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Abstract. In the current paper we present a hybrid modeling frame-
work which allows to simulate co-circulation of in�uenza strains in ur-
ban settings. It comprises a detailed agent�based model coupled with
SEIR-type compartmental model. While the former makes it possible to
simulate the initial phase of an outbreak when the heterogeneity of the
contact network is crucial, the latter approximates the disease dynamics
after the occurrence of mass infection thus dramatically increasing the
framework performance. The numerical experiments with the model are
presented and their results are discussed.
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1 Introduction

Outbreaks of in�uenza, one of the oldest and the most widely spread human
infectious diseases, result in 3 to 5 million cases of severe illness annually world-
wide, and the mortality rate is from 250 to 640 thousand individuals per year
[15]. In addition to induced mortality, in�uenza causes an increase of heart at-
tacks and strokes [6], as well as other disease complications. To enhance the
capabilities of in�uenza surveillance and, as a consequence, to �nd means of re-
straining in�uenza epidemics and reducing the mortality attributed to in�uenza
complications, the healthcare organs widely use statistical and mechanistic mod-
els. Among the factors of in�uenza dynamics, that are considered in�uential and
thus should be included into the models, are contact patterns in the population
[1], [22], [20], [30], and the immunity levels to various in�uenza strains [2], [12],
[17], [27]. The latter is connected with the former, as the heterogeneity of net-
works of disease transmission might cause uneven distribution of the infected
and consequently the immune people, leading to intricate prevalence dynamics
and the inability of simple models to predict it. As an example, in a deterministic
SEIR model it is assumed that the population immunity level directly de�nes
the outbreak incidence dynamics and ultimately the outbreak size. At the same
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time, is it known that in real life the infection prevalence dynamics is very de-
pendent on the stochastic e�ects inherent to the initial stages of the epidemic
onset and the contact network clustering [5], [9].

The modeling technique which makes it possible to account for the in�u-
ence of contact network heterogeneity on the disease transmission is multi-agent
modeling. There is a number of known publications on the topic, including such
articles as [21], where multi-agent modeling of vaccination scenarios in hetero-
geneous populations based on social network incidence data. Another examples
include a multi-component stochastic model that reproduces the dynamics of
in�uenza in certain regions of England and Wales for 14 years [2] and the works
of research teams that use a multi-agent approach to predict the dynamics of
in�uenza based on synthetic populations � these are the teams of the University
Pittsburgh ([19], [20], [28]), RTI International [7], [8], andWake Forest University
School of Medicine [11]. The same concept was recently applied to COVID-19
modeling, with the examples such as COVASIM [16], [18]. The author of this
article employed an agent-based model to replicate the 2010�2011 outbreak in
St Petersburg by means of the synthetic population of this city [22], [24] and
analyzed the co-circulation of several in�uenza strains in the same population
depending on the initial immunity levels [26].

