1.08 1.09 1.18
HRndX Trn NN 2.17 1.64 1.42 1.28 1.21 1.15 1.11 1.10 1.09 1.09 1.18
HRndX Rnd Trn 7.11 5.70 4.79 4.04 3.42 2.88 2.35 1.86 1.43 1.20 1.16
HRndX NN Trn 1.47 1.58 1.50 1.40 1.30 1.21 1.14 1.10 1.09 1.10 1.16
HRndX Trn Trn 2.17 1.85 1.62 1.46 1.33 1.22 1.16 1.12 1.11 1.11 1.16
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For the warehouse optimization problems the optimal probabilities, in a non-
conflict resolvers, based on our experiments, the optimal probability of using
FTS was about 0.3. In each place, where SPFS can be applied, also PPFS can
be applied and the decision about which operator to use is taken randomly each
time (we use SPFS with probability 0.65 and PPFS with probability 0.35).

The best performing base crossover operator was KPoint, followed by AEX,
followed by HRndX. As it can be seen from Table 1 and from Figure 1, the
incorporation of the product frequency search (PFS) in the crossover operators
significantly improved the results, while still preserving the order of the quality:
the best one was the improved KPoint, followed by the improved AEX, followed
by the improved HRndX.

The progress with the improved operators was faster, and the final results
were better. Significant differences were obtained already after 10 epochs. This
allows to efficiently use the crossover operators with local search for running
multiple optimizations for only 100 or even only 10 epochs, and then to choose
the best performing run to continue the optimization. That is because in most
cases, the best run after 10 or 100 epochs is also be the best run after 1000 epochs
[13]. The choice of the best run with the improved crossover operators can be
done earlier than with the base crossover operators, because the improvement
is much faster in the initial epochs. This is an additional benefit in terms of
computational time of the improved crossover operators.

4.5 Analysis of the Results Obtained for TSP

The values that represent the basic crossover operators in Table 2 are those with
random conflict resolver and with zero probability of random resolver, that is:
8.76 for AEX, 4.17 for HProX, 2.97 for HGreX, and 7.11 for HRndX.

The best results are obtained for all the four crossover operators with a
combination of nearest neighbor (NN) resolver and tournament resolver (Trn) or
with two nearest neighbor resolvers. For AEX, HProX and HRndX, the optimal
probability of the random resolver in these cases is between 0.4 and 0.8 for
two NN resolvers and between 0.6 and 0.8 for one NN and one Trn resolver.
The highest optimal probability of the mixed resolver corresponds to a weaker
preference for the shortest distance inside the resolvers than inside two NN
resolvers. Thus, in both cases, the optimal local component is similar, but can
be obtained either by the second NN resolver or by an increased random resolver
probability in the mixed configuration.

HGreX, on the other hand, has already embedded some local search mech-
anism, as was already mentioned. This implies two results. First, in its basic
form, is the best performing from the crossover operators (the relative route
length 2.97). Second, it does need so strong additional local search as the other
crossover operators. For that reason it obtained the best performance with ran-
dom resolver probability of 0.1 for NN/NN and Trn/NN configuration and about
0.4-0.5 for NN/Trn, and also it achieved very good performance for Trn/Trn re-
solvers with the optimal probability of 0.4-0.5.
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As it can be seen, the random resolvers used in the situation, where there is
no conflict do not make any sense, as they only worsens the results, especially if
they are used with high probabilities.

Although in some cases the standard crossover operators were able to find
the optimal route and there was nothing to improve in terms of the results,
incorporating the local search always allowed to reduce dramatically the number
of epochs required to find the solution.

5 Conclusions

We analyzed the AEX, HGreX, HProX, HRndX and KPoint crossover operators
with local search mechanisms and investigated the optimal balance between
exploration and exploitation in the crossover operators for the genetic algorithm
based optimization. In most cases, HGreX was the superior crossover operator
TSP (it is worth noting that HGreX has already embedded some local search
component in its basic form), while KPoint performed best for the warehouse
problem. Nevertheless, by adding the resolvers to the crossover operators, the
results could be improved in many cases and could be obtained faster. Especially,
the great acceleration of the optimization process was observed.

Although, in the paper, we used two examples: the warehouse optimization
and TSP, the approach is more universal and can be extended to to other prob-
lems, where the concept of cost between two locations can be defined. This is
especially the case in many production optimization, planing and scheduling
problems, which we are going to consider in our future research and practical
implementations.

An important issue is to provide the optimal amount of the local search (see
Table 2). It is also likely, that the results can still be improved if the local search
frequency is adjusted dynamically during the optimization process, which we are
going to further investigate. It is also worth including other crossover operators
in the future experiments.
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