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Abstract. A new surrogate-assisted dynamic programming based opti-
mal path search algorithm – studied in the context of high-performance
sailing – is shown to be both effective and (energy) efficient. The key el-
ements in achieving this – the fast and accurate physics-based surrogate
model, the integrated refinement of the solution space and simulation
model fidelity, and the OpenCL-based spmd-parallelisation of the algo-
rithm – are presented in detail. The included numerical results show
the high accuracy of the surrogate model (relative approximation error
medians smaller than 0.85%), its efficacy in terms of computing time
reduction (from 39.2 to 45.4 times), and the high speedup of the parallel
algorithm (from 5.5 to 54.2). Combining these effects gives (up to) 2461
times faster execution. The proposed approach can also be applied to
other domains. It can be considered as a dynamic programming based
optimal path planning framework parameterised by a problem specific
(potentially variable-fidelity) cost-function evaluator (surrogate).

Keywords: simulation-based optimisation · surrogate model · optimal
path planning · trajectory optimisation · heterogeneous computing

1 Introduction

High-fidelity (HF) simulations are often computationally too expensive to be
used in a simulation-based optimisation. One obvious way to address this issue
is to parallelise the algorithm. In many instances, however, it is at most a partial
solution to the problem. This can be due to target platform constraints (e.g.,
limited number of processors/cores, energy consumption), an intrinsic strong se-
quential component of the algorithm (limited parallel speedup), and/or the cost
of a single simulation, which is often by far the most computationally expensive
part of the optimisation process.

Another option is to replace as many as possible high-fidelity simulations
with evaluations of an auxiliary/approximation model – the surrogate. This aux-
iliary model should be a reasonably accurate representation of the HF-model
and, at the same time (often much more importantly), remain computationally
inexpensive.
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The discussed issue is of particular importance in the context of optimal path
search algorithms based on dynamic programming. This approach usually leads
to accurate results but is computationally very expensive, mostly due to search
space size1. In a number of cases, including (hard) real-time embedded systems
but also near-real-time autonomous robot or sailboat path planners, this is not
acceptable. To the best of our knowledge, surrogate-assisted optimal path search
based on dynamic programming has not been studied yet (section 2).

The aim of this paper, which is a significant extension of [3] and [4], is to
present such an algorithm. When compared to these reference algorithms, it is
equally accurate but, at the same time, is significantly faster and more energy-
efficient, which is of primary importance for on-board systems (especially when
at sea). The main contributions of the paper are:

1. an effective (time-constrained, fast, and accurate) physics-based surrogate
model of sailboat motion (duration), defined in the spatial-domain rather
than in the time domain, as the original, ode-based model is (section 4.2),

2. surrogate-assisted, spmd-parallel, dynamic programming based optimal path
search algorithm, which incorporates an integrated refinement of the solution
space and simulation model fidelity (section 4.3),

3. numerical results which demonstrate three important aspects of the algo-
rithm: the accuracy of the surrogate-model, the surrogate-related speedup,
and the spmd-parallelisation capabilities (section 5).

The remainder of this paper is organised as follows. The next section presents
related research. Following that, the search problem under consideration is de-
fined, and the proposed algorithm is described. After that, experimental results
are presented and discussed. The last section contains the conclusion of the
study.

2 Related research

Computer simulations are now widely used to verify engineering designs and
to fine-tune the parameters of designed systems. Computer simulation-based
approaches are also used in the optimal search problems when the performance
measures are represented as a black box. In such cases, classical optimization
methods cannot be used directly, which causes that AI-based approaches are
often applied [14,17]. Unfortunately, accurate (high-fidelity) simulation models
for such tasks are usually computationally expensive, which makes them often
hard or even impossible to apply in practice. In such cases, approaches based on
the so-called surrogates are used, i.e. simplified (low-fidelity) simulation models,
which however reliably represent a complex simulation model of a system or
process, and are much more computationally efficient [10,11].