One of the main drawbacks of the multi-agent approach which seriously limits
its application is related to excessive demand of computational power to han-
dle the experiments with the model. Even in the simplest case, when the aim
is to calculate the disease trajectory for one outbreak at the city scale with a
prede�ned set of parameter values, several simulation runs are required to ad-
dress stochastic uncertainty. As a result, the experiment may last from hours
to days, depending on the model employed and the computational resources
available. Obviously, in these circumstances the tasks which require many repet-
itive launches with di�erent parameter values, such as model calibration to data
or uncertainty/sensitivity analysis, may not be performed in reasonable time.
There exist di�erent methods to overcome this obstacle, namely, those related
to preliminary data modi�cation (for example, using a representative sample of
individuals rather than the whole population in the simulations), to algorithm
optimization and parallel computing (particularly, GPGPU-compatible frame-
work implementations), and to simpli�cation of some of the processes within the
dynamics of the regarded system (for instance, by training neural networks on
the output of multi-agent models to replicate disease incidence and prevalence
trajectories without actual simulation). Among the last group of approaches hy-
brid modeling of disease dynamics can be named [4], [14], [13]. The mentioned
method is based on the idea that in some sets of conditions the di�erence in the
outputs of the detailed multi-agent models and much simpler compartmental
ones may be negligible [29] which makes it possible to locally replace the former
approach by the latter without dramatic loss of disease dynamic reproduction
accuracy. With the mentioned bene�ts come the drawbacks. Particularly, the
necessity of using two di�erent modeling techniques for describing a single infec-
tion process instance raises a question of compatibility of those techniques. How
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smooth the transitions between the two models are and what is the in�uence
of switching condition on the regarded disease dynamics? We try to address
these questions in the current study, using a created hybrid modeling frame-
work which allows to replicate arti�cial outbreaks caused by co-circulation of
in�uenza strains in a synthetic population. To the author's knowledge, it is the
�rst attempt of hybrid simulation of virus co-circulation. The presented study is
a part of the ongoing research, the ultimate aim of which consists in quantify-
ing the interplay between the immunity formation dynamics and the circulation
of in�uenza strains in Russian cities. The study results are also applicable to
modeling the circulation of arbitrary acute respiratory infections, particularly,
COVID-19.

2 Methods

2.1 The multi-agent model

Overall description. The original model used as a base for the framework is an
agent-based model of co-circulation of di�erent in�uenza strains in a synthetic
population which is described in detail in [26]. It has discrete time with the
modeling step equal to one day. The epidemic process is initiated by assigning
randomly an infectious status to some individuals in the synthetic population at
the beginning of the simulation. The model output includes generation of spatial
distributions of the incidence cases via independent simulation runs, calculation
of cumulative incidence and prevalence in the area under study and assessing
the levels of herd immunity in the population after the outbreak. It is possible
to collect additional data, such as places of infection (school, workplace, home
and its immediate vicinity) for each incidence case, which allows to assess the
contribution of contacts in each type of place to the spread of infection.

Population. The population-related parameters used for the model are orga-
nized in a form of a synthetic population of St Petersburg for the year 2010. The
population includes 40213 households with the cumulative number of dwellers
being 4,865,118 individuals. The residential buildings are regarded as a bunch
of separate dwellings, and the individual can contact only with the people they
share a dwelling with (e.g, with family members). Following the statistics of the
governmental service �Open data of Saint Petersburg� [10], the average number
of people per dwelling as 2.57, which is used as a mean for the generation of
number of dwellers in each household (Poisson distribution is employed). We
assumed that all the young people aged 7 to 17 attend schools, and the adults
of working age (18 to 55 for males and 18 to 60 for females) can work. The
workplaces are split into small compartments within which the daily contacts
occur. The average workplace size was chosen equal to the average daily number
of workplace contacts. We generate the workplace compartment sizes using the
Poisson distribution with the corresponding mean. We consider that workplaces
for the adults and schools for the school�age children are selected randomly from
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the available positions within a certain radius from the household (based on gen-
eral knowledge, we took 15 km and 5 km correspondingly, which seems adequate
for St Petersburg). If there are no vacancies in schools/vacant workplaces within
this radius, the closest vacancy is assigned disregarding the distance. The re-
mained individuals without schools are assigned to closest schools in disregard
of the school capacity, while the remained individuals without workplaces are
considered jobless.

Contacts. We assume that there exist the following patterns of a daily activity
depending on the individual:

� stay in the household with a �xed id during the whole day (pre�school
children, retired, unemployed)

� go to the school with a �xed id (students)
� go to the workplace with the particular id (working adults)

Hence, each day one individual has 1 to 2 places of potential contacts which
are not changed over time. The contact numbers were derived from the data
used by the author in the compartmental in�uenza model for St. Petersburg
[23]. These data were calculated from the contact matrices for Russian cities
[1]. We assumed that, in average, the dwellers of St. Petersburg have 1.57 con-
tacts within the household and 8.5 outside it (at school or at work, which are
mutually exclusive). Taking into account the di�erences in activity patterns of
people (some of them do not work or study), the average calculated number of
daily contacts in a model is around 6.51, which is close to the average number
introduced in [23] (6.528). The role of public transport in spreading the infection
is not considered. In the current version of the framework, the weekends are not
regarded separately, i.e. the behavior of the individuals is the same during all
the days.

