
Classification of Soil Bacteria Based on Machine
Learning and Image Processing

Aleksandra Konopka1[0000−0003−1730−5866], Karol
Struniawski1[0000−0002−4574−2986], Ryszard Kozera1,2[0000−0002−2907−8632],
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Abstract. Soil bacteria play a fundamental role in plant growth. This
paper focuses on developing and testing some techniques designed to
identify automatically such microorganisms. More specifically, the recog-
nition performed here deals with the specific five genera of soil bacteria.
Their microscopic images are classified with machine learning methods
using shape and image texture descriptors. Feature determination based
on shape relies on interpolation and curvature estimation whereas feature
recognition based on image texture resorts to the spatial relationships be-
tween chrominance and luminance of pixels using co-occurrence matrices.
From the variety of modelling methods applied here the best reported
result amounts to 97% of accuracy. This outcome is obtained upon incor-
porating the set of features from both groups and subsequently merging
classification and feature selection methods: Extreme Learning Machine -
Radial Basis Function with Sparse Multinomial Logistic Regression with
Bayesian Regularization and also k-Nearest Neighbors classifier with Fast
Correlation Based Filter. The optimal parameters involved in merged
classifiers are obtained upon computational testing and simulation.

Keywords: Soil bacteria · Machine learning · Image analysis · Shape
and image texture extraction · Spline interpolation· Modelling and sim-
ulation· Computational optimization
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1 Introduction

Soil bacteria despite of their small size may have a large impact on plant growth.
Some of them are beneficial to agricultural sector, while the others are either
harmless or pathogenic causing a vast diversity of plant diseases. Consequently,
bacteria recognition becomes an important task for scientists equally as a re-
search and agricultural problem. Bacteria identification is usually carried out
using specific markers changing their color as a reaction to specific chemical
compounds. The morphology of the bacteria colony is also usually analyzed by
examining its shape, edges, color, colony distribution, consistency and surface
structure [7]. This approach is usually laborious and depends on the subjective
perceptiveness of the scientist. A natural step accelerating and facilitating the
latter is to automate the process of microscopic image analysis. This paper1,2

resorts to machine learning and image processing methods applied to soil bac-
teria recognition. In general, comparing images of bacteria belonging to certain
species is difficult since they adopt similar morphologies [22]. Due to this reason,
it is decided to distinguish here the input bacteria on the genera level. The mi-
croscopic images of soil bacteria examined in this paper (which are part of our
data-set available in full resolution under the URL link: https://bit.ly/3qdDuHo)
include pictures of Enterobacter, Rhizobium, Pantoea, Bradyrhizobium and Pseu-
domonas (see Fig. 1). The pictures of investigated bacteria are obtained from
Symbio-Bank - the collection of microorganisms of The National Institute of Hor-
ticultural Research in Skierniewice. Some of Enterobacter are considered plant
pathogens, whereas the others are conducive for plant growth [13]. The bacteria
of the genus Rhizobium have a positive effect on increasing the yield of grains
and the protein content in pea grains [23]. Rhizobium and Bradyrhizobium are
nitrogen-fixing soil bacteria that live in symbiosis with legumes [3]. On the other
hand, Pantoea causing plant infections [24] is also used in the production of an-
tibiotics [2]. Some Pseudomonas are plant pathogens, while the others are used
to stimulate plant growth and to remediate contaminated soil [30]. This paper
discusses the identification of bacteria genera based on their morphological fea-
tures. The calculated traits refer to bacteria shape and image texture. In order
to automatize the entire recognition process a variety of feature selection and
class recognition methods adapting the concept of machine learning are applied.
On the basis of the supplied training data-set a classification model is built
permitting to automatically categorize soil microorganisms.

2 Work-flow Scheme

The work-flow scheme adopted in this work consists of the following four consec-
utive steps: segmentation of the Region of Interest, feature generation, feature
selection and class recognition.

1 This research is financed by The National Centre for Research and Development of
the BIOSTRATEG Project (Eco-Fruits) BIOSTRATEG3/344433/16/NCBR/2018.