In general, there are two types of surrogate simulation models: approximation-
based, in which function approximation is constructed based on data sampled
1 it can be significantly larger than 106
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from accurate (high-fidelity) simulation models, and physics-based, in which sur-
rogates are constructed based on simplified physical models of systems or pro-
cesses [11].

The approximation-based surrogate models [11,19] are usually developed
with the use of radial basis functions (RBF) [6], Kriging [5], polynomial re-
sponse surfaces [12], artificial neural networks [7], support vector regression [16],
Gaussian process regression [1], or multidimensional rational approximation [15].

Because physics-based surrogates are based on low-fidelity, simplified models
of the system or processes, and thus contain some (simplified) knowledge about
them, they usually require only a few accurate (high-fidelity) simulations runs
to be reliably configured [11]. Due to the intrinsic knowledge about the simu-
lated system/process, physics-based surrogates are also characterized by good
generalization capabilities, so they can generate high-quality predictions of the
accurate simulation model in the case of system designs or configurations not
used during the training [11].

In the case of some optimization problems, evaluation of the objectives and
constraints require data from physical experiments or numerical simulations, so
such optimization problems are called data-driven [9]. To reduce the computa-
tion costs of data-driven problems, the surrogate-based models are used together
with metaheuristic optimization algorithms, like evolutionary algorithms, par-
ticle swarm optimization and ant colony optimization. The excellent review of
surrogate-assisted evolutionary algorithms can be found in [9].

The surrogate-based approach to modelling and simulation has gained a great
popularity as a tool for lowering the computational costs of complex simulation
models, especially in the area of engineering design problems. In the case of
optimal trajectory search or path planning problems, surrogate-based methods
are less frequently used [19]. The selected ones are briefly discussed below.

A surrogate based on uniform design and radial basis functions was used for
mechatronic systems trajectory planning in [19]. In the proposed method, a con-
ventional continue-time problem of optimal control was transformed into a non-
linear programming problem. The developed surrogate-based approach was ap-
plied to trajectory planning of an unmanned electric shovel. The Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) was used as optimization algorithm.

A surrogate-based optimization method for full space mission trajectory de-
sign was proposed in [8]. As a data sampling method, the Optimized Latin
Hypercube Design was used. The surrogate model was developed with the use
of Kriging approach. After replacing the accurate dynamical model of the entire
trajectory by a surrogate model, the multi-objective optimization problem was
solved using NSGA-II genetic algorithm.

A multi-fidelity surrogate-based framework for global trajectory optimization
was proposed in [18]. In the proposed approach, the Latin hypercube sampling
was used for data sampling. Trajectories with initial conditions were evaluated
using GPU parallel computing. Several approaches to the development of surro-
gate models were applied: the quadratic response surface, artificial neural net-
work, and Kriging. The impact of each decision variable on the output param-
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eter was assessed with the use of variance-based global sensitivity analysis (a
numerical procedure based on Sobol’s variance decomposition was applied). The
verification of the proposed framework was performed with the use of a mission
scenario including orbital transfer from a near-rectilinear halo orbit to a low
lunar orbit.

A flight path planning surrogate model based on stacking ensemble learning
was introduced in [20]. The proposed surrogate-based approach allowed for ac-
curate, real-time calculation of the flight waypoint coordinates. In the proposed
approach, a path planning analytical model was first used to generate numerous
samples, which were then grouped based on selected parameters from the analyt-
ical model. The samples were then used to train base-learners using radial basis
function neural networks. Finally, a complete surrogate model was constructed
from base-learners using a stacking method.

An adaptive surrogate model for fast optimal transfer paths planning for
spacecraft formation reconfiguration on libration point orbits was proposed in [13].
The uniform design of experiments was used to obtain the initial and updated
samples. To construct the surrogate model, the Kriging and radial basis func-
tions methods were used. The ant colony optimization algorithm was used for
adaptive surrogate model optimization.

