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Abstract. Imperfect manufacturing is one of the factors affecting the perfor-

mance of antenna systems. It is particularly important when design specifications 

are strict and leave a minimum leeway for a degradation caused by geometry or 

material parameter deviations from their nominal values. At the same time, con-

ventional antenna design procedures routinely neglect to take the fabrication tol-

erances into account, which is mainly a result of a challenging nature of uncer-

tainty quantification. Nevertheless, the ability to assess the effects of parameter 

deviations and to mitigate thereof is instrumental in achieving truly robust an-

tenna designs. Furthermore, identifying the antenna-specific relationships be-

tween nominal requirements and tolerance immunity is essential to determine the 

necessary levels of fabrication accuracy, which affects both the reliability and the 

manufacturing costs. This paper proposes a technique for multi-criterial optimi-

zation of antenna structures oriented towards rendering a family of designs rep-

resenting trade-offs between the nominal performance and the robustness. The 

fundamental components of our procedure are feature-based regression models 

constructed at the level of selected characteristic points of the antenna outputs. 

The trade-off designs are generated sequentially, using local search carried out 

for gradually relaxed nominal requirements. Numerical experiments conducted 

for two microstrip antennas demonstrate that the proposed algorithm is capable 

of yielding the performance/robustness Pareto set at the cost of only a few dozens 

of EM analysis of the antenna at hand per design, while ensuring reliability, as 

validated by means of EM-based Monte Carlo simulation. 

 

Keywords: Antenna design, multi-criterial optimization, simulation-based de-

sign, manufacturing tolerances, statistical analysis, response features. 
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1 Introduction 

Manufacturing processes such as chemical etching or mechanical milling are of finite 

resolution and accuracy, whereas our knowledge of material parameters (e.g., substrate 

permittivity) and operating conditions (e.g., input power level, temperature) is always 

limited. At the same time, the aforementioned uncertainties, especially deviations of 

geometry parameters from their nominal values, may be detrimental to the electrical 

and field characteristics of antennas [1]. In order to meet the stringent performance 

demands imposed on contemporary radiating structures, the design process should ac-

count for the effects of uncertainties to ensure that the system operates properly even 

under the most pessimistic scenarios.  

In practical terms, the improvement of antenna performance requires utilization of 

numerical optimization methods [2]-[4]. At the same time, for the sake of reliability, 

parameter tuning is normally carried out using full-wave electromagnetic (EM) simu-

lation models, which incurs considerable computational expenses. These are especially 

high in the case of global search procedures [5]-[7]. If the design process is to account 

for both the nominal performance and the effects of fabrication tolerances, in particular, 

if performance-robustness trade-offs are of interest, multi-objective optimization (MO) 

becomes imperative. MO is a CPU-heavy endeavor. The most popular acceleration 

methods involve surrogate modeling techniques [8], [9], both data-driven (kriging [10], 

support-vector regression [11]) or physics-based (e.g., space mapping [12], sequential 

domain patching [13]), often combined with machine-learning methodologies [14].  

Quantification of the effects of fabrication tolerances requires appropriate statistical 

performance metrics. In the case of antennas, it is usually the yield [15], which is a 

likelihood of satisfying given performance requirements under the assumed probability 

distributions that govern deviations of the antenna parameters. Consequently, robust 

design techniques are mainly concerned with yield improvement [16], [17]. The alter-

native is to seek for the maximum allowed levels of input tolerances, for which the 

system outputs remain acceptable (maximum input tolerance hypervolume, MITH 

[18]). Unfortunately, estimation of the yield is a computationally expensive process. 

For example, EM-driven Monte Carlo (MC) simulation typically requires hundreds of 

EM analyses. Most of state-of-the-art statistical analysis methods rely on surrogate 

modeling methods [19]-[21], with a notable example of polynomial chaos expansion 

(PCE) [22]. Yet, handling higher-dimensional problems is still an issue due to consid-

erable initial cost of surrogate model construction. A possible way of alleviating these 

difficulties is performance-driven modeling [23].  

The literature offers few methods for multi-objective antenna design with tolerance 

analysis. For example, in [24], kriging surrogates are employed along with the worst-

case analysis at the Pareto-optimal designs found by means of the particle swarm opti-

mization algorithm. Machine-learning approach involving Gaussian Process Regres-

sion surrogates has been reported in [25], whereas [26] is the only methods that explic-

itly handles input tolerance hypervolume as one of the design objectives. In all cases, 

low-dimensional parameter spaces are considered.  