2 This work is a part of Polish National Centre of Research and Development research
project POIR.01.02.00-00-0160/20.
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Classification of Soil Bacteria 3

Fig. 1. Microscopic images of (from left): Enterobacter, Rhizobium, Pantoea, Bradyrhi-
zobium and Pseudomonas. For more pictures see URL link: https://bit.ly/3qdDuHo.

2.1 Segmentation of the Region of Interest

The aim of this step is to extract bacteria and background image regions. Binary
mask filter is applied yielding white pixels representing bacteria zones and black
pixels corresponding to the background. To achieve the latter the image is first
converted into gray-scale and then Otsu automatic image thresholding [18] with
open and close morphological operations [28] is applied (see Fig. 2).

Fig. 2. Microscopic image of Rhizobium and its binary mask.

2.2 Feature Generation

Features that are considered in this paper refer to bacteria shape and texture
of the input image. The determination of bacteria shape relies on estimating
its boundary with the aid of cubic spline interpolation [5]. The latter permits
to estimate the curvature of bacteria’s boundary and to extract some correla-
tion between selected distances and angles concerning the shape of bacteria in
question. On the other hand, image texture features contain information about
spatial relations between chrominance and luminance of the image pixels. To
exploit such information, a statistical approach based on computation of the co-
occurrence matrices is used [27]. The latter permits to estimate an image texture
as a quantitative measure of luminance over the entire input image.
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2.3 Feature Selection

It is common that processing large set of generated features may yield some
of them highly correlated with one another. Such potential redundancy usually
impacts on the classification accuracy. In contrast, the other group of extracted
features can be poorly correlated to the dependent variable affiliated to the
respective class. Consequently, the reduced set of selected features (sifted from
the full set of initially determined features) should consist of those which are
strongly correlated to the image class and weakly associated with the remaining
features. In order to accomplish the latter the following methods for improving
feature selection are used here: FCBF (Fast Correlation Based Filter), SBMLR
(Sparse Multinomial Logistic Regression with Bayesian Regularization) and CFS
(Correlation-based Feature Selection) - see e.g. [21].

2.4 Class Recognition

This paper resorts to the machine learning classifiers such as RF (Random For-
est), SVM (Support Vector Machine), kNN (k-Nearest Neighbors), MLP (Mul-
tilayer Perceptron) [17], ELM (Extreme Learning Machine) [26] and ELM-RBF
(Extreme Learning Machine - Radial Basis Function) [10].

3 Features Based on Shape

3.1 Planar Cubic Spline Interpolation

Consider now the ordered set of m+1 planar points Qm = {qk}mk=0 i.e. sequence
of points qk = (xk, yk) contained in 2D-Euclidean space E2. In the context of
this work Qm represents selected points of bacteria’s boundary ∂Γ . In a quest
to extract some shape information of ∂Γ (or its estimate) an interpolation based
approach is applied here [5]. In the classical setting of fitting input data, Qm
is also supplemented with the associated parameters, called interpolation knots
Tm = {tk}mk=0 subject to tk < tk+1, t0 = 0, tm = T and tk ∈ [0, T ]. Here
the unknown function γ : [0, T ] → E2 meeting the constraints γ(tk) = qk is
assumed to satisfy graph(γ) = ∂Γ . For a given pair (Qm, Tm) there is a variety
of interpolation schemes γI : [0, T ] → E2 fulfilling γI(tk) = qk - see e.g. [5]
or [9]. Since the selected interpolant γI to fit (Qm, Tm) should be both twice-
differentiable (for curvature calculation) and should not render too excessive
variations of graph(γI) (for arbitrary m) a cubic spline γI = γcs is a natural
choice [5]. The interpolant γcs is defined as a track-sum of cubics {γcsk }

m−1
k=0

with each cubic γcsk : [tk, tk+1] → E2 depending on four 2D-parameters (as
ak, bk, ck, dk ∈ R2)