All the above-mentioned surrogate-based approaches for path planning or
optimal trajectory search used approximation-based surrogates. Only a few of
them applied GPU-based parallel computing. The distinctive features of the opti-
mal path search algorithm proposed in this paper include: the use of physics-based
surrogate, using dynamic programming with integrated refinement of the solution
space and simulation model fidelity, and spmd-parallelization.

3 Problem formulation

Consider a sailboat going from point A(qA, yA) to B(qB , yB), where (qi, yi) are
the coordinates of the corresponding point in either the Cartesian or polar system
[3,4]. The true wind vector field is given in the following way (see Fig. 1):

vvvt(q, y, t) = Tq(q, y, t) q̂qq + Ty(q, y, t) ŷyy, (1)

where: Tq(q, y, t), Ty(q, y, t) are scalar functions, and q̂qq, ŷyy are the unit vectors
representing the axes of the corresponding coordinate system.

The problem domain consists of C1-continuous ÃB paths which cover the
given sailing area SA (see Fig. 1). We assume that the explicit formula for the
objective functional is unknown. Hence, each path (y(i)) can be evaluated only
through simulation, i.e.:

J [y(i)] = performSimulation [y(i), cfg (vvvt, . . .) ], (2)

where: J represents the given performance measure and cfg (vvvt, . . .) – the simu-
lator configuration.
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A B

y

q

True wind (vector) field

Fig. 1. Optimal sailboat path search problem: example admissible paths connecting
points A and B, with y(∗)(q) representing the optimal path [3,4].

Problem statement. The optimal sailboat path search problem under considera-
tion can be defined as follows ([3,4]):

– find, among all admissible paths, the one with the best value of performance
measure J ;

– the values of J can be found only through simulation;
– only on-board, off-line computers can be used.

In the special case, when J [y(i)] = ∆t[y(i)], with ∆t being the sailing dura-
tion, we get the minimum-time problem.

4 Proposed solution

The approach proposed in this paper is a ”surrogate-accelerated” version of the
one introduced in [3] and then extended in [4]. It is based on the following two
main steps:

1. transformation of the continuous optimisation problem into a (discrete)
search problem over a specially constructed finite graph (multi-spline [3]);

2. application of surrogate-assisted dynamic programming to find the approx-
imation of the optimal path represented as a C1-continuous cubic Hermite
spline.

These two steps repeated several times form an adaptive version of the algorithm.
Its key elements are:

– multi-spline based solution space and the spmd-parallel computational topol-
ogy it generates [3];
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– effective (fast and accurate) surrogate model;
– integrated refinement of the solution space and simulation model fidelity that

significantly reduces the time complexity of the reference algorithm.

They are discussed in the following subsections.

4.1 The solution space representation

A discretisation of the original problem leads to a grid, G, whose structure can
be fitted into the problem domain [3]. An example of such a grid is shown on
the left of Fig. 2. The grid is based on equidistant nodes grouped in rows and
columns: four regular rows plus two special ones (containing the start (A) and
the end (B) points) and four columns. The number of nodes in such a grid is
equal to

|G| = nc (nr − 2) + 2 (3)

where nc and nr are the numbers of columns and rows (including the two special
ones), respectively.

BA

y(q) - a trajectory in the solution space

(start point) (end point)

layer 1 layer 2

spanning
multispline

adjacent
nodes

...

a
0

a
1

q

y

q
0
=q
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(q , y (q ))
3 31

(q , y (q ))
3 30
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3 33

row 2 row 3

column 1

column 0
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......

..
.

q
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=q
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Fig. 2. Solution space representation: multi-spline spanned on regular grid Gex [3]

After assigning nts additional values to every node of grid G, we obtain a
new structure, Gex, that can store not only the coordinates of each node but
also the nts slopes (angles) of path segments which start/end in that particular
node (see the right part of Fig. 2).

Joining the nodes from subsequent rows of Gex by using cubic Hermite spline
segments, we get a multi-spline which forms a discrete space of C1-continuous
functions (see Fig. 2). A detailed description of the multi-spline concept can be
found in [3].