This paper introduces a novel surrogate-based algorithm for low-cost tolerance-

aware multi-objective design of antenna structures. In our methodology, maximization 

of the input tolerance levels for which the design specifications are still met is treated 

as one of the explicit objectives, the other being nominal performance of the antenna at 
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hand. The optimization process is expedited through the employment of feature-based 

regression models, rendered at the level of suitably chosen characteristic points of an-

tenna responses. The Pareto-optimal designs are identified sequentially for the selected 

values of relevant performance figures, using local gradient-based tuning. The pre-

sented technique is demonstrated using two microstrip antennas, and shown to be both 

reliable and computationally efficient with the CPU cost of generating trade-off designs 

as low as a few dozens of EM simulations per point. 

2 Multi-Criterial Antenna Optimization with Tolerance 

Analysis 

This section introduces the proposed multi-objective optimization strategy with toler-

ance analysis. Formulation of the design task is followed by an exposition of the statis-

tical analysis approach, a description of the procedure for identifying the trade-off de-

signs, as well as a summary of the entire MO framework. 

 

2.1 Problem Formulation 

We denote by R(x) the antenna responses corresponding to the parameter vector 

x = [x1 … xn]T, and obtained through full-wave EM analysis. We will also use additional 

symbols to denote specific frequency characteristics such as reflection S11(x,f), axial 

ratio AR(x,f), or gain G(x,f), where f stands for the frequency. The function Fp(x) will 

be used to denote the nominal performance for the antenna, i.e., assuming no fabrication 

tolerances.  

Consider a multi-band antenna with the target operating frequencies f0k, k = 1, …, N, 

and target bandwidths Bk. The design specifications are defined for a performance pa-

rameter P(x,f), which should not exceed the value of Pmax over the bandwidths of inter-

est. In other words, the specifications are satisfied if 

  0 0 max1
max , : | ( , ) |

N

k k k kk
f f B f B P f P


   x                        (1) 

For example, if P(x,f) = |S11(x,f)| (antenna input characteristics), the acceptable level is 

typically set to Pmax = S11.max = –10 dB.  

The best nominal design xp is obtained by improving the performance parameter P 

as much as possible over the target bandwidths, i.e., we have  

 0 01
argmin{max{ , : ( , )}}


   

Np

k k k kk
f f B f B P f

x
x x                     (2) 

According to (2), the target nominal antenna performance Fp(x) is simply Pmax. 

Let Fr(x) be a function representing the antenna design robustness. In this work, we 

assume that parameter deviations follow independent Gaussian distributions of zero 

mean and a variance  (the same for all parameters); generalization of arbitrary distri-

butions is straightforward. We define Fr(x) = (x), where the dependence on the design 

x emphasizes the fact that the maximum allowed variance is a function of antenna pa-

rameters. The meaning of Fr is that—at design x—it is the maximum value of the var-

iance , for which the performance specifications are still satisfied for any design per-

turbed with respect to x, with the perturbations not larger than 3. 

The tolerance-aware multi-objective optimization task can be then formulated as  
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* arg min ( ) ( )p rF F   x
x x x                                            (3) 

Thus, the objective is to improve both the nominal performance Fp(x) and the robust-

ness Fr(x). Note that both objectives are conflicting as imposing more demanding target 

nominal performance leads to a reduced robustness, because there is a smaller margin 

for parameter deviations left. We also have two extreme designs: (i) the best nominal 

design xp, and (ii) the minimum acceptable performance design xr. The latter corre-

sponds to the highest target value of Fp that can be accepted for a given application 

(e.g., –10 dB in the case of reflection response). Also, xr is found by maximizing Fr 

given the aforementioned highest value of Fp. Here is a brief characteristic of the two 

designs: 

 xp: as this design corresponds to the best nominal performance (e.g., the lowest in-

band reflection of the antenna), it features the minimum robustness. In particular, the 

level of parameter deviations ensuring the fulfilment of performance specifications 

is zero because any deviation from the nominal values results in worsening of Fp;  

 xr: at this design, we have the largest performance margin w.r.t. the best nominal 

design xp. Thus, xr exhibits the largest robustness as the feasible region for the 

highest considered value of Fp is the largest. 