Disease onset and recovery. The rate of e�ective contacts in a particular
activity location (that is, the contacts between a susceptible and an infected
individual which result in new infection cases) depends on the average number
of contacts per person per day and the infection transmission coe�cient, which
are parameters of the model. We take a simplifying assumption that the infection
transmission coe�cients are not dependent on the strain. If various strains are
instantaneously transmitted to an individual at the place of contact, one of
them is selected at random as the one causing the infection. Each agent in
the population potentially interacts with other agents if they attend the same
school (for schoolchildren), workplace (for working age adults), or lives in the
same household.

The infectivity of each individual depends on their day of infection. The
fraction of infectious individuals in the group of individuals infected τ days before
the current moment t is de�ned by a piecewise constant function gτ which re�ects
the change of individual infectiousness over time from the moment of acquiring
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in�uenza. It is assumed that there exists some moment t: ∀t ≥ t gτ = 0, which
corresponds to the moment of recovery. The values of g(τ) were set according
to [3], with τ measured in days: g(0) = g(1) = 0, g(2) = 0.9, g(3) = 0.9,
g(4) = 0.55, g(5) = 0.3, g(6) = 0.15, g(7) = 0.05, g(8) = g(9) = · · · = 0. We
assume that the fraction of infectious individuals over time is not dependent
on the strain. Individuals recovered from the disease are considered immune to
the particular in�uenza strain, that caused it, until the end of the simulation.
Cross-immunity is not considered, i.e. the mentioned recovered individuals do
not acquire immunity to other in�uenza strains.

Parameter

name

Description Value

αm A fraction of the individuals which are non-
immune to the virus strain m

{0.78, 0.74,
0.6} [26]

λ Infection transmission coe�cient 0.3 [26]

csch Average daily number of contacts in
schools

8.5

cwp Average daily number of contacts in work-
places

8.5

chh Average daily number of contacts in house-
holds

1.57

I
(m)
0 Initial number of individuals infected by a

given strain m
5

Table 1. Multi-agent model parameters

2.2 The compartmental model

As a simpli�ed substitute for the multi-agent model, a multi-strain compart-
mental model is used based on a deterministic system of di�erence equations,
with the time step equal to one day. The thorough model description can be
found in [25]. Analogous to a multi-agent model, we consider the co-circulation
of three in�uenza strains, A(H1N1)pdm09, A(H3N2) and B, thus, we assume
ns = 3, where ns is the total number of regarded strains. Di�erent strains of in-
�uenza B type are not distinguished and the dominant B type strain is regarded

during each epidemic season. Let x
(h)
t be the fraction of susceptible individu-

als in the population with exposure history h ∈ 1, ns + 1, y
(m)
t be the number

of individuals newly infected at the moment t by the virus strain m and y
(m)
t

� the cumulative number of infectious persons by the time t transmitting the
virus strain m, m ∈ 1, ns. A possibility of co-infection by multiple strains in
the course of one season is not regarded, hence, the individuals recovered from
the in�uenza caused by any of the circulating strains are considered immune.
However, this assumed cross-immunity between virus strains is not transferred
to the next epidemic season.
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The susceptible individuals are divided into subgroups based on their expo-
sure history h, h ∈ 1, ns + 1. A group of susceptible individuals with exposure
history state h ∈ 1, ns is composed of those individuals who were subjected to
infection by the strain m in the previous epidemic season, whereas a group with
exposure history state h = ns + 1 is regarded as naive to the infection caused
by any strain. The variable µ ∈ [0; 1) re�ects the fraction of population which
do not participate in infection transmission. In the default case, µ = 0. Due
to immunity waning, the individuals with the history of exposure to a �xed in-
�uenza strain in the preceding season might lose immunity to the same strain
in the following epidemic season. We assume that the fraction a of those indi-
viduals, a ∈ (0; 1), becomes susceptible, whereas 1 − a individuals retain their
immunity during the modeled epidemic season. As a result, a function f(h,m) is
introduced into the model which de�nes the proportion of the individuals with
exposure history state h, who are susceptible to virus strain m:

f(h,m) =

{
a, m = h,

1, m 6= h.
(1)