4.2 Surrogate-based performance measure

The proposed performance measure approximator (low-fidelity model, LFM) is
an extended version of the estimator introduced in [4]. It is inspired by the
work-energy principle that states that the work done by the forces on an object,
WAB =

∫ B

A
F⃗ ·dr⃗, equals the change in its kinetic energy, 0.5 m(v2B −v2A), where
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m stands for the sailboat mass. This principle can be used to transform the
original problem from time domain to spatial domain, i.e.,

m
dv

dt
= mv

dv

ds
= F → mvdv = Fds = dW.

In our case, F = F (s, v), or even, F = F (t, s, v), but since we are building an
approximation model, we can safely assume that:

s0 = sA,

v0 = vA,

v2i = v2i−1 +
2
mF (si−1, vi−1)∆si

(4)

where: i = 1, 2, . . . , iB , ∆si = si − si−1, and siB = sB . Having found the distri-
bution of the (tangent) velocity along the sailing line, and assuming a constant
value of F in each sub-interval, we can find the sailing duration. The details are
shown in Algorithm 1.

Remark 1. Operating in the spatial domain is one of the key properties of the
proposed approximator because the sailing duration can be calculated in a pre-
defined number of steps Ns (e.g., 15) stemming from the (spatial) discretization
of a path. In the original problem [3,4] – given in the time domain – the num-
ber of time-steps to be taken by the simulator (i.e., the ODE solver) to reach
the final point is unknown upfront. In some cases, it can be several orders of
magnitude larger than Ns.

4.3 Surrogate-assisted optimal path search algorithm

The graph Gex, on which the solution space (multi-spline) is spanned, is directed,
acyclic (DAG) and has a layered structure. Since, at the beginning of the search
process, the performance measure of each path segment is unknown, it has to be
obtained from simulation. The cost matrix corresponding to the graph can be
then computed using the Principle of Optimality [2].

A .
.
.

Nr,c,s

Nr-1,c ,sj k

.
.
.

Nr-1,c ,s0 0

... ...

...

.
.
.

J r-1,c ,sj k
A

~N J
r-1,c ,sj k

r,c,s
N

N

cj sk

Fig. 3. Principle of Optimality in Dynamic Programming (see Eq. 5).
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Algorithm 1: Surrogate model based approximation of a path segment
performance measure

Input:
– s: the segment to be evaluated,
– vS : the initial velocity of the sailboat (at the start point of s),
– tS : the time of reaching the start point of s,
– mS : the mass of the sailboat,
– tmin: the best (approximated) performance measure found so far,
– LF : the ”safety factor” for turning-on the (very) low-fidelity approximation,
– vmin: minimum non-zero velocity.

Output: the surrogate-based approximation of the performance measure of s

1 function v_2(v1, dl, F , mS):
2 sv ← v21 + 2 F dl

mS

3 if sv > 0 then return
√
sv else return 0

4 function lfm_eval(s, vS, tS, tmin, mS, LF ):
5 v1 ← vS
6 vnz ← max(vS , vmin) // last non-zero velocity
7 dt← 0

8 foreach sub-segment sj of segment s do
9 foreach xi in Gauss nodes for sub-segment sj do

10 dli ← the length of the i-th part of sj
11 Fi ← the net-force for the current position and velocity

12 v2 ← v_2 (v1, dli, Fi, mS)
13 if v2 > 0 then vnz ← v2

14 v̄ ← 0.5 (v1 + v2)

15 if v̄ > 0 then vinv ← v̄−1 else vinv ← v−1
nz

16 dt← dt+ vinv dli

17 if (tS + dt) t−1
min > LF then return (length (s) (

∑i
k=0 dlk)

−1 dt)
18 v2 ← v1

19 return tS + dt

This principle can be expressed for an example path A-Nr,c,s (see Fig. 3) in
the following way [3]:

