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Abstract. We investigate errors in tangents and adjoints of implicit
functions resulting from errors in the primal solution due to approxima-
tions computed by a numerical solver.
Adjoints of systems of linear equations turn out to be unconditionally
numerically stable. Tangents of systems of linear equations can become
instable as well as both tangents and adjoints of systems of nonlinear
equations, which extends to optima of convex unconstrained objectives.
Sufficient conditions for numerical stability are derived.
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1 Introduction

We consider twice differentiable implicit functions

F : IRm → IRn : p 7→ x = F (p) (1)

defined by the roots of residuals

R : IRn × IRm → IRn : (x,p) 7→ R(x,p) . (2)

R is referred to as the primal residual as opposed to tangent and adjoint residuals
to be considered later. Primal roots of the residual satisfying

R(x,p) = 0 (3)

are assumed to be approximated by numerical solvers

S : IRm → IRn : p 7→ x +∆x = S(p)

with an absolute error ∆x yielding a relative error δx of norm

‖δx‖ =
‖∆x‖
‖x‖

=
‖S(p)− F (p)‖
‖F (p)‖

.

We investigate (relative) errors in corresponding tangents

ẋ = Ḟ (x, ṗ) ≡ dF

dp
· ṗ (4)
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and adjoints

p̄ = F̄ (x, x̄) ≡ dF

dp

T

· x̄ (5)

due to ∆x. Algorithmic tangents and adjoints result from the application of
algorithmic differentiation (AD) [3, 4] to the solver S. Symbolic tangents and
adjoints can be derived at the solution of Equation (3) in terms of tangents
and adjoints of the residual [2, 5]. AD of the solver can thus be avoided which
typically results in a considerably lower computational complexity.

2 Prerequisites

We perform standard first-order error analysis. For a given absolute error ∆p in
the input of a function F the absolute error in the result is estimated as

∆x ≈ dF

dp
·∆p . (6)

Equation (1) is differentiated with respect to p in the direction of the absolute
error ∆p. From the Taylor series expansion of

x +∆x = x +
dF

dp
·∆p +O(‖∆p‖2)

it follows that negligence of the remainder within a neighborhood of x containing
∆x is reasonable for ‖∆p‖ → 0 and assuming convergence of the Taylor series
to the correct function value. For linear F we get ∆x = dF

dp · ∆p due to the
vanishing remainder.

Tangents and adjoints of Equation (1) can be expressed as matrix equations
over derivatives of the residual. The fundamental operations involved are scalar
multiplications and additions, outer vector products, matrix-vector products and
solutions of systems of linear equations.

It is well-known that scalar multiplication y = x1 · x2 is numerically stable
with relative error |δy| = |δx1|+ |δx2|. A similar result holds for scalar division.
It generalizes naturally to element-wise multiplication and division of vectors,
matrices, and higher-order tensors as well as to the outer product of two vectors.

Scalar addition y = x1 + x2 on the other hand is known to be numerically

unstable |δy| |∆x1+∆x2|
|x1+x2| → ∞ for ∆x1 6= −∆x2 and x1 → −x2. A similar result

holds for scalar subtraction.
Numerical instability of scalar addition prevents unconditional numerical sta-

bility of inner vector products as well as matrix-vector/matrix products and so-
lutions of systems of linear equations. Sufficient conditions for numerical stability
need to be formulated.

The relative error of a matrix-vector product x = A · b for A ∈ IRn×n and
x,b ∈ IRn is easily shown to be equal to

‖δx‖ ≈ κ(A) · (‖δA‖+ ‖δb‖) . (7)
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Depending on the magnitude of the condition number κ(A) ≡ ‖A−1‖ · ‖A‖ of
A the relative error of the matrix-vector product can suffer from a potentially
dramatic amplification of the relative errors in the arguments.

We take a closer look at the derivation of a similar result for systems of linear
equations A ·x = b for A ∈ IRn×n and x,b ∈ IRn. Differentiation in the direction
of non-vanishing absolute errors ∆A ∈ IRn×n and ∆x, ∆b ∈ IRn yields

