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Abstract. Complex temporal epilepsy belongs to the most common type of brain dis-

order. Nevertheless, the wave patterns of this type of seizure, especially associated with 

behavioral changes, are difficult to interpret clinically. A helpful tool seems to be the 

statistical and time-frequency analysis of modeled epilepsy signals. The main goal of 

the study is the application of the Van der Pol model oscillator to study brain activity 

and intra-individual variability during complex temporal seizures registered in one pa-

tient. The achievement of the article is the confirmation that the statistical analysis of 

optimal values of three pairs of parameters of the duffing Van der Pol oscillator model 

enables the differentiation of the individual phases of the seizure in short-period seizure 

waves. In addition, the article attempts to compare the real signals recorded during the 

attack and modeled using frequency and time-frequency analysis. Similarities of power 

spectra and entropy samples of real and generated signals in low-frequency values are 

noted, and differences in higher values are explained about the clinical interpretation of 

the records.  

Keywords: Van der Pol oscillator, EEG, parameter estimation, biological pro-

cess model. 

1 Introduction 

The electroencephalogram (EEG) is a representative signal informing about the state 

of the brain [1]. The shape of the wave may contain useful information about brain 

pathology. EEG records during some epileptic seizures, Alzheimer’s, and Parkinson’s 

disease are much more ordered oscillatory than in healthy records [1-4]. The bigger 

problem is distinguishing subtle changes in brain wave patterns as the seizure spreads. 

Some changes are very subtle highly subjective, the symptoms may appear at random 

in the time scale. Therefore, the EEG signal parameters, extracted, analyzed, and mod-

eled using computers, are highly useful in diagnostics. The analysis of EEG relies 

mainly on time-frequency analysis [5-9], wavelet analysis [8,10-11]. In the case of new-

borns due to strong non-stationary properties of EEG signals, Nabeel and Sadiq [12] 

proposed Adaptive Directional Time-Frequency Distribution (ADTFD) can lead to bet-

ter classification of ictal EEG signals. The ADTFD gives a highly concentrated time-

frequency representation of spikes and sinusoids. In turn, in many hardware 
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implementations of automatic epilepsy detection, wavelet transforms, principal com-

ponent analysis, Hilbert-Huang transform, and support vector machines [13-14]. Sev-

eral types of entropy, i.e. sample, multiscale, and permutation entropy are used in the 

analysis of seizure spread. The experimental results obtained for 2 seconds EEG se-

quences show that the mean value of permutation entropy gradually decreases from the 

seizure-free (pre- and post-ictal) to the seizure phase [13]. Equally important parame-

ters that measure the complexity of signal are Hjorth’s parameters: activity, mobility, 

and complexity, which are useful for the quantitative description of the EEG. EEG 

modeling is also based on its non-stationary nature and includes i.e. random and back-

propagation (BP) neural networks and coupled oscillators [15-21]. The system de-

scribed in [16] determines the areas with the highest activity of spikes/poly-spikes of 

the signal received for one channel. In addition to the automatic selection, these dis-

charges are also possible to verify and possibly change manually.  

In the article, we have presented a modified variant of the deterministic duffing Van 

der Pol oscillator model, proposed in previous works by Ghorbanian et all,  to model 

healthy and Alzheimer’s disease signals  [2-3]. In our earlier works, we have used this 

model to analyze epileptic ictal signals for the first time [20-21]. The current study is a 

continuation of this research.  

    An important goal of the article is to determine the relationship between the param-

eters, model sizes, and patterns of seizure waves.  The study is an attempt to learn and 

understand the mechanisms accompanying the following five epileptic conditions: the 

onset of seizures, sequences with leg movement, records during automatic movements, 

related to the state of confusion, and final state of the seizure, registered in one patient. 

Another purpose of the paper is to evaluate the possibilities of differentiating epileptic 

states as above based on the parameters of the duffing Van der Pol oscillator model 

determined for the real EEG signal. We are driven by the motivation to use the obtained 

results in an expert system to support the process of medical diagnostics. 