The designs that are globally non-dominated in the Pareto sense [27] w.r.t. to Fp and 

Fr form the Pareto front XP [27]. These are the best possible trade-offs between the 

nominal performance and the robustness. Our goal is to identify a discrete subset of XP, 

distributed uniformly along the front. The concepts considered in this sections have 

been illustrated in Fig. 1.  

 

2.2 Yield Estimation by Means of Response Features 

The robustness Fr(x) is defined to be the maximum value of the variance  of Gaussian 

probability distributions characterizing the geometry parameter deviations, for which 

the fabrication yield retains 100 percent. The yield is defined as [28] 

( ) ( , )

fX

Y p d x y x y                                                   (4) 

In (4), p(y, x) is a probability density function describing statistical variations of the 

design y w.r.t. the vector x. The feasible space Xf contains the designs that meet the 

performance specifications (cf. (1)). As Xf is unknown explicitly, the yield is normally 

approximated through Monte Carlo (MC) simulation as 
1 ( )

1
( ) ( )

rN k

r k
Y N H d


 x x x                                           (5) 

where dx(k), k = 1, …, Nr, are generated using the function p. The function H equals 1 if 

the design specifications are satisfied, and zero otherwise. Evaluation of (5) is computa-

tionally expensive, therefore, surrogate modeling techniques are often used for the sake 

of accelerating the process [19]-[22]. The robustness metric Fr(x) = (x) is computed as 

 ( ) arg max ( , ) 1rF Y


  x x                                           (6) 

where the explicit dependence of Y on  is to emphasize that the variance determines 

the input tolerance levels, which affect the yield.  

Here, efficient evaluation of (6) is ensured by employing feature-based regression 

models described below. The response feature technology has been introduced in [29] 
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to accelerate antenna parameter tuning. The key idea is to reformulate the design task 

in terms of suitable chosen characteristic (or feature) points, e.g., frequency and level 

coordinates of antenna resonances, the coordinates of which are in weakly-nonlinear 

relationship with the antenna geometry parameters. This reformulation leads to a faster 

convergence of the optimization algorithms [30], as well as a reduced number of train-

ing data points when constructing surrogate models [31]. 

An illustration of the feature points for a reflection response of a triple band antenna 

can be found in Fig. 2. In the considered example, the points are defined to verify sat-

isfaction of the performance specs imposed on the impedance matching of the device. 
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In relation to the performance requirements of (1), the feature vector P(x) at design x 

is defined as 

 
The robustness metric Fr(x) of (6) is evaluated by numerically integrating (4) with 

the use of the regression model (9). As the condition (1) is equivalent to (8), the yield 

Y(x,) can be estimated using random observables xr
(j) allocated using the probability 

distribution characterized by the variance . The yield evaluation procedure has been 

summarized in Fig. 3. All steps in the above algorithm of Fig. 3 are vectorized to speed 

up the process.  
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Having implemented the means for rapid estimation of the yield, the evaluation of 

Fr is carried out by solving (6) using golden ratio search [32] (note that given a joint 

variance , the task (6) is a one-dimensional problem). Should the probability distribu-

tion be determined by multiple parameters (e.g., a covariance matrix), the problem (6) 

can be solved by means of other methods, e.g., gradient-based algorithms. 

 

2.3 Generating Trade-Off Designs 

Our goal is to generate NP trade-off designs, which form a discrete set of Pareto-optimal 

vectors w.r.t. the objectives Fp and Fr. Note that the Pareto front is spanned between 

the best nominal design xp, and the most robust design xr (cf. Section 2.1). The first 

trade-off design is therefore assigned as x(1) = xp, and it is obtained using (2). Conse-

quently, the nominal objective function value Fp(x(1)), denoted as Pmax.1, is 

which compares the actual improvement of the antenna robustness with the prediction  
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of the feature-based regression surrogate. Note that Fr
# in the numerator of (15) is cal-

culated as in Section 2.2, but with LP
(j.i) replaced by the linear model LP

#(j.i). The latter 

is constructed as in (9), (10) but with the coefficient vector [l0.1 … l0.2N]T replaced by 

P(x(j.i+1)). Using Fr
# enables low-cost evaluation of the gain ratio (only one EM simula-

tion is involved). Although this is an approximation, it is justified by a typically small 

distance between x(j.i) and x(j.i+1), comparable to . 