∆x = A−1 · (∆b−∆A · x)

and hence the first-order error estimate

‖∆x‖
‖x‖

=
‖A−1 · (∆b−∆A · x)‖

‖x‖

≤ ‖A
−1 ·∆b‖
‖x‖

+
‖A−1 ·∆A · x‖

‖x‖

≤ ‖A
−1‖ · ‖∆b‖
‖x‖

+
‖A−1 ·∆A · x‖

‖x‖
=
‖A‖ · ‖A−1‖ · ‖∆b‖

‖A‖ · ‖x‖
+
‖A−1 ·∆A · x‖

‖x‖

≤ κ(A) · ‖∆b‖
‖A · x‖

+
‖A−1 ·∆A · x‖

‖x‖
= κ(A) · ‖∆b‖

‖b‖
+
‖A−1 ·∆A · x‖

‖x‖

≤ κ(A) · ‖∆b‖
‖b‖

+
‖A−1‖ · ‖∆A‖ · ‖x‖

‖x‖
= κ(A) · ‖∆b‖

‖b‖
+ ‖A−1‖ · ‖∆A‖

= κ(A) · ‖∆b‖
‖b‖

+
‖A‖ · ‖A−1‖ · ‖∆A‖

‖A‖
= κ(A) · ‖∆b‖

‖b‖
+ κ(A) · ‖∆A‖

‖A‖

= κ(A) ·
(
‖∆b‖
‖b‖

+
‖∆A‖
‖A‖

)
.

As for matrix-vector products we get

‖δx‖ ≈ κ(A) · (‖δA‖+ ‖δb‖) . (8)

Again, a low condition number of A is sufficient for numerical stability.

3 Errors in Tangents and Adjoints of Implicit Functions

Differentiation of Equation (3) with respect to p yields

∂R

∂x
· dx
dp

+
∂R

∂p
= Rx ·

dx

dp
+Rp = 0 , (9)

where ∂ denotes partial differentiation. Multiplication with ṗ from the right
yields the tangent residual

Rx ·
dx

dp
· ṗ +Rp · ṗ = Rx · ẋ +Rp · ṗ = 0 . (10)

The tangent ẋ can be computed as the solution of the system of linear equations

Rx · ẋ = −Rp · ṗ .
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The right-hand side is obtained by a single evaluation of the tangent residual.
Tangents in the directions of the Cartesian basis of IRn yields Rx. Potential
sparsity can and should be exploited [1]. An error ∆x in the primal solution
yields a corresponding error in the tangent for Rx = Rx(x) and/or Rp = Rp(x).

From Equation (9) it follows that for regular Rx

dx

dp
= −R−1x ·Rp .

Transposition of the latter followed by multiplication with x̄ from the right yields

p̄ =
dx

dp

T

· x̄ = −RTp ·R−Tx · x̄ . (11)

The adjoint p̄ can be computed as the solution of the system of linear equations

RTx · z = −x̄

followed by the evaluation of the adjoint residual yielding

p̄ = RTp · z

. Again, an error ∆x in the primal solution yields a corresponding error in the
adjoint.

3.1 Systems of Linear Equations

The tangent of the solution of the primal system of linear equations

A · x = b (12)

is defined as ẋ = ẋA + ẋb, where

A · ẋb = ḃ (13)

and
A · ẋA = −Ȧ · x (14)

[2]. An error ∆x in the primal solution which, for example, might result from
the use of an indirect solver yields an erroneous tangent

ẋ +∆ẋ = (ẋA +∆ẋA) + (ẋb +∆ẋb) .

Application of Equation (8) to Equation (13) yields

‖δẋb‖ ≈ κ(A) · (‖δA‖+ ‖δḃ‖) .

Independence of ẋb from x (and hence from ∆x) implies δẋb = 0 for error-free
A and ḃ, that is ∆ẋ = ∆ẋA, respectively δẋ = δẋA. Let c = −Ȧ · x. With
Equation (7) it follows that

‖δc‖ ≈ κ(Ȧ) · ‖δx‖
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as δȦ = 0 Moreover, application of Equation (8) to A · ẋA = c yields

‖δẋA‖ ≈ κ(A) · ‖δc‖ .

Consequently,
‖δẋA‖ ≈ κ(A) · κ(Ȧ) · ‖δx‖ . (15)

Low condition numbers of both A and Ȧ ensure numerical stability of tangent
systems of linear equations.

The adjoint of the primal linear system in Equation (12) is defined as

AT · b̄ = x̄ (16)

and
Ā = −b̄ · xT (17)

[2]. Application of Equation (8) to Equation (16) yields

δb̄ ≈ κ(A) · (δA+ δx̄) .

Independence of b̄ from x (and hence from ∆x) implies δb̄ = 0 for error-free
A and x̄. The outer product Ā = −b̄ · xT is numerically stable as scalar mul-
tiplication is. Consequently, adjoint systems of linear equations are numerically
stable.