Similar to the articles [2-3], the possibility of extracting frequency bands for which 

the dominant values of the power spectra of real and generated are examined.  Appli-

cation of the deterministic duffing Van der Pol oscillator model to differentiate the same 

five phases of seizures was described in  [21], however, without a statistical analysis of 

the optimal parameter values. In turn, the statistical analysis of the optimal values of 

the model parameters for the differentiation of only three groups of signals: pre-, ictal, 

and post-ictal, was carried out by us in [20]. The values of sample entropy of real EEG 

signals registered during five ictal phases were presented in [21], without comparison 

with the values of sample entropy obtained for the modeled signals. To our knowledge, 

so far in the literature, spectrograms have not been used to analyze signals from such 

precisely separated seizure phases: the onset, the confusion, and automatic movements. 

The main achievement of the article is the confirmation that the statistical analysis 

of optimal values of three pairs of parameters of the duffing Van der Pol oscillator 

model: linear stiffness coefficient ς, nonlinear stiffness coefficient ρ, Van der Pol damp-

ing coefficient ε enable the differentiation of the individual phases of the seizure in short 

period seizure waves, e.g. fast and slow waves. In addition, it has been shown that the 

power spectra of the real and generated signal are dominated by certain components in 

the frequency bands δ, θ, and α in each considered ictal stage.  
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The article analyzes the distribution of the duffing Van der Pol oscillator parameters 

for five seizure states: the onset of seizures, sequences with leg movement, records 

during automatic movements, related to the state of confusion, and final state of the 

seizure, derived from 15 registered EEG sequences. The determined distributions are 

presented in the form of box plots, independently for each of the 6 parameters of the 

duffing Van der Pol model: linear stiffness coefficients ς1 and ς2, nonlinear stiffness 

coefficients ρ1 and ρ2, Van der Pol damping coefficients ε1 and ε2. We made a compar-

ative time-frequency analysis of epileptic real signals and the corresponding signals 

generated by the duffing Van der Pol oscillator model. The analysis of average values 

of power spectra is performed for three real and three generated signals in given fre-

quency ranges in each considered phase of the seizure and the relative error between 

the average power values of the real and generated signal spectrum in three determined 

frequency bands: σ, θ, and α are calculated. The sample entropy values of real and gen-

erated signals obtained for the onset, the tangled stage, and automatic movements are 

compared. The achieved results are verified based on spectrograms made for real sig-

nals. 

2 Materials and Methods 

2.1 EEG signals 

EEG signals presented in this paper were recorded from a right-handed 55 aged fe-

male who takes Phenytoin, at Temple University Hospital and is seizure-free for 7 

months [22]. A more detailed description of the patient and the test conditions can be 

found in [21]. We considered sequences 10 s (number of samples N=2500) registered 

by electrode T3: 3 sequences corresponding to the onset of the seizure, 3 sequences of 

the phase with leg movements, sequences with registered automatic movements, 3 se-

quences of the entanglement, and 3 sequences associated with the end of the seizure. 

2.2 Duffing Van  der Pol Oscillator 

We based on the oscillator model described in the literature for the first time by 

Ghorbanian et all. The deterministic coupled system of duffing Van der Pol oscillators 

can be written as [2-3]: 
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where ς is the linear stiffness coefficient, ρ is the nonlinear stiffness coefficient, as-

sociated with the strength of the duffing nonlinearity resulting in multiple resonant fre-

quencies, ε is the Van der Pol damping coefficient related to the strength of Van der Pol 
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nonlinearity. Parameters ς1, ρ1, ε1 and ς2, ρ2, ε2 belong to the first and second oscillator, 

respectively.  

The velocity of the second oscillator is selected as the model output. The initial con-

ditions are equal to: x1(0)=0, x2(0)=1, x3(0)=0, x4(0)=0. Eq. (1) is solved by Runge-

Kutta iterative method. 

2.3 Optimization scheme 

Figure 1 presents a block diagram of the optimization scheme proposed in the paper. 

The optimization process is repeated for each signal of mentioned earlier set of 15 rec-

orded EEG signals. To determine the number of the sequence we introduced the param-

eter d, where d=1,2,..,.15.  

Before calculating the discrete Fourier transform of each sample of real and gener-

ates EEG sequence has been multiplied by the appropriate Blackman’s window coeffi-

cient [2]. The discrete Fourier transform (DFT) can be rewritten as:   

                                    ( ) ( )
1

0

( , ) (2)
N

d d

w N
n

X k x n n k
−

=

=  

    where:    

( )exp 2
N

j nk N = −  is the Nth root of unity. 