The modeling equation system is formulated in the following way:

x
(h)
t+1 = max

{
0,

(
1−

ns∑
m=1

β(m)

ρ
y
(m)
t f(h,m)

)
x
(h)
t

}
, h ∈ 1, ns + 1, (2)

y
(m)
t+1 =

β(m)

ρ
y
(m)
t

ns+1∑
h=1

f(h,m)x
(h)
t ,m ∈ 1, ns,

y
(m)
t =

T∑
τ=0

y
(m)
t−τg

(m)
τ ,m ∈ 1, ns,

x
(h)
0 = α(h)((1− µ)ρ−

ns∑
m=1

y
(m)
0 ) ≥ 0, h ∈ 1, ns + 1,

y
(m)
0 = ϕ

(m)
0 ≥ 0,m ∈ 1, ns. (3)

The piecewise constant function gτ gives a fraction of infectious individuals
in the group of individuals infected τ days before the current moment t and
is de�ned in the same way as in the multi-agent model. An intricate model of
contacts in a synthetic population is replaced by a mass action law with the
intensity of e�ective contacts β(m), de�ned separately for each in�uenza strain
m:

β(m) = λ(m)δ,

where λ(m) is virulence of the strain m, δ is the average number of contacts in
the population [23].

While in the original model from [25] it was assumed that all the initially
infected individuals are in their �rst infective day (for the employed g(τ) it is the
day 2 after the infection), the compartmental submodel from this study is able to
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handle the disease prehistory, i.e. the initially infected people are distinguished
by the day of their infection. The number of infected is transferred from the
multi-agent model at the moment of switching.

Variable Description Values

ρ Population size, people 4, 865, 118

α(h) A fraction of population exposed to the strain m
in the preceding epidemic season, h ∈ 1,m

{0.78, 0.74, 0.6}

λ(m) Virulence of the virus strain m 0.3
a The fraction of people who lost immunity after

being exposed to the virus strain in the preceding
epidemic season

0.3 [25]

δ Average daily number of contacts in the popula-
tion for a �xed individual

6.528 [23]

Table 2. Compartmental model parameters

2.3 Switching algorithm

One of the important aspects of a hybrid modeling is to properly decide how
to de�ne the switching conditions, when a detailed multi-agent model should be
replaced by a compartmental model during a simulation run. As it can be seen
from Figure 1, the calculation time for a single algorithm step (a modeling day)
is growing very fast with the step number due to the increase in the number
of infected people in the population. Thus, it is bene�cial to approximate the
infection process by a simpler model starting from the moment, when the number
of infected people becomes large.

In [4] two switching condition types were proposed:

� Switch to a compartmental model when a certain number of infected indi-
viduals in the population is reached;

� Switch to a compartmental model when the e�ective reproduction number
of the infection is stabilized (the di�erence between the corresponding values
for the subsequent simulation days becomes lower than a certain threshold).

While both switching conditions are quite e�ective and interpretable in the
case of a disease dynamics caused by a single virus, they cannot be easily adopted
for our case due to the existence of multiple viruses in the population. The
typical situation in virus co-circulation modeling corresponds to high prevalence
caused by one strain and low prevalence caused by other strains. As a result,
if we make a switch based on the cumulative numbers of the infected people
or the cumulative reproduction number, the disease dynamics of the virus with
low prevalence might be altered compared to the original model. On the other
hand, if the switch is to be performed when the threshold is reached by the
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Fig. 1. Calculation time for a single time step depending on the simulation day.

rarest strain's infection number, it will lead to no switching at all or to the
late switching, because minor epidemics with the prevalence never exceeding a
threshold are typical for almost every simulation run.