3.2 Systems of Nonlinear Equations

Differentiation of Equation (10) in the direction of absolute errors ∆Rx ∈ IRn×n,
∆ẋ ∈ IRn, ∆Rp ∈ IRn×m and ∆ṗ ∈ IRm yields

∆Rx · ẋ +Rx ·∆ẋ +∆Rp · ṗ [+Rp ·∆ṗ︸ ︷︷ ︸
=0

] = 0

as ∆ṗ = 0 and hence

∆ẋ = R−1x · (∆Rx · ẋ +∆Rp · ṗ) .

First-order estimates for

∆Rx · ẋ = [∆Rx · ẋ]i ≈ [Rx,x]i,j,k · [ẋ]j · [∆x]k ≡ ∆Ṙx ·∆x

and
∆Rp · ṗ = [∆Rp · ṗ]i ≈ [Rp,x]i,j,k · [ṗ]j · [∆x]k ≡ ∆Ṙp ·∆x

in index notation (summation over the shared index) yield

∆ẋ ≈ R−1x · (∆Ṙx +∆Ṙp) ·∆x

and hence, with Equation (7),

‖δẋ‖ ≈ κ(Rx) · κ(∆Ṙx +∆Ṙp) · ‖δx‖ . (18)
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Low condition numbers of the respective first and second derivatives of the resid-
ual ensure numerical stability of tangent systems of nonlinear equations. Both
∆Ṙx and ∆Ṙp can be computed by algorithmic differentiation (AD) [3, 4].

Application of Equation (8) to the system of linear equations

RTx · z = −x̄

for ∆x̄ = 0 yields

∆z = R−Tx ·∆RTx · z

and hence

‖δz‖ ≈ κ(Rx) · κ(∆R̄x) · ‖δx‖ ,

where

[∆RTx · z]j ≈ [Rx,x]i,j,k · [z]i · [∆x]k ≡ ∆R̄x ·∆x .

Differentiation of p̄ = RTp · z in the direction of the non-vanishing absolute

errors ∆RTp ∈ IRm×n and ∆z ∈ IRn yields

∆p̄ = ∆RTp · z +RTp ·∆z = ∆RTp · z +RTp ·R−Tx ·∆RTx · z

and hence

‖δp̄‖ ≈
(
κ(∆R̄p) + κ(Rp) · κ(Rx) · κ(∆R̄x)

)
· ‖δx‖ , (19)

where

[∆RTp · z]j ≈ [Rp,x]i,j,k · [z]i · [∆x]k ≡ ∆R̄p ·∆x .

Low condition numbers of the respective first and second derivatives of the resid-
ual ensure numerical stability of adjoint systems of nonlinear equations. Both
∆R̄x and ∆R̄p can be computed by AD.

3.3 Convex Unconstrained Objectives

The first-order optimality condition for a parameterized convex unconstrained
objective

f : IRn × IRm → IR : (x,p) 7→ y = f(x,p)

yields the residual fx(x,p) = 0. Consequently, assuming f to be three times
differentiable,

‖δẋ‖ ≈ κ(fx,x) · κ(∆ḟx,x +∆ḟx,p) · ‖δx‖ , (20)

where

∆fx,x · ẋ = [∆fx,x · ẋ]i ≈ [fx,x,x]i,j,k · [ẋ]j · [∆x]k ≡ ∆ḟx,x ·∆x

and

∆fx,p · ṗ = [∆fx,p · ṗ]i ≈ [fx,p,x]i,j,k · [ṗ]j · [∆x]k ≡ ∆ḟx,p ·∆x .
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Similarly,

‖δp̄‖ ≈
(
κ(∆f̄x,p) + κ(fx,p) · κ(fx,x) · κ(∆f̄x,x)

)
· ‖δx‖ , (21)

where

[∆fTx,x · z]j = [∆fx,x · z]j ≈ [fx,x,x]i,j,k · [z]i · [∆x]k ≡ ∆f̄x,x ·∆x

and
[∆fTx,p · z]j ≈ [fx,p,x]i,j,k · [z]i · [∆x]k ≡ ∆f̄x,p ·∆x .

Low condition numbers of the respective second and third derivatives of the
objective ensure numerical stability of tangent and adjoint optima of convex
unconstrained objectives. Both ∆ḟx,x and ∆ḟx,p as well as ∆f̄x,x and ∆f̄x,p
can be computed by AD.

4 Conclusion

Adjoint systems of linear equations are numerically stable with respect to errors
in the primal solution. However, numerical stability of tangents and adjoints
of implicit functions cannot be guaranteed in general. Sufficient conditions in
terms of derivatives of the residual are given by Equations (15), (18), (19),
(20) and (21). AD can be used to compute these derivatives. Corresponding
symbolic tangents and adjoints should be augmented with optional estimation
of conditions of the relevant derivatives.
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