 

 According to Figure 1, the amplitude of DFT of the signal  is normalized in the 

range of  [0, 1]: 

                                          ( )
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d

d

d
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Next, the power of normalized DFT amplitude sequences in five major frequency bands 

are calculated according to the formula: 

                                                 ( )( )
21 ˆv

d d

k Svv

P X k
S 

=                                               (4) 

where: v=1,…,5 is the number of the frequency band, Sv - set of discrete frequencies, 

corresponding to five major frequency bands [2]. The indexes v and Sv are presented in 

Table 1.  

Table 1. The major EEG frequency bands. 

Number of fre-

quency band v 

EEG band         Hz Sv of discrete frequen-

cies (k) 

1 δ 1-4 {1,…,15} 

2 θ 4-8 {16,…,31} 

3 α 8-13 {32,…,51} 

4 β 13-30 {52,…,119} 

5 γ 30-60 {120,…,239} 
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The power of normalized DFT amplitude of the generated signal is calculated in the 

same manner in the same way as shown in formula (4). Having the power averaged 

power for each frequency band of the real and generated signal with the determined 

values, we can determine the objective function L (5): 

                                      
( ) ( )( )
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where: L is the cost function,  Ω is the vector of design model variables, 0 ≤ ϛ1,2 ≤ 200, 

0 ≤ ρ1,2 ≤ 100, 0 ≤ ε1,2  are the decision variables of the optimization. 

The optimization goal is error minimization: 

( )min ,  
Ω

ΩL d  

The optimization has been carried out using a  genetic algorithm (GA) in a Matlab 

environment with bult-in function ga. The optimization scheme is repeated for each 

pair of real sequences and the corresponding generated sequence. 

 

 
Fig. 1. Diagram of the optimization model. 

3 Results 

The analysis based on the optimal values of parameters, average values of the power 

spectrum of real and generated signals, the maximal difference between the power spec-

trum of generated and real signal, and the sample entropy of them is performed taking 

into account types of sequences. The estimated values of parameters are presented in 
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the form of box plots, where the plots are made separately for each parameter of the 

model. Figure 2 shows the results obtained for the linear stiffness coefficient produces 

by the first oscillator. On the x-axis graph, separate states of seizures are marked as 

sequence no: 1 indicates the onset of seizures, 2 - sequences with leg movement, 3 - 

automatic movements, 4 is related to the state of confusion, and 5 determines the final 

state of the seizure. Low and comparable values of the parameter are obtained for the 

phases in which there are no changes in behavior, i.e. the onset of the seizure (marked 

as 1 in the graph and the end of the seizure marked as 5). High values of the parameter 

and large dispersion of the results, which reflect the height of the box, are achieved for 

the moments when there are large changes in the patient's behavior: leg movement and 

confusion. 

 

Fig. 2. The box chart of optimal values of the model's linear stiffness parameter  ς1. 

 

  

Fig. 3. The box chart of optimal values of the model's linear stiffness parameter  ς2.  

 

Figure 3 has been created for the linear stiffness parameter generated by the second 

oscillator. Similar to the first diagram, we can distinguish two analogous phases with 
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significantly greater dispersion of parameter values. Additionally, comparable median 

values optimal parameter values (marked with a red line inside the box) are obtained 

for the initial phase and with the accompanying automatic movements occurring in the 

patient. The low median value of the parameter also makes it possible to distinguish the 

final phase of the seizure. Low and comparable values of the parameter are obtained 

for the phases in which there are no changes in behavior, i.e. the onset of the seizure 

(marked as 1 in the graph and the end of the seizure marked as 5). High values of the 

parameter and large dispersion of the results, which reflect the height of the box, are 

achieved for the moments when there are large changes in the patient's behavior: leg 

movement and confusion. 

 

 

Fig. 4. The box chart of optimal values of the model's non-linear stiffness parameter  ρ1.  

 

Figures 4-5 refer to the nonlinear stiffness coefficients, ρ1 and ρ2, respectively. In the 

initial phase of the seizure, high values of the non-linear stiffness parameter generated 

by the first oscillator are achieved. A negative correlation is also obtained for the state 

in which the patient moves her leg, i.e. low values of nonlinear parameters.  

 

 

Fig. 5. The box chart of optimal values of the model's non-linear stiffness parameter  ρ2.  
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The final stage of the seizure is characterized only by a high parameter value of ρ2. 