In this study, we perform numerical experiments with a hybrid model based
on a time-related switching condition, i.e. the moment of the switch is tied to the
simulation day. Table 3 contains execution time corresponding to simulation runs
from Section 3.1. The table demonstrates that earlier switching gives an immense
economy of execution time. In fact, the share of computational time for the
compartmental submodel in the overall simulation process might be considered
negligible, because it is much faster than its multi-agent counterpart, thus, the
hybrid simulation with the switching moment t∗ is very close in computation
time to performing t∗ time steps of the original multi-agent model.

Moment of switching, t∗ 5 10 15 20

Execution time, seconds 267.6 1185.5 4748.5 131784.8
Table 3. Hybrid modeling algorithm performance

A crucial aspect of the switching is to ensure that the parameters of both
submodels align, otherwise instead of a single simulated prevalence trajectory
with varied level of detail we might obtain two independent epidemic processes.
In Table 4, the parameter matching is described.

As it is clear from the table, the following two parameters are the main source
of potential bias between the outputs of the two submodels:

� Average daily number of contacts δ. Obviously, the contact process in the
compartmental model lacks much detail compared to the explicit modeling
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Variable Description Compatibility between submodels

ρ Population size, people Equivalent

α(h) A fraction of population ex-
posed to the strain m in the
preceding epidemic season, h ∈
1,m*

Equivalent

λ(m) Virulence of the virus strain m Equivalent
a A fraction of people who lost im-

munity after being exposed to
the virus strain in the preced-
ing epidemic season

Equivalent

δ Average daily number of con-
tacts in the population for a
�xed individual

Matched by averaging

µ A fraction of the individuals
with the protection from infec-
tion by any in�uenza strains

Population submodel only

Table 4. Parameter compatibility between the submodels

of the contacts in a synthetic population, thus even if the average number of
contacts is correctly calculated from the corresponding multi-agent submodel
data, the discrepancy in the actual number of contacts is inevitable.

� A fraction µ of the individuals with the protection from infection by any in-
�uenza strains. This parameter was somewhat arti�cially added to a model
to make it possible to calibrate the compartmental model to real data. In
[25] it was shown that with µ = 0, when all the individuals without expec-
tion are prone to the infection, the compartmental model gives implausible
prevalence curves � they are either too high (unrealistic epidemic intensity)
or too wide (unrealistic epidemic duration) compared to the real observed
epidemic outbreaks. We assumed thus that µ is dependent on the fraction of
cases which is missed in the statistics due to under-reporting (hence, lower
prevalence peaks in data) and also on the topology of the contact network
(unlike it is assumed in SEIR-type compartmental models, not all of the
individuals participate in the epidemic transmission).

The analysis of the dependence of hybrid model output on t∗ and µ was
performed in the numerical experiments described in the following section.

3 Simulation

The simulation framework implementing the described hybrid model was devel-
oped using Python 3.8 programming language. The simulation runs were exe-
cuted in parallel using multiprocessing library. The hardware used was Intel
Xeon cluster with 24 virtual (12 physical) cores. A single experiment included
10�20 repetitive simulation runs. The result of one experiment is thus 30�60
trajectories in total (10�20 for each of three co-circulating in�uenza strains).
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3.1 Switching moment in�uence

The �rst set of experiments with the hybrid model was conducted to compare
prevalence trajectories obtained with di�erent values of t∗. The value µ = 0.9
was set based on the previous experience of compartmental model calibration
[25]. On the Figure 2 below, from left to right in a �xed row one can see output
prevalence curves for three circulating virus strains. From top to bottom, it is
shown how the output corresponding to a �xed virus strain changes depending
on the input parameters. The moment of switching is shown on each graph by
a gray dotted line.