γcsk (t) = ak + bk(t− tk) + ck(t− tk)2 + dk(t− tk)3. (1)

Here 4×m coefficients {(ak, bk, ck, dk)}m−1k=0 are calculable from 4×m constraints:
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1. 2×m interpolation conditions for k ∈ {0, 1, . . . ,m− 1}:

γcsk (tk) = qk and γcsk (tk+1) = qk+1. (2)

2. m− 1 internal points’ first-order smoothness for k ∈ {0, 1, . . . ,m− 2}:

γ̇csk (tk+1) = γ̇csk+1(tk+1). (3)

3. m− 1 internal points’ second-order smoothness for k ∈ {0, 1, . . . ,m− 2}:

γ̈csk (tk+1) = γ̈csk+1(tk+1). (4)

4. 2 boundary conditions complementing (2), (3), (4) to yield 4×m equations.

Usually, the last two equations are obtainable from extra conditions such as
e.g. γ̇(0) = v0 and γ̇(T ) = vm. Indeed, the latter yields two missing equations:

γ̇cs0 (t0 = 0) = v0 and γ̇csm−1(tm = T ) = vm. (5)

Although, in our setting both velocities v0 and vm are not a priori given, they
can be still estimated from (Qm, Tm) following the concept of modified Hermite

interpolation [14]. Indeed, a unique Lagrange cubic γ
L(3)
0 : [0, t3] → E2 interpo-

lating the first four points {qk}3k=0 at {tk}3k=0 (see [5]) yields some estimate of

v0 ≈ v̂0 = γ̇
L(3)
3 (0). Similarly, a Lagrange cubic γ

L(3)
m−3 : [tm−3, tm]→ E2 interpo-

lating the last four points {qk}mk=m−3 at {tk}mk=m−3 renders some approximation

of terminal velocity vm ≈ v̂m = γ̇
L(3)
m−3(tm). Consequently, taking into account

the latter, condition (5) modifies into:

γ̇cs0 (t0 = 0) = v̂0 and γ̇csm−1(tm = T ) = v̂m. (6)

The scheme for selection Qm from ∂Γ is described in subsection 3.3. Note that
in our setting to approximate ∂Γ with the closed curve as q0 6= qm we extend
Qm to Q̂m+1 = {q̂k}m+1

k=0 so that q̂k = qk (for k = 0, 1, . . . ,m) and q̂m+1 = q0.

Upon selecting the interpolation points Qm (and thus Q̂m+1) from the bacte-
ria’s boundary ∂Γ the next step is to estimate the accompanying knots Tm+1 ≈
T̂m+1 = {t̂k}m+1

k=0 (as Tm+1 is not available out of input images) from the distri-

bution of Q̂m+1. This permits to construct the interpolant γ̂cs : [0, T̂ ]→ E2 as a
track-sum γ̂cs = {γ̂csk }

m+1
k=0 , with γ̂csk : [t̂k, t̂k+1]→ E2 satisfying (1), (2), (3), (4)

and (6) along Q̂m+1 with somehow estimated knots T̂m+1. Addressing the latter,
we resort here to the so-called exponential parameterization commonly used in
computer graphics [19] and defined in accordance with:

t̂0 = 0, t̂k+1 = t̂k + ‖qk+1 − qk‖λ, k = 0, 1, . . . ,m, (7)

for some parameter λ ∈ [0, 1], where ‖·‖ is a standard Euclidean norm. This paper
selects λ = 0.5 in (7) yielding the so-called centripetal parameterization with
T̂ =

∑m
k=0 ‖qk+1−qk‖1/2 (see [19]). Note that in order to preserve tk < tk+1 it is

also assumed that qk 6= qk+1. More information on exponential parameterization
(7) and other knots selection schemes can be found e.g. in [14–16, 19].
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3.2 Curvature Calculation