Figures 6-7 present results achieved for the Van der Pol damping coefficients. For states 

marked as 1 and 3, the median of ε1 values hovers around 5 and is different from the 

other two phases (4 and 5). Based on Figure 7, median, first and third quartile values of 

ε2  are comparable in all phases. 

 

 

Fig. 6. The box chart of optimal values of the model's Van der Pol damping parameter ε1.  

 

In a further step power spectra of real signals (marked in blue) and generated by the 

oscillator model (red dotted line) are compared. Figure 8 shows the power spectra of 

real and generated EEG signals recorded during the entanglement state. Differences in 

the values of the power spectrum of the real and generated signal are obtained for α and 

β frequencies. From about 30 Hz, a rightward shift in the spectrum of the generated 

signal is observed. 

 

 

Fig. 7. The box chart of optimal values of the model's Van der Pol damping parameter ε2.  
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Table 2 shows the average values of power spectra of three real and three generated 

signals in given frequency ranges in each considered phase of the seizure, where R 

denotes recorded data and G refers to generated signal. According to Figure 8,  the 

results obtained in Table 2  show that the power spectra of the real and generated signal 

are dominated by components in the frequency bands: δ, θ, and α  (high average values 

of the power spectrum in these bands for each considered phase from Table 2).  

 
Fig. 8. Comparison of the power spectrum of the real and the generated signal corresponding to 

the entangled state. 

 

Table 3 presents the average relative error between the average power values of the 

real and generated signal spectrum in the three dominant frequency bands of 

spectrograms: δ, θ, and α obtained in each determined phase of seizures. It can be seen 

clearly, that the stage of the seizure of low values of the determined ratio is the final 

state for each described EEG band. Interestingly, high values of average percentage 

power error for δ (equal to  50%) and low (5.6%) for θ are achieved for the seizure 

phases related to the patient's movements  (marked in  Table as 2 and 3). The α band is 

characterized by high power error values of the real and generated signal spectrum in 

the phases (1-4)  close to 30% without the end of the seizure.  

Table 2. The average power spectrum values of the real and generated signal in all discussed 

phases of seizure. 

Phase EEG band 

 δ θ α β γ 

1 onset R 0.1860 0.2300 0.1200 0.0180 0.0010 

G 0.1970 0.2100 0.0900 0.0060 0.0006 

2 leg 

movement 

R 0.0015 0.0038 0.0016 0.0004 0.0004 

G 0.0017 0.0039 0.0014 0.0005 0.0003 

3 automatic 

movements 

R 0.0006 0.0024 0.0008 0.0003 0.0006 

G 0.0008 0.0028 0.0010 0.0004 0.0001 

4 confusion R 0.0006 0.0046 0.0007 0.0005 0.0003 

G 0.0005 0.0050 0.0004 0.0002 0.0002 

5 final 

seizure state 

R 0.1867 0.2150 0.1301 0.0067 0.0005 

G 0.1837 0.2167 0.1300 0.0080 0.0001 
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Table 3. The average percentage power error values of the real and generated signal spectrum 

in three determined frequency bands: δ, θ, and α. 

Phase EEG band 

  δ     θ    α 

1 onset 7.9% 16.7% 30.0% 

2 leg movement 50.0% 5.6% 30.0% 

3 automatic movements 50.0% 5.6% 30.0% 

4 confusion 24.5% 22.0% 36.9% 

5 final seizure state 7.0% 10.9% 14.0% 

 

To examine the nature of the EEG signal more closely, spectrograms are made for 

a rectangular window of 512 sequence samples. The y axis of the spectrogram shows 

frequency and the x axis-time.  

Figure 9 is made for sequences when the first panic pattern was registered. The 

spectrogram is dominated by low frequencies corresponding to waves δ, θ, and α. In 

the ranges of time 0-2 and 19-20 s of the seizure, spectrum building high frequencies 

(γ) is observed. In the time interval between 5 and 13 s the spectrum stabilizes to δ, θ, 

α, and β frequencies. From 14 to 18 s the components associated with complex slow 

waves dominate in the spectrum (rhythms δ, θ) and fast amplitude peak waves of low 

amplitude (α rhythm), which may be due to the patient's hyperventilation. 

 

 

Fig. 9. A spectrogram of real  EEG signal presented the onset of the seizure (marked in Tables 

2-3 as phase 1).  