Figure 2 shows that the resulting output is generally similar throughout
the experiments, however, there exists a visible increase in the maximum total
number of infected individuals with the increase of t∗ (the images top to bottom
for a �xed strain). Also, the very moment of the switch is clearly visible on
the graphs, which indicates that the submodel matching by simple equaling of
the parameter values does not allow for smooth transition. Thus the framework
might require modi�cations to assure correct coupling of the submodels. That
observation is coherent with the �ndings demonstrated by other research groups
[29].
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Fig. 2. Prevalence dynamics for di�erent switching moments t∗, the fraction of pro-
tected individuals µ = 0.9 set according to [25]. A row of three �gures corresponds to
an output of a single experiment while a column shows the comparative prevalence of
infection caused by one virus strain depending on t∗.
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3.2 Protected individuals fraction in�uence

The second set of experiments with the hybrid model was conducted to �nd out
how the value of µ might in�uence the resulting output.
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Fig. 3. Incidence dynamics depending on the fraction of protected individuals µ.

Figure 3 demonstrates that changing µ indeed alters dramatically the max-
imum prevalence. Thus, to ensure the plausibility of the hybrid model output,
the value of µ for the compartmental submodel should be somehow calibrated
to real data and/or aligned with the properties of the contact structure used in
the multi-agent submodel.

4 Conclusions

In this article, the structure of the hybrid modeling framework is presented which
allows to �nd a good trade-o� between the output detail and the computational
speed. Also, several experiments were conducted and demonstrated which aimed
at preliminary investigation of the applicability of the introduced concept. The
following conclusions might be made based on the results:

� The usage of the hybrid model makes it possible to calculate prevalence tra-
jectories much faster than using the original multi-agent model (see Table 3),
and to add more detail to the disease transmission description (e.g., by con-
sidering supermarkets and public transport as potential places of contacts).
However, since the choice of the switching moment t∗ alters the output, and,
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obviously, the switch made too early renders a multi-agent component of the
hybrid network useless, the problem of careful selection of this value should
be properly addressed in the forthcoming research. One of the things which
is to be done in that direction is to compare the presented outputs of the
hybrid model with the output of the original multi-agent model and to as-
sess how fast the bias between the trajectories decreases with the increase
of t∗. This investigation will make it possible to �nd a dependence between
the output accuracy and the simulation execution time under a �xed set of
input parameters.

� The demonstrated discontinuity of prevalence trajectories at the moment of
switching calls for re�ning the switching algorithm. Particularly, it is nec-
essary to establish whether this problem arises due to incompatibility of
modeling structures or poor matching of parameter values. According to
[29], while there is an equivalence between the averaged and network model,
the parameters still need to be adjusted. Since the networks are not ho-
mogeneous, one needs to calculate the revised �e�ective� value of disease
transmission intensity. This approach, along with the switching based on
stabilized transmission detection, will be implemented in the near future.

� The presence of the parameter µ in the compartmental submodel, which
does not have a clear interpretation, complicates the alignment of the two
submodels. A possible solution of the issue is to �nd a way how to derive
the value of µ from real data or from the parameter values of the multi-
agent submodel. Since this result might be obtained only after clarifying the
parameter meaning, a full-�edged separate research is required.

� In the current article, separate trajectories were shown on the graphs, since
the aim was to demonstrate how a given trajectory behaves before and after
switching the submodels. However, for the practical aims of using the hybrid
modeling framework, particularly, for the calibration to real data and for
the uncertainty analysis, the con�dence intervals should be assessed and
compared depending on switching moment t∗. That will allow to understand
how the usage of the hybrid model alters the uncertainty of the prevalence
estimation compared to the original multi-agent framework.

The author believes that the mentioned steps will make the described hy-
brid modeling framework a valueable tool for short-term infection prediction
of in�uenza and COVID-19 prevalence, along with the analysis of their possi-
ble co-circulation, which is stated to pose potential danger for the population
well-being.
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