Having found a cubic spline γ̂cs approximating bacteria’s boundary ∂Γ one may
extract some shape information of ∂Γ by analyzing the geometry of graph(γ̂cs)
forming the planar curve assumed also to estimate ∂Γ (for m sufficiently big).
In this work a curvature of γ̂cs is computed to form a geometrical marker of
∂Γ used later as one of the differentiating ingredients in classification process.
Recall, that the curvature κ(t) of a planar curve γ : [a, b]→ E2 at a given point
t ∈ [a, b] measures the amount by which such curve deviates from a tangent line
to the curve at point γ(t) - see [29]. The respective formula for the curvature
κ(t) of regular curve γ (i.e. for γ for which γ̇(t) 6= 0 over t ∈ [a, b]) reads as:

κ(t) =
‖T ′(t)‖
‖r ′(t)‖

, (8)

where r(t) = γ̇(t) is a tangent vector to γ at t with its normalized vector
T (t) = r(t)/‖r(t)‖. In particular, for arc-length parameterization expressed as

s = φ(t) =
∫ t
a
‖r ′(u)‖ du, for which reparameterized curve γ̄(s) = (γ ◦ φ−1)(s)

satisfies ‖ ˙̄γ(s)‖ = 1 (yielding ‖T (s)‖ = 1 - see [8]), the equation (8) reformulates
into (with the respective derivative calculated for s-variable) κ(s) = ‖T ′(s)‖.

3.3 Features Calculation

To estimate bacteria’s shape (assumed here to be “more or less” convex), Region
of Interest (ROI) mask is applied. In doing so, the following Matlab functions
are exploited: rgb2gray, imbinarize, imfill, bwareaopen and multithresh. Upon
localizing a single bacteria with ROI mask, the Laplacian filter is used to extract
∂Γ of the analyzed object [4]. Next all computed boundary points Qm̂ = {qj}m̂j=0

are sorted out clock-wisely. To achieve the latter, we calculate and compare the
angle between a given point qj ∈ Qm̂ and mean location of Qm̂ i.e. the point

(x̄ = (1/(m̂ + 1))
∑m̂
k=0 xk, ȳ = (1/(m̂ + 1))

∑m̂
k=0 yk). It is assumed here that

(xk, yk) represent Cartesian coordinates of the centers of bacterial boundary
pixels (the center of the coordinate system is set in the upper left corner of
an image). As a result the boundary of each single bacteria ∂Γ is represented
by a large set of points Qm̂ which in turn is reduced to terser set Qm with
m + 1 = 10 or m + 1 = 20 points (and thus to Q̂m+1 - see subsection 3.1) to
be fitted with γ̂cs and T̂ governed by (7). Such reduction is carried out upon
selecting from Qm̂ ”more or less” equally spaced points with respect to their
index distribution taken in clockwise order (e.g. for m̂ = 54 a possible reduction
leads to {q0, q8, q17, q26, q35, q44, q54}).

The feature extraction process aimed to determine some bacteria’s shape in-
formation relies on curvature calculation from the estimated bacteria’s boundary
∂Γ - see [1]. In doing so, formula (8) is applied to cubic spline γ̂csk (see subsection
3.1). More precisely, with the aid of (8) for each γ̂csk we compute over [t̂k, t̂k+1]
the maximal and minimal values of the curvature function κ(t̂) (i.e. κmax and
κmin) yielding the corresponding knots t̂maxk , t̂mink ∈ [t̂k, t̂k+1] obtained from
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κmax = κ(t̂maxk ) and κmin = κ(t̂mink ), respectively. Note that if the pair of knots
(t̂maxk , t̂mink ) is not uniquely determined one can choose e.g. the smallest two

knots tmax,mink ∈ [t̂k, t̂k+1], respectively. This in turn, permits to determine two
points qmaxk = γ̂csk (t̂maxk ) and qmink = γ̂csk (t̂mink ) having maximal and minimal
curvature γ̂csk over the segment [t̂k, t̂k+1]. According to the order of all knots
t̂maxk , t̂mink we re-index points qmink and qmaxk placing them into one sequence

formula {qextk }
2m+1

k=0 (where either ext = max or ext = min). In the next step we

determine the center of mass qc = (1/2(m + 1))
∑2m+1
k=0 qextk needed as a refer-