J̃
Nr,c,s

A = min
cj ,sk

(
J̃
Nr−1,cj ,sk

A + J
Nr,c,s

Nr−1,cj ,sk

)
(5)

where: cj = (0, . . . , nc − 1), sk = (0, . . . , nts − 1), JNe

Ns
is the cost correspond-

ing to the path Ns-Ne (Ns - start node, Ne - end node), J̃ represents the
optimal value of J , and Nr,c,s is the node of Gex with ”graph coordinates”
⟨row, column, tangent_slope⟩ = ⟨r, c, s⟩.
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Fig. 3 (a visualization of Eq. 5) presents the computation state in which
the optimal costs of reaching all nodes in row (r − 1) are known – they were
calculated in previous stages of this multi-stage process. The optimal cost of path
A-Nr,c,s is calculated by performing simulations for all spline segments that join
node Nr,c,s, which is located in layer/row r, with nodes from the previous (i.e.
(r − 1)th) row.

The multi-spline generated computational topology is reflected in the spmd-
structure of Algorithm 2 (see annotation @parallel). The computation begins
from point A in layer 1, taking into account the corresponding initial conditions,
and is continued (layer by layer) for the nodes in subsequent rows. On the com-
pletion of the simulations for the last layer (i.e. reaching the end node B), we
get the optimal path and its performance measure.

Algorithm 2: Adaptive, spmd-parallel, surrogate-assisted optimal sail-
boat path search

Input:
– gAB : initial (layered) grid with the start point, A, and the target point, B,
– vvvt: (true) wind vector field (see Eq.1),
– hfm: the sailboat movement simulator (high-fidelity model),
– lfm: the surrogate-model (low-fidelity model),
– CM : ”promising” segments (according to lfm) cut-off threshold.

Output: tmin - the minimum-time path

1 foreach refinement g(ref)AB of grid gAB do
2 foreach layer in g

(ref)
AB do

3 @parallel foreach entry point ep of g(ref)AB nodes do
4 if not final refinement of gAB then
5 S(r)

ep ← representative subset of segments ending in ep

6 (t
(lfm)
min , sbest)← ⟨ min

s∈S(r)ep

, argmin
s∈S(r)ep

⟩ (lfm_eval (s)) // using lfm

7 tbest ← hfm_eval (sbest) // using hfm

8 else
9 Sep ← all segments ending in ep

10 Kb ← k best from Sep, according to lfm
11 (tbest, sbest)← ⟨ min

s∈Kb

, argmin
s∈Kb

⟩ (hfm_eval (s))

12 ∆t
(k)
max ← max

s∈Kb

| lfm_eval(s)
tbest

− 1|

13 Rs ← { Sep \Kb }
⋂
{ s : | lfm_eval(s)

tbest
− 1 | < CM ∆t

(k)
max }

14 (t′best, s
′
best)← ⟨ min

s∈Rs

, argmin
s∈Rs

⟩ (hfm_eval (s))

15 if t′best < tbest then (tbest, sbest)← (t′best, s
′
best)

16 save (tbest, sbest) // save the best segm and its performance
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The next key element of the algorithm – the integrated refinement of the so-
lution space and simulation model fidelity – is reflected by the conditional state-
ment (lines 4-15). As the computation progresses, the search strategy changes
from mostly exploration (lines 5-7) to mostly exploitation (lines 9-15). In the
exploration phase, only the representative subset of segments is evaluated (line
5) and it is done with a coarse grid (i.e., Ns = 15). The exploitation phase
is more complex. In the first step (line 9), all segments ending in a particular
node are evaluated using a fine grid (i.e., Ns = 30). Following that (line 10), the
k-best2 candidate segments are evaluated using the HFM-model (i.e. the simula-
tor). As a final step (lines 12-15), using the accuracy measure ∆t

(k)
max, additional

”promising” segments are selected (if there are any) and evaluated.