 

Figures 10 and 11 present spectrograms obtained for the real signals during the 

confusion and automatic movements. The spectrogram presented in Figure 10 shows a 

stable spectrum of all considered frequency bands. In the case of automatic movements, 

three phases can be distinguished in the spectrogram: in the 0-5 s time interval, δ, θ, 

and α frequencies dominate, between 6 and 10 s, also higher β and γ bands are present, 

from 10 to 20 seconds in the spectroscope there are frequencies up to 30 Hz. Next, a 

comparison of the calculated entropy value for real and generated signals for three 

phases in Figures 9-11 is analysed. The results are summarized in Table 4. 
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Fig. 10. A spectrogram of real sequences for entangled stage (marked in Tables 2-3 as phase 4).  

 
Fig. 11. A spectrogram of real sequences achieved during automatic movements  (presented in 

Tables 2-3 as phase 3). 

 

Table 4. The sample entropy of real and corresponding generated signals presented in figures 9-

11.  

Phase Sample entropy 

R G 

1 0.24 0.07 

3 0.08 0.05 

4 0.12 0.06 

 

4 Discussion and conclusion 

Based on Table 2, it can see clearly that the dominant frequency bands in the power 

spectrum of signals presenting the complex temporal seizure are δ,  θ, and α in all con-

sidered phases of the seizure. The plot obtained with the classical FFT analysis of the 

real signal is comparable with the plot obtained for the generated signal (see Figure 8). 

In β and γ frequency ranges, the differences between the real signals and the corre-

sponding generated signals occur in the average value of the spectra, i.e. average power 

spectrum in the onset obtained for real signal in β range is equal to 0.018 vs. 0.0006 for 
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generated signal, and for the entanglement 0.0005 vs. 0.0002, respectively (Table 2). 

The results from Table 3 show that in states where the patient's anxious behavior affects 

the recording of brain waves (i.e. movements, the entanglement), high values of the 

coefficient are obtained, calculated as the average relative power error of generated and 

real signal in two determined frequency bands: σ and α, and low values-for θ band. The 

ratio values from Table 3 allow to distinguish sequences related to movements  (marked 

as 2 and 3), in which similar average percentage power error values are obtained. Based 

on the low value of the error coefficients obtained for the δ band, the initial and final 

stages of the seizure (marked as 1 and 5) can be also eminent from those in which the 

propagation of the seizure waves took place over time. The proposed deterministic 

model encounters difficulties with chaotic, difficult to interpret waveforms related to 

the patient's behavior. An experienced clinician also had a problem with interpreting 

these states, who considered the record of the signal related to the movement of the leg 

difficult to assess. Based on the box plots, high dispersions can be seen in the optimal 

values of the linear stiffness parameters for the phases in which the patient is aroused 

(the second and fourth boxes in Figures 2-3). On the other hand, for the states occurring 

without changing the behavior of the patient (the first and fifth box in Figures 4-5), 

there is a slight variation in the values of the parameters. Considering the nonlinear 

parameters of stiffness, we note an inverse relationship, greater differentiation in the 

parameter values for the initial state (first box), and smaller for the leg movement (third 

box) on Figs. 4-5. The appearance of dispersion in the optimal values of the parameters 

of signals generated in the same phase of the seizure indicates the occurrence of intra-

individual variability. Intra-individual variability significantly influences the recording 

of real EEG signals. This indicates that the proposed model, in this respect, maintains 

the physiological dependencies occurring in real signals.  

Despite the presence of dispersion in the optimal values of the model parameters, 

their median, maximum or minimum values, as discussed in section 3, allow determin-

ing the seizure phases and wave patterns associated with these states.  

Low optimal values of linear and nonlinear stiffness parameters are noted in the case 

of recording low waves, the terminal phase of the seizure. Small optimal values of linear 

parameters and higher nonlinear parameters accompany the occurrence of wave waves 

with a complex of slow waves (the onset and low optimal values of linear parameters 

and higher nonlinear parameters accompany the occurrence of wave waves with a com-

plex of slow waves). High values of linear and nonlinear parameters generate fast waves 

of high amplitude (hand movement, entanglement). 

Besides it allows us to determine the parameters of the oscillator model, with the 

help of which we could differentiate the individual phases of the seizure in a short pe-

riod, and thus differentiate seizure waves, e.g. fast and slow waves. In depth study of 

generated signals, including time-frequency analysis, is to add a stochastic component 

to the model. 
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