ence point to compute the 2(m+ 1) distance values ak = ‖qextk − qc‖. In sequel,
a family of triangles ∆k(qextk , qc, q

ext
k+1) with common apex at qc (with the re-

spective lengths of ∆k sides: ak, bk =
∥∥qextk+1 − qextk

∥∥ and ak+1) form a polygonal
approximation of ∂Γ . Given the lengths of all sides of triangle ∆k, its respective
angles αk, βk, γk = π− (αk +βk) are easily computable from the cosine theorem
- here αk = ](qextk , qc, q

ext
k+1), βk = ](qextk , qextk+1, qc) and γk = ](qextk+1, q

ext
k , qc).

Having determined the above distances and angles a given bacteria can be rep-
resented by the following four vectors (forming de facto its polygonal shape de-
scriptors): a = (a0, . . . , a2m+1), b = (b0, . . . , b2m+1), α = (α0, . . . , α2m+1) and
β = (β0, . . . , β2m+1). At this point, we assume that we are given a reference
bacteria (a kind of “geodetic benchmark” not necessarily belonging to any in-
vestigated herein soil microorganisms’ classes) to which different five classes of
examined bacteria are compared accordingly. Experiments carried out so far
based on 5 generic representatives - one for each bacteria class - did not improve
the results over selecting one reference bacteria. To juxtapose vectors represent-
ing an examined bacteria with the reference bacteria vectors aref , bref , αref ,
βref we calculate the cross correlation coefficient [6] between the respective pairs
(i.e. xcorr(a,aref )). For four cross correlation vectors one chooses their respec-
tive greatest values amax, bmax, αmax and βmax. In each picture, we select from
5 to 50 bacteria whose surface area is the closest to the median surface area of
all the bacteria in the input picture. The latter permits to select bacteria char-
acterized by the average size and stage of growth. The less bacteria we select
the less likely we qualify a group of overlapping bacteria as a single object. We
considered 6 features (listed below) based on shape calculated for a fixed amount
of points on one bacteria and the number of bacteria analyzed in a single image.
We estimated the edge of bacteria using m+ 1 = 10 or m+ 1 = 20 points on one
bacteria and compared l = 5, 10, 20, 25, 30, 40 and 50 bacteria on one image.
The following 6 features based on shape information are considered:

1. Mean bacteria arc-length - which is a sum of all arc-lengths representing the
perimeters of all selected bacteria divided by l.

2. Mean curvature of l bacteria - is a sum (1/l)
∑l
k=1

∑m
j=0

∫ t̂j+1

t̂j
κkj (t̂)dt̂, where

κkj represents the curvature of k-th bacteria along j-th segment (see (8)).

3. Mean maximal first distance correlation - (1/l)
∑l
k=1 a

max
k .

4. Mean maximal second distance correlation - (1/l)
∑l
k=1 b

max
k .

5. Mean maximal first angle correlation - (1/l)
∑l
k=1 α

max
k .

6. Mean maximal second angle correlation - (1/l)
∑l
k=1 β

max
k .
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4 Features Based on Texture

The second group of examined features relies on image texture analysis. In [12]
Haralick introduced statistical measures resorting to the second order image
histogram called GLCM (Grey-Level Co-Occurrence Matrix ). In this paper we
also used GLRLM (Gray-Level Run-Length Matrix ) measures - see [11].