Complexity analysis. Algorithm 2 average-case time complexity is determined
by the number of solution space refinements, ni, the average number of force
evaluations3 for a single path segment, n̄F , and the number of such segments,
ncn

2
ts [(nr − 3)nc + 2] (see Section 4.1). For the sequential version of the algo-

rithm it can be expressed as:

Ts = Θ
(
ni nr n2

c n2
ts n̄F

)
. (6)

In the spmd-parallel version of the algorithm, the evaluations for all nodes in a
given row can be performed in parallel (using p processing units), thus:

Tp = Θ

(
ni nr nc nts

⌈
nc nts

p

⌉
n̄F

)
. (7)

In the same way as in reference algorithm [3], the Algorithm 2 space com-
plexity formula, Θ (nr nc nts), arises from the solution space representation.

5 Results and discussion

To demonstrate the effectiveness of the algorithm, a series of experiments was
carried out using a MacBook Pro4 with macOS 12.2 and OpenCL 1.2. This
system had two (operational) OpenCL-capable devices: Intel Core i5 @ 2.7 GHz
(the CPU) and Intel Iris Graphics 6100, 1536 MB (the integrated GPU). The aim
of the experiments was to investigate three important aspects of the algorithm:
the accuracy of the surrogate-model, the surrogate-related computational time
cost reduction, and the spmd-parallelisation efficiency. The results are presented
in the subsequent paragraphs.

The accuracy of the surrogate-model. This element has a significant impact,
especially in the exploration phase of the search process (detection of all poten-
tially good segments). The results of its experimental evaluation are given in the
form of a violin plot in Fig. 4.
2 the value of k can be a constant or auto-adaptive variable
3 values of F are used both in HFM and LFM; Runge-Kutta-Fehlberg 4(5) method,

used in the simulator, requires at each step six evaluations of F
4 Retina, 13-inch, Early 2015, with 16GB of DDR3 1867 MHz RAM
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Fig. 4. Accuracy of the two surrogate models in use in the forms of their relative
approximation errors (with reference to the high-fidelity model) for different numbers
of multi-spline nodes (nc): coarse model (a) vs. finer model (b).

The plot shows the distributions of approximation relative errors, | tapprox−tsim
tsim

|,
for path segments from different search spaces. The highest recorded medians
(0.83% for the coarse model and 0.45% for the finer model) confirm the very
high accuracy of the proposed surrogate-model5.

Efficacy of the surrogate-assisted search. This element was verified using the
reduction of the number of force computations, (n̄

(base)
F − n̄

(sur)
F )/n̄

(base)
F , as

the measure. To test the accuracy of n̄F as the measure of the algorithm time
complexity (see Eqns. 6 and 7), the duration of sequential computations, tsim,
was also measured, and then the Pearson correlation coefficient (ρ(n̄F , tsim)) was
calculated. The result was equal to 0.999999997, which means (almost) perfect
linear dependence between the two variables. The corresponding experimental
results are given in Table 1 and Fig. 5. The observed n̄F was reduced by 98%,
which gives a significant improvement (more than 2 times) when compared to
the results presented in [4].

spmd-parallelisation efficiency. Parallelisation is another way of lowering the
total computation time. Contemporary mobile/on-board computers are usually
equipped with more than one type of processor, typically one CPU and at least
one GPU. OpenCL makes it possible to use these heterogeneous platforms effec-
tively, since the same code can be executed on any OpenCL-capable processor.

5 the samples sizes (i.e., the number of segments) used to compute the distributions
of errors were large: from 85 745 for nc = 16 to 1 390 047 for nc = 64
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Table 1. Efficacy of surrogate-assisted search: average numbers of force evaluations,
n̄F , and execution times, tsim (in seconds), for different nc. The solution space (two
refinements) with nr = 32, nts = 8. Statistics from ten runs.

nc

base model surrogate-assisted model

n̄F
tsim

n̄F
tsim

min max avg sd min max avg sd
16 748.8 214.6 215.2 214.9 0.17 17.9 5.5 5.5 5.5 0.01
32 735.8 841.4 844.1 842.7 0.76 17.4 21.4 21.5 21.5 0.01
64 731.4 3344.0 3347.6 3345.8 1.20 17.0 83.9 84.0 84.0 0.02