The vector x(j.i+1) is accepted if r > 0. Otherwise, the search radius d(i) is reduced, and 

the iteration is repeated. The termination condition is ||x(i+1) – x(i)|| <   OR  d(i) < , 

where  is the required resolution of the search process (e.g.,  = 10–3). The concept of 

iterative generation of the trade-off designs has been shown in Fig. 4.  

 

2.4 Optimization Algorithm 

The flow diagram of the proposed tolerance-aware MO procedure has been shown in 

Fig. 5. As mentioned earlier, the best nominal design xp is first identified, followed by 

the establishment of the target performance levels Pmax.j. The latter are determined using 

the assumed maximum acceptable performance level Pmax, Fp(xp), and the number of 

designs NP. The performance-robustness trade-off designs are then obtained by sequen-

tially solving (13) as described in Section 2.3. 

3 Verification Case Studies 

This section provides numerical verification of the multi-objective optimization proce-

dure of Section 2. It is based on two microstrip antennas, a dual-band dipole, and a quasi-

Yagi structure. In both cases, the goal is to find the trade-offs between the nominal per-

formance defined through maximum in-band reflection, and the robustness, defined as 

the maximum level of parameter deviations that still ensure 100-percent fabrication yield. 

 

3.1 Case I: Dual-Band Dipole Antenna 
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The target operating frequencies and bandwidths are f01 = 3.5 GHz, f02 = 4.2 GHz, and B1 

= B2 = 80 MHz, respectively. The best nominal performance design is xp = [0.91 1.45 

48.01 3.66 1.80 4.97 1.00 0.38]T. At this design, we have Fp(xp) = –15.1 dB, and Fr(xp) = 

0 (cf. Section 2.1). Five more trade-off designs have been obtained, corresponding to 

Pmax.2 = –14 dB, Pmax.3 = –13 dB, through Pmax.6 = –10 dB (the highest acceptable in-band 

reflection level), as shown in Table 1 and Fig. 6(b). Figure 7 visualizes EM-driven Monte 

Carlo (MC) simulation for the selected designs. MC confirms that the fabrication yield is 

indeed close to 100 percent for all pairs {Fp(x(j)),Fr(x(j))}. The actual yield is between 98 

and 100 percent (design dependent), yet, it should be noted that MC itself is characterized 

by a relatively large yield estimation variance due to using only 500 samples. The pro-

posed MO approach is computationally efficient. The average cost of generating one 

trade-off design is only about 62 EM simulations of the antenna structure, which is pos-

sible by utilization of the feature-based surrogates (cf. Section 2.2). 
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3.2 Case II: Quasi-Yagi Antenna 

The center frequency and bandwidth are f01 = 2.5 GHz and B1 = 50 MHz, respectively. 

Furthermore, the realized gain at 2.5 GHz is to be at least 7.9 (i.e., 8 dB with the toler-

ance of 0.1 dB). The best nominal performance design xp = [20.21 12.33 16.47 26.09 

52.06 1.83 1.02 4.39 4.26 0.37 0.44 0.98 0.71 0.72]T corresponds to Fp(xp) =  

–17.0 dB. Seven additional trade-off designs have been found, corresponding to Pmax.2 

= –16 dB, Pmax.3 = –15 dB, through Pmax.7 = –10 dB.  

The results have been gathered in Table 2 and Fig. 8(b). Figure 9 visualizes EM-

based Monte Carlo simulation for the selected trade-off designs. The average value of 

the estimated yield is 97 percent, which is sufficiently close to 100 given the challeng-

ing nature of the problem (fourteen parameters, and limited predictive power of the 

surrogate model for larger values of input tolerances). Again, the proposed algorithm 

exhibits excellent computational efficiency with the average cost of identifying the 

trade-off designs of only 82 EM simulations per point. 
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4 Conclusions 

This paper proposed a novel technique for multi-objective optimization of antenna 

structures with tolerance analysis. Our approach allows for low-cost identification of 

the designs representing the best possible trade-offs between the nominal performance 

and the robustness. The latter is understood as the maximum level of geometry param-

eter deviations for which the perfect (100-percent) fabrication yield is still attainable. 

The main algorithmic tool employed in the presented procedure is a feature-based re-

gression surrogate, which enables rapid estimation of the yield. Numerical validation 

involving two microstrip antennas demonstrates both the reliability and computational 

efficiency of the proposed framework, with only a few dozens of EM analyses required 

to generate each trade-off design. The future work will focus on extending the range of 

applicability of the technique for higher-dimensional problems. 
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