4.1 GLCM Features

GLCM is calculated for the following directional angles α: 0◦, 45◦, 90◦, 135◦ and
distance d on quantized image Ω to n levels that are represented in gray-scale.
The co-occurrence matrix M of size n×n is initialized with all its coefficients set
to zero. Assume the image Ω is represented by the pixel table M̄ having m1 rows
and n1 columns. Note that here pixel (1, 1) represents the top-left pixel in Ω,
whereas pixel (m1, n1) corresponds to the bottom-right image pixel. In addition,
let matrix W k,l have mw rows and nw columns. W k,l is used iteratively to extract
the following pixels of M̄ [i, j]:mw(k−1) < i ≤ kmw and nw(l−1) < j ≤ lnw. The
latter can be geometrically viewed as positioning top-left corner of W k,l at (k, l)
pixel of Ω. The coverage of Ω with W k,l abides the following pattern. First Ω
is horizontally covered by windows W 1,1,W 1,nw+1,W 1,2nw+1, . . . ,W 1,n1−nw+1,
respectively. Next after vertical shift to Wmw+1,1 we move horizontally up to
Wmw+1,n1−nw+1. This procedure of disjoint coverage of Ω is continued up un-
til reaching Wm1−mw+1,n1−nw+1 window. Note that if either m1(mod mw) 6= 0
or n1(mod nw) 6= 0 (since in practice nw � n1 and mw � m1) one can supply
extra missing pixels for the most right or bottom part of Ω by extrapolation tech-
niques. Additionally for each of W k,l we iterate over the pixels in that window
incrementing values in M based on the correlations between pixels for direction
α and distance d that is explained below (for more details see [12]).

Assume we use a window of size mw = 5 and nw = 5. For every W k,l we go
through each pixel in that window. Let n = 5, d = 2, α = 45◦ and wk,l11 , . . . , w

k,l
55

be certain pixel values in W k,l (see Fig. 3). Here we are in the iterative step

that analyzes pixel wk,l42 (that is marked as dark gray), its value is equal to
0. Then we know that we increment co-occurrences in GLCM matrix in first
row that is responsible for relationships between values of pixels 0 and ni =
0, . . . , 4. Next step is to check values of pixels located in direction α = 45◦ and
maximum distance of d = 2. There are two pixels meeting these requirements:
wk,l33 and wk,l24 . Since wk,l33 = 0 we have to increment value in first row and in

first column, and since wk,l24 = 3 we need to increment value in first row and in
fourth column in GLCM. Finally after we moved our window through the entire
image registering co-occurrences of the pixels we divide each of the values in
W k,l by n2 that gives us probabilities of co-occurrences between gray levels of
pixels for direction α and maximum distance d. Based on GLCM computation,
the following 8 statistical measures are calculated [32]: Contrast, Correlation,
Energy, Homogeneity, Autocorrelation, Cluster Prominence, Inverse Difference
and Dissimilarity. Note that as GLCM is calculated for 4 different directions, we
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obtain measures such as Contrast 0◦, Contrast 45◦, Contrast 90◦ and Contrast
135◦. The final value of Contrast is taken as mean of these four values. The 8
statistical measures from above determine 8 texture features based on GLCM.

Fig. 3. Increment of the values in GLCM (right) based on the window W k,l (left) of
size 5 × 5, pixel wk,l

24 for n = 5, d = 2, α = 45◦ and a presentation of all possible
directions α from the pixel wk,l

44 marked with a red dot.

4.2 GLRLM Features

The calculations of GLRLM based features are very similar to determining
GLCM. The computations involved are also carried out for same directional
angles α: 0◦, 45◦, 90◦, 135◦ and for the maximum distance d on quantized image
to n levels that is represented in gray-scale. We initialize GLRLM of size n× d
with zeros. Using window mw × nw we move through the image in the same
manner as in GLCM and increment values in matrix according to the run-length
of co-occurrence pixels for direction α and length that is equal to di = 1, . . . , d.
In the next step each of the values in GLRLM is divided by dn. The latter in-
troduces matrix with probabilities of the respective co-occurrences of the gray
level ni = 0, . . . , n− 1 and run-length di.

As an example assume an input image is quantized to 5 gray levels, maximum
run-length d = 3, window’s size is 5 × 5, α = 90◦ and that we analyze pixels
with values equal to zero. Let W k,l have sample entries as shown in left window
of Fig. 4. The algorithm represents searching sequences of length di of pixels
that have values equal to zero in W k,l e.g. two sequences of length 3 (marked
as green - see Fig. 4) are found filling GLRLM for n = 0 with value d3 = 2. For
more details on GLRLM see also [11].