128 731.7 13364.1 13413.4 13383.8 18.79 14.8 294.8 295.4 295.0 0.21

The execution times for different sizes of the solution space and the correspond-
ing parallel-speedups are presented in Table 2 and Fig .5. Its maximum recorded

Table 2. spmd-parallelisation efficiency: execution times, tsim (in seconds) and (par-
allel) speedup for different nc. The remaining parameters as in Table 1.

nc
tsim speedup

min max avg sd
16 0.973 0.985 0.980 0.003 5.6
32 1.854 1.865 1.859 0.003 11.5
64 3.360 3.379 3.368 0.006 24.9

128 5.432 5.445 5.439 0.004 54.2

value was 54.2 (see Table 1 and Fig. 5). With the reference point as the se-
quential search based on the full simulation, it gives in total 2461 times faster
execution. Additionally, when compared to the results presented in [4], it gives
us an execution time more than 3 times shorter.

6 Conclusions

It has been shown that the surrogate-assisted dynamic programming based opti-
mal sailboat path planning algorithm can be both effective and (energy) efficient.
The key elements in achieving this have been the fast and accurate physics-based
surrogate model, the integrated refinement of the solution space (multi-spline)
and simulation model fidelity, and the OpenCL-based spmd-parallelisation of
the algorithm.

The numerical results show the high accuracy of the surrogate model (the
medians of relative approximation errors were smaller than 0.85%, see Fig. 4), its
efficacy in terms of the reduction of computing time (from 39.2 to 45.4 times, see
Table 1 and Fig. 5), and the high speedup of the parallel algorithm (its maximum
observed value was 54.2, see Fig. 5). Combining these effects has given (up to)
2461 times faster execution time (see Fig. 5).
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Fig. 5. Total speedup (boxed numbers at the end of each bar) and its factors: surrogate-
model application (dark-grey part) and spmd-parallelisation (light-grey part) for dif-
ferent nc. The remaining parameters as in Table 1.

The proposed approach can also be applied to other scenarios. In fact, it can
be considered as a dynamic programming based optimal path planning frame-
work parameterised by a problem specific (potentially variable-fidelity) cost-
function evaluator (surrogate). Further exploration of this idea could be the
first possible future research direction. Another could be the algorithm space
complexity reduction.

Acknowledgement. The research presented in this paper was partially sup-
ported by the funds of Polish Ministry of Education and Science assigned to
AGH University of Science and Technology.

References

1. Angiulli, G., Cacciola, M., Versaci, M.: Microwave devices and antennas modelling
by support vector regression machines. IEEE Transactions on Magnetics 43(4),
1589–1592 (2007). https://doi.org/10.1109/TMAG.2007.892480

2. Bellman, R., Dreyfus, S.: Applied Dynamic Programming. Princeton University
Press, Princeton, New Jersey (1962)

3. Dębski, R.: An adaptive multi-spline refinement algorithm in simulation based
sailboat trajectory optimization using onboard multi-core computer systems. Int.
J. Appl. Math. Comput. Sci. 26(2), 351–365 (2016). https://doi.org/10.1515/amcs-
2016-0025

4. Dębski, R., Sniezynski, B.: Pruned simulation-based optimal sailboat path search
using micro hpc systems. In: International Conference on Computational Science.
pp. 158–172. Springer (2021). https://doi.org/10.1007/978-3-030-77970-2_13

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_30

https://doi.org/10.1109/TMAG.2007.892480
https://doi.org/10.1515/amcs-2016-0025
https://doi.org/10.1515/amcs-2016-0025
https://doi.org/10.1007/978-3-030-77970-2_13
https://dx.doi.org/10.1007/978-3-031-08757-8_30