Again based on probabilities stored in GLRLM the following statistical mea-
sures are calculated [11]: Short Run Emphasis, Long Run Emphasis, Grey Level
Non-uniformity, Run Length Non-uniformity, Run Percentage, Low Grey Level
Run Emphasis, High Grey Level Run Emphasis Short Run Low Gray Level Em-
phasis, Short Run High Gray Level Emphasis, Long Run Low Gray Level Empha-
sis and Long Run High Gray Level Emphasis. As previously, these 11 measures
are computed along 4 different directions and analogously to the case of GLCM
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Fig. 4. Incrementing values in GLRLM (right) according to pixels in window W k,l

(left) for α = 90◦ and the gray level equal to zero.

the respective mean values of each measures are determined. Ultimately, this ap-
proach determines additional group of 11 features based on texture information.
The latter together with the previously introduced GLCM based group yields
19 texture based features considered in this paper. They complement previously
discussed 6 shape based features introduced to accomplish bacteria classification.

5 Selected Class Recognition Methods

5.1 KNN

K-Nearest Neighbors is a classification method [17] that permits to assign a new
object to one of the constructed classes. We are supplied here with a data-set
attributed with the existing features and its membership to the respective class.
Based on the latter, a new object needs to be classified with respect to the
same set of attached features. In doing so, the calculation of Euclidean distances
between a new object and every single object from the data-set is performed. We
sort these objects by distance in ascending order. Then we choose k objects (k
value is set arbitrarily) whose distances are the smallest and conduct majority
voting (see [17]) to decide to which class the new object should be attached.

5.2 ELM-RBF

Extreme Learning Machine - Radial Basis Function is feed-forward neural net-
work with two hidden layers [10]. First one is responsible for the input vectors
conversion to the distances based on Gaussian radial function to the closest cen-
troid. Their amount is selected arbitrarily and they are computed using k-means
method, where k defines number of centroids to be calculated. This procedure
is very similar to RBN (Radial Basis Network) and brings much more robust-
ness to the prediction [20]. Upon converting the input vectors into distances

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08757-8_23

https://dx.doi.org/10.1007/978-3-031-08757-8_23


Classification of Soil Bacteria 11

in the first hidden layer, we treat them as input vector in ELM network that
contains one hidden layer with experimentally chosen number of neurons and
their activation function. The bias and weights between input and hidden layer
are assigned randomly. Weights between hidden and output layer are calculated
using Moore-Penrose matrix pseudo-inverse operation [25].

6 Experiments and Results

We report now on generated experimental results based either on combined set
of shape and texture features or solely relying on shape or texture information.

First, the experiments incorporating a full set of shape and texture attributes
juxtapose different feature selection and classification methods to reach satisfac-
tory classification accuracy. Additionally, the tests determining the optimal num-
ber of interpolation points Q̂m+1 along ∂Γ together with gauging the amount
of selected bacteria are carried out. The best classification results obtained yield
m + 1 = 10 and 50 bacteria. We present now the list of implemented methods
(see also [18, 31]) with the experimentally picked up optimal parameters guaran-
teeing the highest possible classification accuracy: SVM, RF (using 200 trees),
kNN (using k = 1), MLP (using back-propagation learning method, topology of
the net 22 − 20 − 22 and tanh as an activation function on all hidden layers),
ELM (with 2800 neurons in hidden layer units with tanh activation function)
and ELM-RBF (900 neurons with linear activation function in hidden layer units
and 40 centroids).

Table 1. Mean accuracy percentage of 50 tests using 10% cross validation and feature
selection with classification method performed on shape and texture features.

Feature Selection Method SVM RF kNN ELM MLP ELM-RBF

None 93.84 92.76 95.30 92.50 92.03 94.95
FCBF 95.69 93.62 97.07 78.80 89.73 94.05
SBMLR 96.61 93.92 96.00 91.61 92.65 97.03
CFS 93.61 91.23 95.00 85.34 91.03 94.74

As shown in Tab. 1, the best result in bacteria classification amounts to 97%
in accuracy recognition which is obtained upon either applying ELM-RBF with
SBMLR or using kNN with FCBF. In this case ELM-RBF shows superiority
over ELM method increasing accuracy by over 5% and due to a smaller number
of neurons in hidden layer has a vastly shorter training and testing time. Here
SBLMR selects 5 shape and 15 texture features whereas FCBF relies on using
3 shape and 4 texture traits. In order to justify merging features from both
classes of examined attributes (i.e. shape and texture), we subsequently tested
the bacteria classification accuracy when either only the set of shape or the set
of texture features is admitted, respectively.

The best experimental result relying exclusively on shape features amounts
to 78.92% in classification accuracy (see Tab. 2). It is derived with the aid of
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Table 2. Mean accuracy percentage of 50 tests using 10% cross validation and feature
selection with classification method performed on features based on shape.

Feature Selection Method SVM RF kNN ELM MLP ELM-RBF

None 75.69 72.61 77.00 49.84 73.84 76.92
FCBF 78.07 74.07 74.76 29.38 70.84 76.00
SBMLR 76.06 76.40 77.56 48.00 73.47 77.96
CFS 78.92 73.30 76.69 42.92 74.38 77.69

Table 3. Mean accuracy percentage of 50 tests using 10% cross validation and feature
selection with classification method performed on features based on texture.

Feature Selection Method SVM RF kNN ELM MLP ELM-RBF

None 80.07 76.30 81.61 64.84 67.46 68.23
FCBF 75.76 79.76 76.61 41.61 68.30 74.76
SBMLR 78.93 77.06 82.27 63.46 67.81 69.64
CFS 79.00 78.84 78.53 55.46 70.53 74.38

SVM coupled with CFS. In contrast, the best accuracy using solely texture based
features equals 82.27% (see Tab. 3) and is achieved upon combining kNN with
SBMLR. Having juxtaposed results from Tab. 1, 2 and 3 it is transparent that
merging shape and texture features improves classification accuracy by 15%. As
shown in Tab.1 the mean accuracy from 50 tests using 10% cross validation
amounts to 97% matching state of the art results.

7 Conclusions

Experiments based on 6 shape features render (for our data) the best accuracy
reaching 78.92% correct classification for SVM combined with CFS. On the other
hand class recognition based on 19 image texture traits yields up to 82.27% for
kNN and SBMLR. In contrast, gathering together both shape and texture infor-
mation (totalling 25 conjugated features) leads up to 97% correct classification
upon coupling either kNN with FCBF or ELM-RBF with SBMLR. The itera-
tive optimization of the classification model parameters including selection of the
number of knots and the amount of bacteria analyzed in one picture, improves
accuracy and reduces time execution of the implemented congregated classifier.
These results seem to be unexpectedly satisfactory for our proposed aggregated
bacteria classifier in the absence of incorporating color information. Still, within
the setting of this work, there is a natural scope for further improvements. In
particular, any method selecting characteristic benchmark bacteria for a given
genus permitting to compare bacteria’s curvature with the reference bacteria
would be desirable. In this work originally, such five exemplary bacteria were
selected arbitrarily but the results obtained did not improve significantly the
case of fixing one reference bacteria for five considered genera. Another related
issue refers to the task of selecting all significant points (and knots) on the
bacteria’s boundary (see e.g. [5, 14–16, 19]). This work assumes “more or less”
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equally spaced points Qm. The impact of convexity or non-convexity of the bac-
teria should also be analyzed with respect to ordering Qm̂. Furthermore, the
comparison of standard classification methods with deep learning methods and
extending admissible set of features incorporating color and dispersion informa-
tion forms potential research topics within the field of soil bacteria classification.
Lastly, the robustness of all examined methods may also be tested against the
varying number of bacteria genera (or their respective representatives) and pos-
sibly in regard to other dynamic factors such as time aspect impacting on shape,
size or a color of the examined bacteria and/or its bacterial colony distribution.
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