14 R. Dębski et al.

5. Giunta, A., Watson, L.: A comparison of approximation modeling techniques-
polynomial versus interpolating models. In: 7th AIAA/USAF/NASA/ISSMO Sym-
posium on Multidisciplinary Analysis and Optimization, p. 4758. American Insti-
tute of Aeronautics and Astronautics (1998). https://doi.org/10.2514/6.1998-4758

6. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces.
Journal of Geophysical Research 76(8), 1905–1915 (1971)

7. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper
Saddle River, NJ (1998)

8. He, X., Zuo, X., Li, Q., Xu, M., Li, J.: Surrogate-based entire trajectory optimiza-
tion for full space mission from launch to reentry. Acta Astronautica 190, 83–97
(2022). https://doi.org/10.1016/j.actaastro.2021.09.030

9. Jin, Y., Wang, H., Chugh, T., Guo, D., Miettinen, K.: Data-driven evolutionary
optimization: An overview and case studies. IEEE Transactions on Evolutionary
Computation 23(3), 442–458 (2019). https://doi.org/10.1109/TEVC.2018.2869001

10. Koziel, S., Leifsson, L. (eds.): Surrogate-Based Modeling and Optimization.
Springer, New York, NY (2013). https://doi.org/10.1007/978-1-4614-7551-4

11. Koziel, S., Ogurtsov, S.: Antenna Design by Simulation-Driven Op-
timization. SpringerBriefs in Optimization, Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04367-8

12. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response Surface Method-
ology: Process and Product Optimization Using Designed Experiments. John Wiley
& Sons (2016)

13. Peng, H., Wang, W.: Adaptive surrogate model-based fast path planning for space-
craft formation reconfiguration on libration point orbits. Aerospace Science and
Technology 54, 151–163 (2016). https://doi.org/10.1016/j.ast.2016.04.017

14. Pošík, P., Huyer, W., Pál, L.: A comparison of global search algorithms for con-
tinuous black box optimization. Evolutionary Computation pp. 1–32 (2012)

15. Shaker, G., Bakr, M.H., Sangary, N., Safavi-Naeini, S.: Accelerated antenna design
methodology exploiting parameterized cauchy models. Progress In Electromagnet-
ics Research B 18, 279–309 (2009). https://doi.org/10.2528/PIERB09091109

16. Smola, A., Schölkopf, B.: A tutorial on support vector regression. Statistics and
Computing 14, 199–222 (2004)

17. Szłapczyński: Customized crossover in evolutionary sets of safe ship trajectories.
Int. J. Appl. Math. Comput. Sci 22(4), 999–1009 (2012)

18. Ueda, S., Ogawa, H.: Multi-fidelity approach for global trajectory optimization
using GPU-based highly parallel architecture. Aerospace Science and Technology
116, 106829 (2021). https://doi.org/10.1016/j.ast.2021.106829

19. Wang, X., Song, X., Sun, W.: Surrogate based trajectory planning method for an
unmanned electric shovel. Mechanism and Machine Theory 158, 104230 (2021).
https://doi.org/10.1016/j.mechmachtheory.2020.104230

20. Yang, X.Z., Cui, Z.X., Qiu, X.Y.: Flight path planning surrogate model based on
stacking ensemble learning. IOP Conference Series: Materials Science and Engi-
neering 751(1), 012038 (2020). https://doi.org/10.1088/1757-899x/751/1/012038

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_30

https://doi.org/10.2514/6.1998-4758
https://doi.org/10.1016/j.actaastro.2021.09.030
https://doi.org/10.1109/TEVC.2018.2869001
https://doi.org/10.1007/978-1-4614-7551-4
https://doi.org/10.1007/978-3-319-04367-8
https://doi.org/10.1016/j.ast.2016.04.017
https://doi.org/10.2528/PIERB09091109
https://doi.org/10.1016/j.ast.2021.106829
https://doi.org/10.1016/j.mechmachtheory.2020.104230
https://doi.org/10.1088/1757-899x/751/1/012038
https://dx.doi.org/10.1007/978-3-031-08757-8_30

